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Abstract Physical activity monitoring for youth is an area of increasing scientific and pub-
lic health interest due to the high prevalence of obesity and downward trend in physical
activity. However, accurate assessment of such activity remains a challenging problem be-
cause of the complex nature in which certain activities are performed. In this study, we
formulated the issue as a machine learning problem—using a diverse set of 19 physical
activities commonly performed by youth—via two approaches: activity recognition and in-
tensity estimation. With the aid of training data, we implemented a distance metric learning
method called DML-KNN that utilizes time-frequency features and is capable of effectively
classifying both continuous and intermittent movement in youth subjects. Four different
time-frequency feature extraction methods were then systematically evaluated. Our results
show that the DML-KNN method performed competitively, especially when using features
extracted by the Tamura method for intensity estimation, and by the Square Coefficient
method for activity recognition.

Keywords machine learning · feature extraction · physical activity classification

1 Introduction

The collection and analysis of human activity data via body-worn sensors has garnered con-
siderable attention in recent years [18, 22, 34]. Studies have shown that accelerometer mea-
surements during physical activity have a strong relationship to energy expenditure, which
is widely accepted as the standard reference[9, 11, 12, 21, 28]. Advances in technology have
allowed accelerometers with low power consumption, easy setup, and unobtrusive design to
provide a promising tool for monitoring free-living physical activitie[2, 16, 37].
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Fig. 1 Accelerometer measurements taken in one-second epochs of continuous (a, track running) and inter-
mittent (b, workout video) movements in the anterior-posterior (AP), medio-lateral (ML), and vertical (VT)
directions. Each set of graphs is accompanied by a pair of silhouette figures demonstrating some of the move-
ments associated with each activity.
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Physical activity recognition is well documented as an effective predictor of widespread
chronic health problems among members of the public. The ability to differentiate between
types of physical activities could provide valuable new insights in the fields of behavioral
and clinical science [31]. Many previous studies have focused on monitoring and analyz-
ing adults’ physical activities (e.g., standing, walking, ascending and descending stairs, and
traversing up and down gradient slopes[14, 20, 27, 28] ), However, these works only ana-
lyzed simulated activities conducted in controlled environments by small numbers of sub-
jects [3]. The breadth of research that uses machine learning algorithms to examine real-life
youth physical activities is exceedingly limited[17, 32]. Importantly, the types of activities
and how they are performed by youths tend to vary more greatly than for adults[8]. Thus,
techniques and algorithms generated for adults from previous studies are not necessarily ap-
plicable to youth populations[32].

As the need for measurement precision has increased, techniques for monitoring and ana-
lyzing physical activity have resolved to divide the complexities of recorded behaviors into
continuous movement (e.g. walking and running) and intermittent movement (e.g. vacu-
uming, basketball, etc.)[6, 7]. The consequences of this separation are most apparent for
intermittent movement, which involve many postural transitions, and thus create sharp high-
frequency transients in recorded data. Unlike continuous movement activities that produce
cyclical motions and are less frequently misclassified, intermittent movements exhibit non-
cyclical characteristics with more changes in frequency and acceleration that complicate
classification. For example, Figure 1 shows two physical activities performed by youth in
the anterior-posterior, medio-lateral, and vertical axes. From the figure, it is clear that track
running produces movements more regularly distributed in both amplitude and frequency
than the workout video activity, indicating that the subject is performing cyclical motions.
In contrast, the workout video activity generates movements that contain postural changes
in all three directions, as evidenced by sharp temporal spikes in each axis.

In order to address the sporadic behavioral patterns of youth, we introduced a combination
of time-frequency feature extraction and a local Distance Metric Learning used on K Near-
est Neighbors (DML-KNN) method to classify a diverse range of common activities. These
included sedentary behaviors, household chores, locomotion, video games, and exercise and
sports. Due to the presence of sharp high-frequency transients in intermittent movement
data, information of interest is often buried within a combination of features, localized in
the time and frequency domains. To obtain the desired data we first extracted time-frequency
feature sets—henceforth referred to as just ”features”—from accelerometer counts, then pro-
jected those features onto subspaces using a set of learned local distance metrics to make
clear associations between similar activities and enhance discrimination between different
activities. Finally, we employed K Nearest Neighbors (CkNN)[4, 8], a machine learning
method that extends from standard kNN, for multiple instance classification. kNN is well-
suited to handling noise and multimodal distributions, which are features common to data
collected from accelerometers during physical activities. Comparison experiments with a
SVM classifier revealed clear distinctions in accuracy when using time-frequency features
to examine intermittent movement.

Notable features in this work include:

1. A new machine learning framework to generate time-frequency features from accelerom-
eter data, which uses a local distance metric learning (DML-KNN) method for intensity
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estimation and activity recognition, as well as an evaluation this method using a real-
world examination of physical activities in youth.

2. Utilizing a larger sample size than most predecessors reported in literature.
3. The division of youth movement categories into continuous and intermittent, where in-

termittent movements contain sharp high-frequency changes in signal during transitions
in motion—a feature not easily detected by previous methodologies.

4. Extensive comparison studies with a SVM method. The experimental results reveal the
advantages of using our proposed DML-KNN classifier when examining time-frequency
features.

2 Related work

Our method draws from two separate fields of study: feature extraction and activity classifi-
cation using accelerometer data.

2.1 Feature extraction

Time-domain features are most widely used for activity recognition[9–11, 23, 32? , 33]. For
example in[30] data features are extracted from each one minute window of accelerometer
data and categorized them as follows:

1. 10th, 25th, 50th, 75th, and 90th percentile values for every one-second interval; sixty
intervals in each one-minute window.

2. Lag-1 to lag-8 autocorrelations, representing temporal relationships.

While the presence of unavoidable artificial error effects can produce noise in data with
one-second epochs, the 10th, 25th, 50th, 75th, and 90th percentile values provide workable
representations of the distribution present in each one-minute window, and serve as equiva-
lent dimensions for each instance.

Lag-1 to lag-8 autocorrelation captures the correlation between neighboring seconds (1-
8 seconds) that cannot be discerned by examining percentiles alone. Given a time-series
dataset Y = {Y1,Y2, ...YN} at time X = {X1,X2, ...XN} , the lag-k (with k from 1 to 8) auto-
correlation is defined as the function:

rk =

N−k
∑

i=1
(Yi−Y )(Yi+k−Y )

N
∑

i=1
(Yi−Y )2

(1)

Where Y is the mean of time-series dataset Y. The larger the value of lag-k, the greater the
correlation.

Previous works have postulated that applying a combination of time-domain and frequency-
domain features can generate more accurate results than using either one separately[8].
These include statistical time-frequency features[21, 26, 36]; a combination of time-domain
features and Fourier Transforms to extract the mean, entropy, energy, and correlation in
the frequency domain[4, 5, 12]; wavelet packet decompositions to extract time-frequency
features between 0.25HZ and 17HZ, where most useful information is contained[14], and
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applying discrete wavelet transforms to analyze healthy activities in adults[15, 20, 25, 27].

Inspired by the aforementioned works, we combined wavelet time-frequency features and
time-domain features to further improve activity recognition. This enhancement to our ana-
lytical arsenal was crucial, as we were better equipped to identify the movement patterns of
our 112 youth participants, who were measured performing 19 daily physical activities.

2.2 Activity classification from accelerometer data

Existing classification methods vary depending on the application: decision trees being one
such method that have performed admirably for activity recognition in uncontrolled out-
of-laboratory environments [4, 10, 29]. Notably, Hong et al. used a hierarchical structure
that divided the activity recognition task into body motion and hand motion with object
identification, then applied a decision tree classifier that was sensitive enough to recognize
instrumental activity (I-ADL) [12]. However, decision trees can also be applied toward in-
tensity estimation, with the data collected from accelerometers and gyro sensors placed on
the ankle, hip and wrist [21]. Some researchers focus on estimation of energy expenditure
and prediction of activity type using either artificial neural networks (ANN) [11, 32], or the
Bipart method [17]. Another option is to first use a random forest classifier to predict physi-
cal activity types, then use a random forest of regression trees to estimate energy expenditure
[9]. Still others have used support vector machines (SVM) to perform activity recognition
based on a more practical, long-term single sensor system [15]. Cleland et al. showed that
optimal accelerometer placement for adults was on the hip, and that SVM achieved the best
classification results when differentiating between activities exhibiting significantly differ-
ent accelerometer readings, such as sitting and walking [5]. Bao et al. focused on differen-
tiating activities performed without researcher supervision, finding decision tree classifiers
to be most accurate, while k-Nearest neighbor was the second most accurate algorithm [4].
Other investigators have used meta-level classifiers to produce results with remarkable ac-
curacy [8, 26].

In this study, we first used DML to project generated time-frequency features of youth phys-
ical activities onto a more discriminative subspace, maximizing the distance between data
points from different movement groups, while minimizing the distance between points from
the same group. We then used the k-Nearest neighbor classifier method for physical activity
recognition.We begin by recognizing that both intensity estimation and activity recogni-
tion play key roles in classification. For intensity estimation, we classified activities into
sedentary behaviors (< 1.5 metabolic equivalents (MET)), light physical activity (1.5-2.99
METs), moderate physical activity (3.00-5.99 METS), or vigorous physical activity (≥ 6.0
METs) categories; for activity recognition, we aim to correctly identify motions associated
with a wide range of activity types[26].

3 Time-frequency features for activity recognition and intensity estimation

Ultimately, both activity recognition and intensity estimation are classification problems.
As the subjects of this study were youths, our methods placed particular emphasis on dis-
tinguishing between the continuous and intermittent movements, as youths are prone to
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Fig. 2 An example of signal wavelet decomposition using data from the floor Light Space activity.

performing continuous movement activities in a manner that analyses could easily misin-
terpret as intermittent when examining accelerometer data. To this end, we first extracted
time-frequency domain features from accelerometer data, then used a local distance metric
learning method to create a projection matrix. This matrix mapped the time-frequency do-
main features onto a lower dimension, placing youth activity points from identical classes
close to each other, while positioning points from different classes at a greater distance.
Finally, taking computational efficiency into account, we applied a simple KNN classifier.
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3.1 Wavelet features generation

We employ wavelet feature generation to extract additional frequency information not read-
ily available from the accelerometry data, specifically accelerometer counts with sharp fre-
quency changes—indicating posture transients, which cannot be extracted from time-domain
features. The decision to use wavelets derived from their suitability for interpreting intermit-
tent movements containing numerous frequency changes. Also, unlike Fourier transforms,
which can only extract frequency information, wavelets have the capacity to generate both
time and frequency characteristics, which better capture frequency fluctuations on short time
scales.

In a discrete youth activity wavelet transform, an accelerometer signal x(n), where x is the
accelerometer signal and n is the length, is split into an approximation coefficient CA1, using
a low-pass filter g, and a detail signal CD1, using a high-pass filter h. Using CA1 and CD1,
we can reconstruct the original accelerometer signal into approximation signal A1 and de-
tail signal D1. Approximation signal A1 contains the overall structure of the youth activity,
while detail signal D1 contains detailed information, like postural transients and frequency
changes performed. Fig 2 provides an example using data gathered from youth playing floor
Light Space, an interactive game activity that requires players to touch lighted floor panels
using their feet. After decomposing the medio-lateral activity signal into approximation and
detail components, we can observe that the approximation signal follows the overall trend
of the original, while the detail signal fluctuates wildly in the course of the subject’s medio-
lateral movements, though on a smaller scale.

The approximation coefficient CA1 can be further split into a second level approximation
coefficient CA2 and detail coefficient CD2. If the frequency of the original signal is fmax, the
band-pass of the first approximation signal A1 is [0, fmax/2], and the band-pass of the first
detail signal D1 is [ fmax/2, fmax]. This process can be repeated, splitting the signal into yet
more coefficients, as shown in Fig 3.The maximum level of decomposition depends on the
number of data points. Specifically, if N is the number of the data points in one observation,
the number of levels cannot be greater than j, where N = 2 j. As the data sets used contained
60 data points for each axis, the maximum decomposition level was 5.

The coefficients can be derived from the dilation function φ and the wavelet function ψ ,
respectively. These functions are defined as:

φ j,k(n) = 2− j/2
φ(2− jn− k) (2)

ψ j,k(n) = 2− j/2
ψ(2− jn− k) (3)

Where j ∈ Z represents the decomposition level of the dilation or wavelet function, and
k ∈ Z represents an index for translation in time.

Detail coefficients CD produced by decomposition are typically small, consisting mainly of
high-frequency noise, while approximate coefficients CA are less noisy and contain informa-
tion about broader shifts in the data values. Thus, the process of wavelet feature generation
involves two components: decomposing a sample to obtain the wavelet coefficients, and
extracting useful information from these coefficients.
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Fig. 3 (a) Illustration of the process of wavelet decomposition, where S is the original signal, CA represents
approximation coefficients, and CD represents detail coefficients. LP filter and HP filter are low-pass filters
and high-pass filters, respectively. By using CA and CD, we can reconstruct the approximation and detail
signals from each level. (b) Applying this process to data from the floor Light Space activity.
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3.2 Proposed time-frequency features

The features we choose to extract include both time-domain features and frequency-domain
features, with the latter being able to reveal information from intermittent movements that
the former cannot. In all, we utilized four different methods for wavelet feature generation
to study accelerometer data: Tamura, Nyan, Square coefficient, and Magnitude coefficient.

The Tamura method decomposes accelerometer data into five levels using a wavelet trans-
form, with ‘Daubechies 3’ as the wavelet mother. Daubechies wavelets are a family of or-
thogonal wavelets defining a discrete wavelet transform where the number characterizes the
length of the wavelet. Features are calculated as the sum of the squared detail coefficients at
levels four and five [24]. The Nyan method, previously used by Nyan et al.,[20] establishes
wavelet features in much the same way[24]. However, rather than treating the scales sep-
arately, the summations at levels four and five are added together. The squared coefficient
method decomposes each component of the tri-axial acceleration signal into five levels us-
ing a ‘Daubechies 2’ wavelet mother, and calculates the sum of the square detail coefficients
at levels one through five for each axis. The magnitude coefficient method is the final ap-
proach used, and operates similarly to the squared coefficient method, but instead generates
the absolute values of each decomposed component of the tri-axial acceleration signal.

A number of time-domain features, including several not examined in previous studies, are
analyzed:

1. Maximum and minimum values—1st and 100th percentile: Maximum and minimum
values can aid in distinguishing activities from different intensity categories.

2. Values at percentiles from the 5th to the 100th, in 5-percentile increments: A greater
number of percentiles are employed than previous works that recorded activity in adults
to counteract the increased variability in movements observed in youth.

3. Lag-1 to lag-8 autocorrelations, representing temporal relationships: Much like in pre-
vious works, autocorrelations are used to detect and eliminate dependencies in the data.

4. Number of counts with a value of zero, in each axis: sedentary activities—such as Supine
rest, reading, watching TV, and searching the internet—contained a large number of
zero-valued data readings; to better differentiate these activities, we counted the number
of zero values observed in each axis.

3.3 Semi-supervised learning for activity classification

Though methods exist for classifying accelerometer data from generated features—including
SVM [15], ANN [13, 14], GMM[19, 35], decision trees, and Nave Bayes[1, 4]—we opted
to devise a semi-supervised learning method to utilize our proposed time-frequency fea-
tures, and was designed to yield competitive results in the physical activity domains of our
youth subjects, especially for the classification of intermittent movements involving sharp
frequency changes and postural transients.

For time series classification we treated adjacent samples as a block, given that samples ad-
jacent in time predominantly possess similar structures and information. Using these blocks
we were able to independently identify a local distance metric from training and test sets
that minimized the distance between samples from the same class, while simultaneously
maximizing the distance between samples from different classes. Finally we used a kNN
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classifier to implement classification.

Given a set with time-frequency domain features F = { f1, f2, ..., fN} ∈ Rm×N , containing
N samples, where each sample has m time-frequency domain attributes, we can use the
equation for Mahalanobis distance to define the distance between fi and f j as :

dA( fi, f j) =
√
( fi− f j)T A( fi− f j) (4)

where A is positive and definite. If we replace A in equation (4) with WW T using Cholesky
decomposition, we obtain:

dA( fi, f j) =
√
( fi− f j)TWW T ( fi− f j)

=

√
(W T ( fi− f j))

T (W T ( fi− f j))

= ‖W T ( fi− f j) ‖ (5)

Our goal is to obtain a projection matrix W that can map all the activity points in the time-
frequency domain to lower dimensions, where activity points from the same class are located
as close to each other as possible, while points from different classes are as far from each
other as possible.

If we employ two distance metrics to replace W with W1W2, where W1 and W2 are respec-
tively the distance metrics learned from test data and training data, the distance between fi
and f j becomes:

dA( fi, f j) =‖W T
2 W T

1 ( fi− f j) ‖ (6)

Equation (6) is equivalent to projecting all time-frequency features onto the space defined
by projection matrices W1, learned from the test set, and W2, learned from the training set.
For the next step, we will use test data distance metric W1 to illustrate the procedure, though
W2 operates identically. For the time-frequency domain features, given a test feature sample
fi, we defined features with the same physical activity class as Fs

i = { f s
i1 , f s

i2 , ..., f s
ik1
}, and

features with different physical activity classes as Fd
i = { f d

i1 , f d
i2 , ..., f d

ik2
}. For each sample

fi, we constructed a block structure that contained the values for the sample itself, as well
as the values of the nearest samples from the same physical activity class and the nearest
samples from different activity classes. Each block was defined as:

Fi = { fi,Fs
i ,F

d
i }

= { fi, f s
i1 , f s

i2 , ..., f s
ik1
, f d

i1 , f d
i2 , ..., f d

ik2
} (7)

Using fi as an example, we minimized the distance between features of the same physical
activity class using the equation:

arg minA1

k1

∑
j=1

d2
A1
( fi, f s

i j )

= arg minW1

k1

∑
j=1
‖W T

1 ( fi− f s
i j ) ‖2 (8)
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Fig. 4 Anterior-posterior (AP), Medio-Lateral (ML), and Vertical (VT) axis accelerometer data with 1-second
epochs was used to derive a 2-dimensional PCA projection (top), after feature extraction. Features were then
projected onto the subspace (bottom).

Meanwhile, we maximized the distance between features from different activity classes, as
illustrated in Fig 4, using the equation:

arg maxA1

k2

∑
q=1

d2
A1
( fi, f d

iq)

= arg maxW1

k2

∑
q=1
‖W T

1 ( fi− f d
iq) ‖

2 (9)

where A1 =W T
1 W1 is the distance metric learned from the test set.

Combining equations (8) and (9) produces:

arg min
w1

(
k1

∑
j=1
‖W T

1 ( fi− f s
i j ) ‖2 −β

k2

∑
q=1
‖W T

1 ( fi− f d
iq) ‖

2

)
(10)
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where β ∈ [0,1] is a scaling parameter that unifies the different measures of within-class
distance and between-class distance.

If we define the coefficient vector as:

ωi =

1, ...,1︸ ︷︷ ︸
k1

,−β , ...,−β︸ ︷︷ ︸
k2

 (11)

we can reduce equation (10) to:

arg minW1

(
k1

∑
j=1
‖W T

1 ( fi− f s
i j ) ‖2 −β

k2

∑
q=1
‖W T

1 ( fi− f d
iq) ‖

2

)

= arg minW1

(
k1+k2

∑
j=1
‖W T

1 (Fi{1}−Fi{ j+1}) ‖2 (ωi) j

)
= arg minW1tr(W T

1 FiLiFT
i W1) (12)

We can then create an expression Li, which encapsulates both the local geometry and the
discriminative information:

Li =

 k1+k2
∑
j=1

(ωi) j −ωT
i

−ωi diag(ωi)

 (13)

From there, Fi = { fi,Fs
i ,F

d
i }∈Rk1+k2+1 is selected from the global coordinate F = { f1, f2, ..., fN}∈

Rm×N , such that:
Fi = FSi (14)

where Si ∈ RN×(k1+k2+1) is a selection matrix containing elements defined as:

(Si)pq =

{
1 i f p = Di{q}
0 else

(15)

where Di = [i, i1, ..., ik1+k2 ] is the index set for Fi. In order to make the projection matrix W1
linear and orthogonal, we iterate for all N samples according to the procedure:

arg minW1

N

∑
i=1

tr(W T
1 FiLiFT

i W1)

= arg minW1tr

(
W T

1 F
N

∑
i=1

(SiLiST
i )F

TW1

)
= arg minW1tr(W T

1 FLFTW1) s.t.W T
1 W1 = Id (16)

where the alignment matrix L=
N
∑

i=1
SiLiST

i ∈RN×N . We then use standard Eigen-decomposition

to obtain the solution to equation (16):

FLFT u = λu (17)

where the column vectors u1,u2, ...,ud are the solutions of equation (17), ordered accord-
ing to the eigenvalues λ1 < λ2 < ... < λd . Therefore, the optimal projection matrix is W1 =
[u1,u2, ...,ud ]. Following the same process for W2 as W1, we can obtain the final projec-
tion matrix W =W1W2. For more detailed technical discussion, please refer to our previous
work[17].
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4 Experiments

4.1 Data collection

112 children (58 male, 54 female), aged eight to twelve, participated in this study. An Acti-
Graph GT3X tri-axial accelerometer positioned on the right hip of each participant was used
for physical activity measurement during all trials. This was done by a trained research as-
sistant and checked periodically during testing to ensure the accelerometer was in the correct
location. When using the ActiGraph, the raw acceleration data first goes through a low pass
filter to remove unwanted noise. It next goes through a band-pass filter when converting
to epochs, which are what is used for the analysis. Both ActiGraph filters are proprietary.
In converting to epochs the data are full-wave rectified and for the time of interest (e.g. 5
sec) the area under the curve is calculated, which gives the epoch value. Numerous studies
have shown these devices are reliable and consistent between participants. However they
are proprietary by nature so only the manufacturer knows exactly how the output data is
generated. As for their influence on human activities, the ActiGraph is battery powered and
data is downloaded to a computer after use, thus there are no cables that would restrict the
participants’ movements.

All participants completed supine rest, and then were randomly assigned to complete six
out of the other 18 structured physical activities. Thus, each participant completed a total of
seven activities. These 19 activities were then labeled and sorted into five categories:

1. Sedentary behaviors: supine rest, reading, watching TV, and searching the internet.
2. Household chores: sweeping and vacuuming.
3. Locomotion: slow track walking, brisk track walking, walking with a 10-lb backpack,

and track running.
4. Interactive video games: Nintendo Wii, floor Light Space, wall Light Space, Dance

Dance Revolution (DDR), and Trazer.
5. Exercise and sports: playing catch, soccer around cones, Sport Wall, and workout video.

In order to decrease bias, we implemented each experiment 10 times to establish an average
accuracy.

4.2 Feature generation

In accordance with previous studies, bouts were divided into a sequence of non-overlapping
windows, each one minute in duration. This was done for ease of comparison, as activities
lasted for different lengths of time (all activities were performed for 7-min, except supine
rest which lasted for 30-min).

Each 1-minute window was further divided into 1-second intervals. Feature extraction was
performed five times for each interval: once for the original features, and once using each of
the four wavelet methods for the improved features. DML-KNN and SVM classifiers were
then employed to classify and predict labels from the features generated.
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4.3 Intensity estimation and activity recognition

Intensity estimation was performed to divide the 19 recorded activities into five categories
(sedentary behaviors, and light, moderate, and vigorous physical activity). Activity recog-
nition involved distinguishing the 19 activities from each other. We used the DML-KNN
to classify features generated by the time-domain method and also the four different time-
frequency classification methods.

4.4 Training validation and precision measure

Three types of training validation were performed: 10-fold cross validation (CV), leave-one-
person-out (LOPO) and random splitting (RS).

1. For CV, the raw dataset was divided into ten distinct segments. Labels were predicted
for each segment by using the other nine segments as training data. Once this had been
done for each of the ten segments, voting was performed in blocks. CV validation is
normally used to combat over-fitting.

2. The LOPO method removes one sample from the data set and uses it for validation. The
process is repeated for each sample in the set until all have been used for validation.
LOPO validation is the closet simulation on how the method operates in practice.

3. The process for RS was first performed by applying a label to 10% of the raw data, with
the remaining 90% used for training (RS 90). RS was then repeated eight times, each
trial using 10% less of the raw data for training (RS 80 through RS 10). RS Validation
is used to evaluate robustness and flexibility.

We evaluated the performance of each method against four different metrics: overall ac-
curacy, precision, recall (or sensitivity), and F-score. Overall accuracy was taken as the
proportion of true examples of all activity types that were correct,

Accuracy = (T P+T N)/(T P+FP+FN +T N) (18)

Where T P is the number of true positives, T N is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. Precision was defined as
the proportion of predicted examples of each activity type that were correct, meaning

Precision = T P/(T P+FP) (19)

Recall was defined as the proportion of true examples of an activity type that were correctly
identified, and can therefore be calculated as:

Recall = T P/(T P+FN) (20)

Precision and recall always conflict such that in cases were precision is high, recall is consis-
tently low, and vice versa. However, if, for example, we erroneously classified all samples as
supine rest, the recall result of supine rest would be 100%, but precision would be atrocious.
To counteract such anomalies, we use the F-score, a combined measurement of precision
and recall that is calculated as:

F− score = 2PR/(P+R) (21)

Where P is precision, and R is recall.
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Table 1 Overall accuracy obtained from combining five different feature extraction methods with SVM and
DML-KNN classifiers.

Feature Extraction Method

Classifier
Time-domain Tamura Nyan Square Magnitude

DML-KNN 86.72 91.37 91.14 88.91 89.86
SVM 69.34 84.52 83.31 83.98 86.07

5 Results

Using the time-domain features we examined in previous works as a basis for comparison
(see Section 2.1), we constructed features using the Tamura, Nyan, Square Coefficient and
Magnitude Coefficient methods previously described. These features were classified using
DML-KNN, and results were compared to classification performed using a SVM. Finally,
we employed a confusion matrix to discern the effects of classification.

5.1 Intensity estimation

Table 1 shows that by combining our proposed time-frequency features with a DML-KNN
classifier, we were able to achieve significantly greater classification accuracy than previ-
ously utilized methods. Figure 5 displays a comparison of F-score measurements between
SVM and DML-KNN. From the figure and table, we can see that for continuous movement
DML-KNN averaged only about 3%better than SVM, though SVM did benefit significantly
from using time-frequency features over time-domain features. However, for intermittent
movement DML-KNN outperformed SVM by an average of 24%, demonstrating DML-
KNNs superiority when dealing with sharp high-frequency, and transient information. The
time-frequency features produced better results than time-domain features for both classi-
fiers.

From the classification accuracies shown in Table 2, we observe that our proposed time-
frequency method can produce more accurate results than previous time-domain classifi-
cation attempts for youth activities. For cross-validation, the Nyan and Square coefficient
methods achieved the highest accuracies, with 92.2% and 92.3%, respectively. For LOPO
validation, the Tamura and Nyan methods achieved the best accuracies, at 91.7% and 91.1%,
respectively. For RS validation, all four time-frequency methods outperformed time-domain
methods, with no dramatic drop in accuracy as the proportion of data used for training was
decreased from 90% to 10%—even for RS 10, where the highest accuracy seen was 80.2%.

After predicting category types, voting was performed for individual blocks, which im-
proved accuracy in some cases. Notably, some samples selected for RS validation, unlike
for LOPO and CV validation, were not adjacent to any other samples in the same block.
Thus, the highest overall accuracy seen for RS was only 88.3%, when 90% of the data was
used for training.

As physical activities performed by youth are different from adults, and the volume of ac-
celerometer data is large, we designed an experiment named ”shotgun” that focused on
accelerometer data with a tendency to being misclassified. In ”shotgun” trials, we imple-
ment each experiment 10 times, and in each instance we randomly selected 12% of the
entire dataset. In Tables 3 through 7, it can be observed that all methods correctly classify
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Fig. 5 DML-KNN and SVM classifier F-score measurements for intensity estimation of continuous move-
ment (top) and intermittent movement (bottom) using time-domain features and four time-frequency features.

sedentary behaviors in almost all cases. This can be attributed to the abundance of zero-
valued accelerometer measurements associated with sedentary behaviors when compared to
activities in other categories. We also found that the four new methods are competitive at
identifying activities in all categories, especially in the household chores. Some misclassi-
fication was observed for interactive video games and exercise and sports, but the newly
implemented feature generation methods still exhibited better accuracy in the field of youth
activity.
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Table 2 Overall accuracy obtained from five different experimental methods for classifying individual activi-
ties, with voting. Each method was evaluated using three types of training validation: 10-fold cross validation
(CV), leave-one-person-out (LOPO), and random splitting (RS 90 through RS 10).

Time-domain Tamura Nyan Square Magnitude
CV 89.05 91.77 92.21 92.28 91.87

LOPO 86.72 91.73 91.14 88.91 89.86
RS 90 81.98 85.23 85.82 86.88 88.25
RS 80 82.24 85.57 85.34 86.28 86.10
RS 70 84.00 85.01 85.81 86.08 85.55
RS 60 83.49 85.71 86.52 85.94 85.04
RS 50 83.87 86.00 86.55 86.58 85.78
RS 40 83.84 84.92 85.07 85.64 86.50
RS 30 83.04 84.72 84.82 85.29 85.85
RS 20 81.43 82.43 81.96 83.44 82.70
RS 10 77.91 78.78 79.51 79.06 80.15

Table 3 Confusion matrix for categorized data with the time-domain feature generation method. Only LOPO
experiments were considered. Each trial was repeated using ten different randomly selected data subsets.
Values shown are averages rounded to the nearest integer.

Sedentary Household Locomotion Interactive Exercise
behaviors chores video games and sports

Sedentary behaviors 245 0 0 0 1
Household chores 1 97 0 7 2

Locomotion 0 1 101 1 0
Interactive video games 8 19 1 73 8

Exercise and sports 8 13 2 18 62

Table 4 Confusion matrix for categorized data with the Tamura feature generation method. Only LOPO
experiments were considered. Each trial was repeated using ten different randomly selected data subsets.
Values shown are averages rounded to the nearest integer.

Sedentary Household Locomotion Interactive Exercise
behaviors chores video games and sports

Sedentary behaviors 245 0 0 1 0
Household chores 1 103 0 1 3

Locomotion 0 1 102 0 1
Interactive video games 6 12 0 82 8

Exercise and sports 3 9 1 10 80

Table 5 Confusion matrix for categorized data with the Nyan feature generation method. Only LOPO exper-
iments were considered. Each trial was repeated using ten different randomly selected data subsets. Values
shown are averages rounded to the nearest integer.

Sedentary Household Locomotion Interactive Exercise
behaviors chores video games and sports

Sedentary behaviors 245 0 0 0 1
Household chores 0 103 0 2 2

Locomotion 0 2 101 0 0
Interactive video games 5 13 0 84 7

Exercise and sports 3 12 2 12 75
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Table 6 Confusion matrix for categorized data with the Square coefficient feature generation method. Only
LOPO experiments were considered. Each trial was repeated using ten different randomly selected data sub-
sets. Values shown are averages rounded to the nearest integer.

Sedentary Household Locomotion Interactive Exercise
behaviors chores video games and sports

Sedentary behaviors 245 0 0 1 0
Household chores 0 104 0 1 2

Locomotion 0 1 102 0 0
Interactive video games 7 15 0 80 7

Exercise and sports 4 14 2 21 62

Table 7 Confusion matrix for categorized data with the Magnitude coefficient feature generation method.
Only LOPO experiments were considered. Each trial was repeated using ten different randomly selected data
subsets.Values shown are averages rounded to the nearest integer.

Sedentary Household Locomotion Interactive Exercise
behaviors chores video games and sports

Sedentary behaviors 245 0 0 0 0
Household chores 0 100 1 4 3

Locomotion 0 0 101 1 0
Interactive video games 6 14 0 82 6

Exercise and sports 6 14 1 13 70

Table 8 shows the intensity estimation performance of each feature generation method,
as measured by recall, precision, and F-score. Fig 6 shows a comparison of F-scores achieved
by each method, with the Tamura method performing most competitively in youth activity
classification. Additionally, the Tamura, Square coefficient and Magnitude coefficient meth-
ods performed better in the continuous movement categories, including sedentary behav-
iors and locomotion. While for the intermittent movement categories, the Tamura and Nyan
methods obtained the better F-scores.

Overall, classification of household chores was more successful than interactive video games
and exercise and sports. This is likely due to the smaller diversity of postural transitions in-
herent to household chores, when compared to interactive video games and exercise and
sports. The latter produces more sharp frequency changes. Furthermore, the postural transi-
tions observed in household chores occur predominantly when a subject changes direction
or posture, but then proceeds to perform the same movements as before. In contrast, postural
transitions in interactive video games and exercise and sports tended to indicate a complete
shift in the types of movements the subject performed. In the voting phase, different labels
would sometimes earn the same number of votes, and ties were broken by selecting the first
applicable label from among those with equal votes. Thus, while the correct label may have
received as many votes as an incorrect label, it was eliminated due to its placement in the
order of activity categories.
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Table 8 Recall, precision and F-score measurements of time-frequency features from four wavelet feature
generation methods: Tamura, Nyan, Square coefficient, and Magnitude coefficient.

Recall Precision F-score

Sedentary behaviors

Time-domain 0.94 1.00 0.96
Tamura 0.96 1.00 0.98
Nyan 0.97 1.00 0.98

Square coefficient 0.96 1.00 0.98
Magnitude coefficient 0.95 1.00 0.98

Household chores

Time-domain 0.75 0.91 0.82
Tamura 0.82 0.95 0.88
Nyan 0.79 0.96 0.87

Square coefficient 0.78 0.97 0.86
Magnitude coefficient 0.78 0.93 0.85

Locomotion

Time-domain 0.97 0.98 0.98
Tamura 0.99 0.98 0.99
Nyan 0.98 0.98 0.98

Square coefficient 0.98 0.99 0.99
Magnitude coefficient 0.98 0.99 0.99

Interactive video game

Time-domain 0.74 0.67 0.70
Tamura 0.87 0.76 0.81
Nyan 0.86 0.77 0.81

Square coefficient 0.78 0.73 0.75
Magnitude coefficient 0.82 0.76 0.79

Exercise and sports

Time-domain 0.85 0.60 0.70
Tamura 0.87 0.78 0.82
Nyan 0.88 0.72 0.79

Square coefficient 0.87 0.60 0.71
Magnitude coefficient 0.89 0.67 0.77

Fig. 6 F-score results of time-domain, Tamura, Nyan, Square coefficient, and Magnitude coefficient methods.
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Fig. 7 Overall accuracy of activity recognition results using time-domain, Tamura, Nyan, Square coefficient
and Magnitude coefficient methods. Only LOPO experiments were considered.

5.2 Activity Recognition

The four previously mentioned time-frequency methods—Tamura, Nyan, Square Coeffi-
cient and Magnitude Coefficient—along with a time-domain method included for compari-
son, were used to identify the 19 different physical activities performed by our participants.
From Figure 7, we can see that the Tamura and the Square Coefficient methods achieved
the best overall accuracies in youth activity recognition, with 64.4% and 64.3%, respec-
tively. The Nyan and Magnitude Coefficient methods achieved accuracies comparable to
each other, while the time-domain method performed unsatisfactorily with an overall accu-
racy of 57.7%.

Tables 9 through 11 provide a clearer picture of each method’s performance. For household
chores, the Squared coefficient and Tamura methods achieved preferable F-scores. For lo-
comotion activities, the Tamura and Nyan methods performed better—achieving the highest
F-scores—especially for walking with a 10-lb backpack and track running, which proved
troublesome for the other methods. The Square coefficient method achieved the highest
F-scores in the interactive video games category, though all methods struggled to classify
the wall light space activity, resulting in F-scores between 0.40 and 0.49. The time-domain
method was unsatisfactory at recognizing the Nintendo Wii activity than all other methods,
with an F-score of only 0.34. Of the exercise and sports activities, soccer around cones was
the most consistently recognized by all methods. The Square coefficient method was supe-
rior at identifying the workout video activity, with an F-score of 0.73, compared to F-scores
of 0.51 to 0.65 for the other methods.

Figure 8 compares the activity recognition performance of the five time-domain and
time-frequency features when used in conjunction with the DML-KNN classifier. The four
time-frequency features all achieved better F-Scores than the time-domain features for both



Title Suppressed Due to Excessive Length 21

Table 9 Recall measurement of activity recognition result.

Time Tamura Nyan Square Magnitude
domain

Sedentary
behaviors

Supine rest 0.55 0.55 0.55 0.55 0.55
Reading 0.19 0.26 0.25 0.30 0.27

Watching TV 0.04 0.15 0.08 0.12 0.04
Searching the internet 0.44 0.41 0.44 0.42 0.43

Household
chores

Sweeping 0.55 0.86 0.76 0.86 0.75
Vacuuming 0.72 0.75 0.71 0.78 0.64

Locomotion

Slow track walking 0.80 0.93 0.93 0.90 0.90
Brisk track walking 0.74 0.78 0.81 0.81 0.85

Walking with a 10-lb backpack 0.81 0.89 0.88 0.89 0.93
Track running 0.92 0.92 0.92 0.80 0.92

Interactive
video
games

Nintendo wii 0.31 0.67 0.56 0.66 0.59
Floor light space 0.50 0.62 0.67 0.63 0.67
Wall light space 0.52 0.34 0.38 0.39 0.43

Dance dance revolution 0.46 0.59 0.66 0.61 0.66
Trazer 0.79 0.70 0.74 0.64 0.69

Exercise
and sports

Playing catch 0.59 0.59 0.54 0.63 0.57
Soccer around cones 0.66 0.74 0.74 0.81 0.74

Sport wall 0.54 0.65 0.63 0.52 0.50
Workout video 0.43 0.56 0.52 0.68 0.67

Average 0.56 0.63 0.62 0.63 0.62

continuous and intermittent movement classification. Though the time-frequency features
performed comparably when analyzing continuous movement, the Square Coefficient method
proved best when dealing with intermittent movement, followed by the Tamura and Magni-
tude Coefficient methods.

6 Conclusions

Our primary objective was to examine common physical activities performed by youth us-
ing two approaches: intensity estimation and activity recognition. Data was gathered via a
single hip-mounted accelerometer on each of the 112 youth participants. We proposed four
different time-frequency wavelet methods, and one previously used time-domain method,
to extract features from accelerometer counts, then developed and implemented a semi-
supervised learning method for activity classification.

Overall, continuous activities were more accurately classified than intermittent activities,
likely owing to postural transitions inherent in the latter group that negatively impact ac-
curacy. Our results show that time-frequency methods are considerably more capable at
classifying intermittent movements, which contain sharp-frequency and posture transients—
Tamura and Nyan are better at youth activity intensity estimation, while Tamura and Square
Coefficient methods are best suited for youth activity recognition. However, due to the more
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Table 10 Precisions of one time-domain and four time-frequency methods.

Time Tamura Nyan Square Magnitude
domain

Sedentary
behaviors

Supine rest 0.56 0.63 0.63 0.64 0.62
Reading 0.17 0.25 0.25 0.23 0.23

Watching TV 0.14 0.67 0.50 0.60 0.17
Searching the internet 0.18 0.18 0.19 0.18 0.20

Household
chores

Sweeping 0.47 0.62 0.59 0.58 0.60
Vacuuming 0.54 0.64 0.61 0.70 0.60

Locomotion

Slow track walking 0.80 0.90 0.82 0.87 0.87
Brisk track walking 0.83 0.91 0.96 0.88 0.92

Walking with a 10-lb backpack 0.81 0.89 0.92 0.86 0.89
Track running 0.82 0.88 0.88 0.91 0.88

Interactive
video
games

Nintendo wii 0.38 0.57 0.62 0.66 0.61
Floor light space 0.50 0.56 0.57 0.56 0.59
Wall light space 0.47 0.59 0.42 0.65 0.46

Dance dance revolution 0.43 0.40 0.51 0.44 0.53
Trazer 0.92 0.88 0.71 0.90 0.83

Exercise
and sports

Playing catch 0.73 0.80 0.78 0.85 0.76
Soccer around cones 0.90 0.80 0.77 0.78 0.83

Sport wall 0.82 0.77 0.89 0.74 0.78
Workout video 0.63 0.75 0.68 0.79 0.67

Average 0.59 0.67 0.65 0.67 0.63

strenuous computational demands of the Square coefficient method, the Tamura method is
still preferable for cases where the two methods perform comparably.
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