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ABSTRACT

Three dimensional (3D) surfaces can be sampled parametrically in the form of range image data. Smooth-
ing/denoising of such raw data is usually accomplished by adapting techniques developed for intensity image
processing, since both range and intensity images comprise parametrically sampled geometry and appearance
measurements, respectively. We present a transform-based algorithm for surface denoising, motivated by our
previous work on intensity image denoising, which utilizes a non-separable Parseval frame and an ensemble
thresholding scheme. The frame is constructed from separable (tensor) products of a piecewise linear spline tight
frame and incorporates the weighted average operator and the Sobel operators in directions that are integer
multiples of 45o. We compare the performance of this algorithm with other transform-based methods from the
recent literature. Our results indicate that such transform methods are suited to the task of smoothing range
images.
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1. INTRODUCTION

Range images represent surface geometry in a parametric fashion. Range data are a sampled set of measurements
corresponding to distances from a specific viewpoint (the detector location) to surface points on the objects in
a three dimensional (3D) scene. This distance is measured by means of a laser beam which is reflected by the
object surface onto a monochromatic detector. For each sampled point on the object surface three separate
measurements are recorded: the distance d and the deflection angles (φ, θ) of the laser beam that it corresponds
to. These measurements constitute an explicit parametric description of the object surface d = F (φ, θ), and
can be transformed to position coordinates (x, y, z) with respect to an orthogonal axes system by trigonometric
calibration.

Given a scene of 3D objects, its contents can also be represented by an image capturing intensity data.
Intensity images therefore represent surface appearance. They also comprise a sampled set of measurements,
this time corresponding to the intensity of light (usually forming a broad part of the visible spectrum) as it is
reflected by points on the object surface. Thus, intensity images provide a parametric description I = F (u, v)
of the reflected light intensity of the object surface or background, with intensity I samples measured at pixel
positions (u, v).

It must be noted that the parametrization obtained using range data is neither conformal nor area preserving,
and hence it is far from isometric, as the spacing of the samples does not depend on the incident angle, i.e.,
the angle between the laser beam and the surface normal. In contrast, the pointing error in estimating d does
depend on the incident angle,1 and this is not the case for intensity images. However, both types of images are
also affected by the presence of additive Gaussian noise due to sensor electronics.
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It is due to this affinity, and despite their differences, that range images do lend themselves to treatment using
techniques originally developed for intensity images. We present in this paper the results of adapting algorithms
developed during our previous work on intensity image denoising2 to the task of smoothing surface data in the
form of such range images, and compare performance with other similar transform-based algorithms.

The remainder of this paper is organized as follows. Section 2 provides an overview of denoising methods for
range/intensity images. In Section 3, we review the construction of a frame-based filtering scheme that is tuned
to detecting singularities of first order at multiple orientations. This filtering scheme is employed in Section 3.2
for the construction of an ensemble thresholding denoising algorithm. Our experimental results are presented
and discussed in Section 4.

2. BACKGROUND

Most of the existing work regarding smoothing/denoising surface data centers around two main themes. First,
the techniques applied are suitable modifications of algorithms developed for intensity images, and second,
they involve the formulation of an elliptic PDE which is then solved via an iterative algorithm. In our work,
we explore an alternative approach, motivated by the success in image denoising of recent transform-based
algorithms (wavelets/frames).

Transform-based noise reduction has a long history as an area of interest in the (intensity) image process-
ing community. The goal of denoising is accomplished via a combination of methods involving suitable filter-
ing/transforms and statistical estimation. Typically, the image is transformed onto some domain where the noise
component can be identified more easily, and a statistical estimation is performed to identify and remove its
influence. This is accomplished by an estimation operator that suppresses noise while preserving the true signal.
Finally, the transformation is inverted to obtain the denoised image.

2.1. PDE-based range image denoising

Saint-Marc et al.3 in their seminal work apply adaptive smoothing to the range image derivatives in order
to achieve a robust detection of curvature features. Barash4 follows up examining the relationship between
anisotropic diffusion, adaptive smoothing and bilateral filtering, explaining how adaptive smoothing can serve as
the link between bilateral filtering and anisotropic diffusion. In this general vein, Umasuthan5 developed heat
diffusion techniques, and Desbrun et al.6 use the mean curvature flow. Also, Boulanger et al.7 use a multi-scale
filtering technique which produces a scale-space filtering analogous to Gaussian filtering, taking into account a
physical model of the sensor to ensure optimum filtering of the signal.

2.2. Transform-based intensity image denoising

In recent years, a wide class of image denoising algorithms have been based on the discrete wavelet transform.
The usefulness of the wavelet transform was first demonstrated by Donoho and Johnstone,8–10 when they proved
that thresholding estimators in a wavelet basis have nearly minimax risk for sets of piecewise regular images.
For the case of additive Gaussian noise they suggested two thresholding functions:

soft-threshold : ηS
T (x) = sgn(x) ·max(|x| − T, 0)

hard-threshold : ηH
T (x) =

{
0 |x| ≤ T,
x otherwise

where T is the threshold level and x is the wavelet coefficient of the underlying image. The threshold T is to be
selected using VisuShrink8 or SureShrink.10

Coifman and Donoho11 established that the use of non-decimated transforms minimizes artifacts in the
denoised data; the translation invariant denoising scheme they proposed is equivalent to thresholding in the
shift-invariant redundant representation implemented by a non-subsampled filter bank, or frame. In addition, it
has been shown12–15 that a redundant representation is substantially superior to a non-redundant representation
for image denoising in terms of mean-squared error and signal-to-noise ratio. Several redundant representations
have been applied to image denoising. Simoncelli et al.16 introduced the “steerable pyramid”, a tight frame also



used by image denoising algorithms.17 The dual-tree complex wavelet transform introduced by Kingsbury18 is
also redundant, and it has been used by Sendur and Selesnick.19, 20

In order to improve the selection criteria for the threshold T one needs to depart from the minimax framework,
which is optimal when no a priori information about the signal itself is assumed, and move to a Bayesian approach,
where both the noise and the true image signal coefficients in the wavelet domain can be modeled using some
prior distribution. This approach was first used by Simoncelli and Adelson.12, 21 This is also the approach used
by Chang et al.,13, 22 where BayesShrink, an adaptive, data-driven threshold, is derived in a Bayesian framework
using context modeling of the global coefficients histogram. Another approach exploiting the local structure of
wavelet coefficients was proposed by Mihçak et al.23 Recently, Portilla et al.17 developed a local Gaussian Scale
Mixture (GSM) model with excellent results, while Pizurica et al.24 use an empirical model to estimate the prior.

Even better results can be obtained by exploiting the fact that wavelet coefficients are statistically de-
pendent.25, 26 For example, a binary Hidden Markov model (HMM) based on wavelet trees for denoising of
one–dimensional (1D) signals was proposed by Crouse et al.27 and extended to image denoising by Romberg
et al.28 It is interesting to note that the GSM model17 can be interpreted as a continuous form of this binary
HMM. HMMs were also used by Fan.29 Sendur and Selesnick19, 20 propose a new bivariate model (BISHRINK)
by considering dependencies between the wavelet coefficients and their parents. In general, redundant represen-
tations such as frames are preferable for denoising purposes. Designing frames also proves to be more efficient
than designing bases, especially when one designs Riesz or orthonormal bases in multi-dimensions arising from
scaling functions.30

3. METHODS

In this section, we review the construction of a filter bank implementing a Parseval frame, as described in our
previous work.2 These framelet filters include the Sobel operators at directions which are integer multiples of
45o. We then describe the ensemble thresholding scheme used to denoise surface data parametrically represented
as range images.

3.1. Notation

We start by briefly establishing our notation. The Hilbert space of digital signals we wish to work with in our
applications is `2(Zd), where d = 2. An element K of `2(Zd) is a digital filter if its Fourier transform K̂ is a
bounded function. In order to eliminate any possible ambiguity we define the Fourier transform of L1([−π, π)),
by

f̂(n) =
1
2π

∫ π

−π

f(ω)e−inωdω, n ∈ Z .

This definition imposes a scaled version of the definition of the usual inner product in L2([−π, π)) as follows:
〈f, g〉 = 1

2π

∫ π

−π
f(ω)g(ω)dω, where f, g ∈ L2([−π, π)).

A digital filter K acts on a digital signal s ∈ `2(Zd) by convolution (i.e., s → s ∗K). A family {xj : j ∈ J} of
elements of a Hilbert space H, where J is an index set, is a frame for H if there exist constants 0 < A ≤ B < ∞
such that for every x ∈ H we have that:

A‖x‖2 ≤
∑

j∈J

|〈x, xj〉|2 ≤ B‖x‖2.

We refer to the optimal positive constants A,B as frame bounds. We refer to the frame as tight if A = B,
and as Parseval frame (PF) if A = B = 1. The advantage of PF versus other types of frames is that the
same set of vectors can be used for decomposition and reconstruction, and signal energy remains constant, just
as in the case of orthonormal bases. Exact frames (frames having no redundancy) are Riesz bases and vice-
versa. We also say that a finite set of filters {Ki : i = 0, 1, . . . , l} generates a frame of `2(Zd) if the family
{TnKi : n ∈ H, i = 0, 1, . . . , l} is a frame of `2(Zd).



3.2. Constructing new framelet digital filters

We begin by stating the following general result from our previous work.2 Assume that Ki, with i = 0, 1, . . . , l
is a finite set of digital filters that generates a frame for `2(Zd). For a given positive integer p, let U be a
2πZd-periodic (p+1)× (l +1) matrix-valued function whose entries (U(ω))q,r are continuous (or more generally,
measurable and bounded functions).

Proposition 1. If there exists A1 > 0 such that for almost every ω ∈ [−π, π)d

A1‖x‖ ≤ ‖U(ω)x‖ for all x ∈ Cl+1,

then the matrix multiplication U(ω)(K̂0(ω), K̂1(ω), . . . , K̂l(ω))t, defines a new family of digital filters which
generate a frame for `2(Zd). If, in particular, U(ω) is an isometry, for almost every ω ∈ [−π, π)d, then the
resulting and the original frames have the same frame bounds.

The subject of three–channel filter banks based on tight frames that are derived from multiresolution analyses
has an extensive bibliography.31–36

We use Proposition 1 to lift the frame described by Ron and Shen37 as being the simplest example of a
compactly supported tight spline frame. We select splines of degree one in order to keep the number of wavelets
to a minimum. The 1D Parseval frame is generated by the following low-pass h0, bandpass h1, and high-pass h2

filters:

h0 =
1
4

[1, 2, 1] , h1 =
√

2
4

[1, 0,−1] , and h2 =
1
4

[−1, 2,−1] .

Their corresponding inverse Fourier transforms are, respectively:

m0(ω) = cos2
ω

2
, m1(ω) = i

√
2

2
sin ω, and m2(ω) = sin2 ω

2
.

It is easy to note that
|m0(ω)|2 + |m1(ω)|2 + |m2(ω)|2 = 1, for ω ∈ [−π, π), (1)

and therefore h0, h1 and h2 generate a Parseval frame for `2(Z).

The tensor product of the 1D PF of Ron and Shen with itself is another PF arising from nine separable
(tensor product) filters:

mp,q(ω1, ω2) = mp(ω1)mq(ω2),

where p, q ∈ {0, 1, 2}. The following equality holds:

2∑
p,q=0

|mp,q(ω)|2 = 1, for ω ∈ [−π, π)2. (2)

Thus, we view m0,0 as a low-pass filter, and the remaining eight filters as band-pass and high-pass. We refer to
these filters collectively as the UHF9 filter bank. The filter taps corresponding to it are given by the nine 3× 3
matrices Mp,q := ht

phq.

We note that the filters M0,1 and M1,0 in the UHF9 filter bank are the Sobel operators detecting vertical and
horizontal edges. This motivates us to augment bank UHF9 with two diagonal first order singularity detectors.
Equation (2) implies that for every ω in [−π, π)2, the vector v = v(ω) defined by:

v := (m0,0,m0,1,m1,0,m1,1,m0,2,m2,0,m2,1,m1,2,m2,2)t

is a unit vector in C9. To construct the new filters, we first “clone” the pair of filters (m0,1, m1,0) into the
quadruplet (m0,1,m1,0,m0,1,m1,0). To achieve this isometrically, we define the mapping D, where

D :=
1√
2

[
I2×2

I2×2

]
.



Since the columns of D form an orthonormal subset of C4, we obtain that D defines an isometry mapping from
C2 into C4. We then use the rotation matrix R, where

R :=
1√
2

[
1 1
−1 1

]
,

to entwine the two new copies while leaving the originals unchanged. In summary, we apply the isometry matrix
E from C2 into C4, where

E :=
[
I2×2 0

0 R

]
D =

1
2




√
2 0

0
√

2
1 1
−1 1


 .

Next, by considering the decompositions C9 = C⊕C2⊕C6 and C11 = C⊕C4⊕C6, we define the matrix-valued
function

U(ω) :=




1 0 0
0 E 0
0 0 I6×6


 ,

which is also unitary, since E and thus U(ω), are isometries for every ω. Thus, Proposition 1 applies to
v1(ω) := U(ω)v(ω), and v1(ω) gives rise to an 11-band filter bank, with the integer translates of the filters
defined by the coordinate functions of v forming a PF of `2(Z2). We call this the UHF11 filter bank.

In summary, the UHF11 filter bank is implemented by the following filters: K0 = M0,0 (low pass filter),
K1 =

√
2

2 M0,1, K2 =
√

2
2 M1,0, K3 = 1

2 (M0,1 + M1,0), K4 = 1
2 (M0,1 −M1,0), K5 = M1,1, K6 = M0,2, K7 = M2,0,

K8 = M1,2, K9 = M2,1, and K10 = M2,2. The technique employed to construct the UHF11 filter bank relies on
Proposition 1 in two ways. First, to construct isometries that increase the redundancy of an existing filter-based
PF by producing scaled duplicates of a subset of those filters; and second, to apply unitary operators on selected
collections of those filters to produce new filters with desirable characteristics (e.g., geometry). In both cases the
resulting frame is a Parseval frame. This is a versatile technique that can be employed in a much more general
setting than the two examples discussed above.

In addition, several key properties of the Ron and Shen frame are also lifted to the filter banks constructed
in our examples. We note that the second and third coordinates of v1 still define the Sobel operators (scaled by
1√
2
) in the horizontal and vertical directions, respectively. In addition, the impulse responses of the fourth and

fifth coordinates of v1 are given by:

√
2

8




1 1 0
1 0 −1
0 −1 −1


 and

√
2

8




0 −1 −1
1 0 −1
1 1 0


 ,

respectively. These two filters act as derivatives parallel to the directions −π
4 and π

4 or, equivalently, as Sobel
operators in these directions.

3.3. Denoising Algorithm

Let X be the surface data in the form of a range image. We filter X using the UHF11 filter bank constructed in
the previous section. We stress that the output of each channel in this filter bank is undecimated. Let Ym be
the output of the image X through the m-th band (i.e., Ym = X ∗Km). We separate the ten high-pass subband
outputs into two groups, m = 1, . . . , 5 and m = 6, . . . , 10, respectively. Note that filters in the first group can
be used to detect first order singularities, while filters in the second group can be used to detect second order
singularities. Accordingly, we choose different thresholding strategies for each of the two groups. Although we
do not have a mathematical proof yet, these strategies have performed well in our denoising experiments.

For the first group, we modify the coefficients in the Ym, m = 1, . . . , 5 using the hard threshold operator
ηH

T , where T = α · σn

√
2 log N , α is a thresholding factor, N is the number of pixels in X, and σn is the noise

variance.



The threshold σn

√
2 log N is a good choice for large values of N when a unitary wavelet transform is used.8

However, the transforms induced by convolution with Km are only isometric, and not unitary. This results in an
overall reduction of the energy contribution of the noise in the transformed image.38 Therefore, the threshold
needs to be scaled by a factor α, where 0 < α < 1, which is selected experimentally. If σn is not known, it is
estimated by the robust median estimator:

σ̂ =
Median(|YHaar[i, j]|)

0.6745
,

where YHaar is the output of X using 1–level Haar high-pass filtering.

Our proposed algorithm jointly thresholds Y1 and Y2 to obtain Ỹ1, Ỹ2. It should be noted that the proposed
shrinkage of the wavelet coefficients is not the same as the classical wavelet shrinkage. For m = 1, 2:

Ỹm =
{

Ym, if |Ym| > T1 or (|Y3| or |Y4|) > T2

0, otherwise (3)

where T1 = (1/2)T and T2 = (1/8)(2 +
√

2)T . The scaled thresholds T1, T2 are obtained by computing the
maximum magnitude of the response of the filters K1 and K4, respectively. Similarly,

Ỹm =
{

Ym, if |Ym| > T2 or (|Y1| or |Y2|) > T1

0, otherwise (4)

for m = 3, 4. For Y5, we use the hard thresholding operator directly:

Ỹ5 = ηH
T1

(Y5). (5)

Outputs in the second group are denoised by applying locally adaptive window-based denoising using maxi-
mum a posteriori estimates (LAWMAP), a method proposed by Mihçak et al.23 We assume that the coefficients
Ym[i, j] are independent zero-mean Gaussian variables with unknown variance σ2[i, j]. An estimate of σ2[i, j]
is formed based on a local neighborhood Ni,j which is a square window of size M centered at Ym[i, j]. We
postulate an exponential prior fσ(σ2) = λe−λσ2

. Then the maximum a posteriori (MAP) estimator for σ2[i, j],
using the exponential prior, is given by:

σ̃2[i, j] =
M

4λ

[
−1 +

√
1 + (8λ/M2)

∑
Y2

m[p, q]
]
− σ2

n,

where the sum is over all [p, q] in Ni,j . We impose a positivity condition by setting all negative estimates equal
to zero, as suggested by Mihçak et al.,23 since it is possible to obtain negative values from the actual MAP
estimate if M is too small. Thus, we use σ2[i, j] = max

(
0, σ̃2[i, j]

)
. With the estimated σ[i, j] and σn, we apply

a Wiener (least-squares fit) filter to all Ym[i, j] ∈ Ym, m = 6, . . . , 10:

Ỹm[i, j] = [(σ2[i, j])/(σ2[i, j] + σ2
n)]Ym[i, j]. (6)

We can further decompose the output Y0 and denoise the wavelet outputs using the above described process.
Our algorithm can be summarized as follows:

Parametric Surface Denoising Algorithm (PSDA)

1. Initialization: Input the raw range image X, a threshold factor α, and the number of decomposition levels
J .

2. Decompose the range image X up to level J using the UHF11 filter bank to obtain Ym, m = 0, . . . , 10.

3. Compute Ỹm, m = 1, . . . , 10 using Equations (3)–(6).

4. Reconstruct the surface data from the denoised range image X̃ from Y0 and Ỹm, m = 1, . . . , 10 by using
the UHF11 filter bank.



(a) (b)

Figure 1. Sample face surface data from the FRGC data corpus; (a) range data and (b) reconstructed 3D meshes.

4. RESULTS AND DISCUSSION

We present in this section selected results of our experimentation on a large corpus of 3D range data of human
faces. The range data were provided as part of the Face Recognition Grand Challenge (FRGC) data corpus.39

Figure 1 presents examples obtained from the same individual at different times. All data were acquired using a
Minolta Vivid 900/910 series sensor at the University of Notre Dame during the 2003-2004 academic year from
466 subjects in a total of 4007 subject sessions. The Vivid scanner is a structured light sensor that takes a 640
by 480 range sampling. Subjects were at an approximate distance of 1.5m from the sensor.

We tested PSDA against various other methods reported in the literature. Here, we present results comparing
it to two other frame-based methods. The first is implemented by the BISHRINK algorithm described by Sendur
and Selesnick,20 and the second by the BLS-GSM algorithm described by Portilla et al.17 Again, we acknowledge
the fact that these methods were developed and tuned to the realm of natural intensity images; results comparing
our method to the above on intensity image data were reported in our previous work.2 We note that all
three methods exhibit comparable performance in the case of intensity images. We have performed numerous
experiments. Due to space limitations, here we present two set of experiments to assess their performance on
parametric surface data.

For the first set of experiments, the original surface data in the form of range images were smoothed using each
of the three methods mentioned above (Fig. 2). We note that PSDA and BLS-GSM achieve the best reduction
in noise, while preserving surface details, even in areas of high principal curvature fluctuation (e.g., around the
eyes). For the second set of experiments, we used smoothed images obtained using PSDA as the ground truth.
Gaussian noise of several levels was added and the resulting noised image was denoised using all three methods.
Results are presented for visual inspection in Fig. 3. Again we note that results are significantly cleaner than
the noised model.

We also performed a quantitative assessment using the normal error comparison metric introduced by Ohtake
et al. .40 Normal error is defined as follows. Let T represent a triangle of area A(T ) in a triangle mesh M . The
unit normal to T will be denoted by nT . Given a corresponding triangle mesh f(M) (e.g., one obtained after
adding noise or denoising), we define the normal error for a vertex P ∈ M to be:

E(P, f(P )) =
1
3

∑

P∈T

A(T )‖nT − f(nT )‖2,

and the total mesh normal error to be:

E(M, f(M)) =
∑

P∈M

E(P, f(P )).

Notice that we have added Gaussian noise along unit normal of each mesh triangle T , thus the number of mesh
triangles are not altered. Similarly, denoising methods, PSDA, BISHRINK and BLS-GSM, affect the location
of vertices, but do not change mesh topology. Table 1 presents a quantitative assessment using this metric, and
Fig. 4 presents the same data in diagram form. Our method exhibits the best performance among all three in



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Data and zoomed window of (a)(b)original and result after smoothing using the (b)(c) BISHRINK, (e)(f)
BLS-GSM and (g)(h) PSDA algorithms.

(a) (b)

(c) (d) (e)

Figure 3. (a) Smoothed data (using the PSDA algorithm) and (b) Gaussian noise (σ = 1.6) added. Results after
denoising using the (c) BISHRINK, (d) BLS-GSM and (e) PSDA algorithms.



σ noised BISHRINK BLS-GSM PSDA
0.5 0.230 0.127 0.196 0.142
1.0 0.310 0.178 0.233 0.164
1.2 0.336 0.194 0.247 0.172
1.4 0.361 0.209 0.256 0.180
1.6 0.384 0.223 0.264 0.188
2.0 0.427 0.246 0.288 0.213

Table 1. Performance evaluation; average (using 24 datasets) normal error (in mm2) for BISHRINK, BLS-GSM and
PSDA.

Figure 4. Average (using 24 datasets) normal error (in mm2) for BISHRINK, BLS-GSM and PSDA.



for most levels of noise, with BISHRINK coming a close second. Our timing results indicate that PSDA requires
twice the time needed by BISHRINK, but less than half the time needed by BLS-GSM.

Our results indicate that frame-based methods are well suited to the task of smoothing range images. Al-
though the statistical assumptions about the type of noise are based on intensity image considerations, the results
we obtained using PSDA are of high quality. In addition, this behavior is quite robust, despite the non-isometric
nature of the parameterization used.
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