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1. INTRODUCTION

In some real-world applications, we are facing data sets of not only very high dimen-
sionality but also with features that keep arriving, that is, data sets with streaming
features. For example, in order to monitor and analyze the environment in different
areas, researchers may deploy a set of observation stations in those areas. Each station
is treated as an object in the data collected. In other words, the number of data objects
is fixed. However, the number of features in temporal domains keeps increasing, since
new observation data is collected all the time. Even the data collection rate may not
be very high, the dimensionality of the underlying data set can easily reach tens or
hundreds of thousands after a while. As another example, in our research project in
automatic detection of sub-kilometer craters in high resolution planetary images [Ding
et al. 2011], a fixed number of craters are kept being monitored using the latest avail-
able high resolution images, which become available and updated over time. Since im-
pact craters are among the most studied geomorphic features in the solar system and
they yield information about the past and present geological processes and provide
the only tool for measuring relative ages of observed geologic formations [Urbach and
Stepinski 2009], it is invaluable to build and maintain robust classification models us-
ing the accumulated features in a streaming way extracted from the images available
so far.

It is a novel and challenging problem to learn and maintain a classification model
on such data with streaming features, where new features keep arriving. Although
classification on data streams has been well studied in the data mining and machine
learning literature [Aggarwal 2010; Dong et al. 2003], to the best of our knowledge, the
existing emerging pattern based classification methods only focus on scenarios where
new objects keep arriving and the features are pre-determined. Those methods are
orthogonal to the scenarios studied in this paper.

To build and maintain effective classification models on data sets with streaming fea-
tures, we have to address at least two major challenges. First, as the existing classifica-
tion methods typically assume a pre-defined space of features, how to handle stream-
ing features in an online manner is a new challenge. This challenge is highly related
to feature selection, i.e., how to select and maintain a set of features from a stream of
features. Second, how to build and maintain a classification model using the features
incrementally selected from a stream of features is another new challenge. Ideally, the
model construction and updating should be seamlessly integrated with online feature
selection.

In order to tackle high dimensional data with streaming features, we adapt the well-
known emerging pattern based classification methods [Dong and Li 1999; Novak et al.
2009]. Emerging patterns are well recognized effective in classifying high-dimensional
data, since an emerging pattern can handle a sub-population in a subspace that de-
liberates a clear discriminative pattern [Dong et al. 1999; Duan et al. 2014]. However,
it is still challenging to extend emerging patterns to classify data sets with streaming
features. First, it is computationally expensive or even prohibitive to mine long emerg-
ing patterns. As features are accumulated over time, many emerging patterns may
become long, partially due to the redundancy among features. Second, it is challenging
to integrate mining emerging patterns and feature selection. To address the problem
of learning classification models on data sets with streaming features, in this paper, we
propose a “semi-streaming” approach. Specifically, to tackle the challenge of streaming
features, we propose an online feature selection step, which is capable of selecting and
maintaining a pool of effective features from a feature stream. Our feature selection
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step scans features one by one as they are available. Moreover, the proposed feature
selection step is specially designed for emerging patterns. To tackle the challenge on
classification model construction and maintenance, we propose an offline step. Period-
ically we can compute and update emerging patterns from the pool of selected features
that are picked by the online step. Although the emerging pattern mining step cannot
be made online in theory, this step can be conducted only periodically, and can be sep-
arated from the online step. In other words, when the classification model needs to be
updated, the offline task of emerging pattern mining can take place.

Our “semi-streaming” approach is fundamentally different from applying emerging
pattern mining straightforwardly on a data set with streaming features. The online
feature selection step substantially reduces the dimensionality of the feature space
under which the offline emerging pattern mining step has to handle. This becomes
possible only when the feature selection step can handle streaming features in an
online manner, and also can select features according to the requirements of emerging
pattern mining. Due to the effective online feature selection customized for emerging
pattern mining, the emerging patterns mined in the offline step tend to be short, since
many redundant and correlated features are reduced before the patterns are mined.
This practically facilitates emerging pattern mining dramatically.

Using a series of benchmark data sets, we evaluate the effectiveness and efficiency
of the EPSF algorithm, and compare it with the baseline methods and the state-of-
the-art methods. The empirical study clearly shows that our method not only achieves
high accuracy, but also takes less CPU time than the existing classification methods.
Most importantly, the EPSF algorithm can handle data sets with streaming features
efficiently. In our real-world case study, we evaluate the EPSF algorithm with crater
detection from planetary images, and the experimental results show that our method
is not only highly comparable with the existing crater detection algorithms, but also
produces a concise set of emerging patterns that are interpretable for domain scientists
to understand the crater data.

The remainder of this paper is organized as follows. Section 2 reviews related work.
Section 3 gives the preliminaries and Section 4 presents our approach. Section 5 re-
ports our experimental re-sults. Finally, Section 6 concludes the paper.

2. RELATED WORK

Our work relates to emerging pattern mining and feature selection, and thus we will
give a brief review of emerging patterns and feature selection in this section.

Dong and Li [Dong and Li 1999] first introduced emerging patterns (EPs) to repre-
sent strong contrasts between different classes of data. In addition, a Jump Emerging
Pattern (JEP for short) is a special type of EPs whose support increases from zero in
one class to non-zero in the other class [Li et al. 2001a]. Like other patterns composed
of conjunctive combinations of feature-value pairs [Wang and Karypis 2005; Trépos
et al. 2013; Sahoo et al. 2014], EPs can be easily understood and used directly in a
wide range of applications [Song et al. 2014; Wang et al. 2013a], such as failure detec-
tion [Lo et al. 2009] and discovering knowledge in gene expression data [Fang et al.
2012].

Dong et al. [Dong et al. 1999] proposed the first EP classifier, called CAEP (Clas-
sification by Aggregating Emerging Patterns). Based on CAEP, Li et al. [Li et al.
2001a] proposed a JEP-classifier which is distinct from the CAEP classifier. The JEP-
classifier uses JEPs exclusively because JEPs discriminate between different classes
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more strongly than any other type of EPs. Meanwhile, Li et al. [Li et al. 2000] also
presented a lazy EP classifier based on an instance-based EP discovery, called DeEPs,
to improve the efficiency and accuracy of CAEP and JEP-classifier. In addition, Fan
and Ramamohanarao [Fan and Ramamohanarao 2006] proposed a robust EP-classifier,
called SJEP-classifier, using a strong JEP. A strong JEP from class C1 to class C2 satis-
fies two conditions: (1) the support of itemset X is zero in C1 but non-zero and satisfies
a minimal support threshold in C2, and (2) any proper subset of X does not satisfy
condition (1). The SJEP-classifier integrates the CP-tree miner into the EP classifier,
and uses much fewer JEPs than the JEP-classifier. The disadvantage of JEP and SJEP
classifiers is that if a data set contains no or very few JEP and SJEP patterns, then
it will cause the classification performance of JEP and SJEP classifiers significantly
reduced.

The well-known bottleneck of EP classifiers is that they are computationally pro-
hibitive to dealing with a data set with more than sixty dimensions without prior
feature set reduction until the ZBDD (Zero-suppressed Binary Decision Diagrams) EP-
miner was proposed [Loekito and Bailey 2006]. The ZBDD EP-miner can deal with a
relative high-dimensional data set, but like previous EP mining approaches, it still
suffers from an explosive number of EPs, even with a rather high support threshold.
Accordingly, it is still a challenging research issue to build a robust EP classifier from
high dimensionality.

Feature selection has been generally viewed as a problem of searching for a minimal
subset of features in high-dimensional data that leads to the most accurate prediction
model [Liu and Yu 2005]. There are two types of feature selection methods proposed in
the literature, that is, batch methods and online methods.

A batch method has to access the entire feature set on the training data and per-
forms a global search for the best feature at each round [Brown et al. 2012]. Contrast
to the batch methods, online feature selection can be conducted in an online man-
ner. Recently, Wang et al. [Wang et al. 2013b] proposed an OSF algorithm for online
feature selection. The OFS algorithm assumes data instances keep arriving, and per-
forms feature selection on each data instance as it is available. Different from OFS, the
Fast-OSFS and alpha-investing algorithms were proposed to deal with the scenarios
where features keep arriving but the number of data instances is fixed [Zhou et al.
2006; Wu et al. 2010; Wu et al. 2013]. Zhou et al. [Zhou et al. 2006] presented Alpha-
investing which sequentially considers new features as the addition to a predictive
model by modeling the candidate feature set as a dynamically generated stream. How-
ever, Alpha-investing requires prior information of the original feature set and never
evaluates redundancy among the selected features as time goes. To fix the drawbacks,
Wu et al. [Wu et al. 2010; Wu et al. 2013] presented the OSFS (Online Streaming
Feature Selection) algorithm and its faster version, the Fast-OSFS algorithm.

In a recent study, Yu et al. [Yu et al. 2013] integrated local causal-structure learning
into EP mining to help reduce high dimensionality. The study has shown that this
integration can efficiently extract a minimum number of sets of strongly predictive
patterns from high-dimensional data and get highly accurate EP classifiers. Different
from the work of [Yu et al. 2013] that requires a complete set of features available
beforehand, the proposed algorithm in this paper is capable of dealing with a high-
dimensional data set with streaming features. Our new algorithm can mine emerging
patterns from data sets of not only very high dimensionality but also with features
kept arriving, that is, data sets with streaming features.
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Table I. Summary on mathematical notations

Notation Mathematical meanings
D training data set
Dl, Dm subsamples of D
F a feature set from D
Fi a single feature (attribute), Fi ∈ F
fi a discrete value of Fi

Dom(.) Dom(Fi) denotes all discrete values of Fi

S a feature subset S ⊆ F
C the class attribute
Ci a class label, Ci ∈ C
I a set of all items from F
X an itemset, X ∈ I
countD(X) the number of instances in D that supports X
|.| |D| returns the number of instances in D
supportD(X) the support value of X on D
GRDl→Dm (X) the growth rate of X from Dl to Dm

ρ a threshold of GRDl→Dm (X)
e an emerging pattern
Ei a set of emerging patterns
Rateimp(e) the growth rate improvement of e
P (.|.) P (C = Cj |S = s) denotes the posterior probability of Cj conditioned on s
t a time point
T a test instance
CMB(C)t a Markov blanket of C selected at time t

3. NOTATIONS AND DEFINITIONS

3.1. Emerging Patterns

Consider a training data set D is defined upon a feature set F and the class attribute
C. F contains N features, i.e., F = {F1, F2, · · · , FN}. For ∀Fi ∈ F we assume that it
is in a discrete domain dom(Fi). Let I be the set of all items, i.e., I = {Fi = fi|Fi ∈
F, fi ∈ Dom(Fi)}, the class attribute C = {C1, C2, · · · , CK} be a finite set of K distinct
class labels, and X be an itemset and X ⊆ I. The data set D can be partitioned into
D1, D2, · · · , DK , where Dj consists of instances with class label Cj , j = 1, · · · ,K. The
mathematical notations used in this paper are summarized in Table I.

The Support and Growth Rate (GR for short) of an itemset X, and an emerging pattern
from Dl to Dm(l,m = 1, · · · ,K, and l 6= m), are defined as follows.

Definition 3.1 (Support).

supportD(X) = countD(X)/|D| (1)

where countD(X) is the number of instances in D containing X and |D| is the number
of instances in D.

Definition 3.2 (GR: Growth Rate). [Dong and Li 1999]

GRDl→Dm(X) = supportDm(X)/supportDl
(X) (2)

If supportDm
(X) = 0 and supportDl

(X) = 0, then GRDl→Dm
(X) = 0; if supportDm

(X) 6=
0 but supportDl

(X) = 0, then GRDl→Dm
(X) =∞.

Definition 3.3 (EP: Emerging Pattern). [Dong and Li 1999] Given a threshold ρ >
1, an EP from Dl to Dm is an itemset X where GRDl→Dm

(X) ≥ ρ.

An emerging pattern e from Dl to Dm is also called an EP of Dm. If GR(e) = ∞, e is
called a Jumping EP (JEP). The goal of EP mining is to extract EP set Ei for class Ci
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which consists of EPs from {D −Di} to Di, given a minimum support threshold and a
minimum growth rate threshold.

A positive growth rate improvement threshold is introduced to ensure a concise and
representative set of EPs which are not subsumed by one another and consist of items
that are strong contributors to their predictive power. The growth rate improvement
can also help to reduce the search space by eliminating EPs that are redundant. Here
is the definition of growth rate improvement.

Definition 3.4 (Growth Rate Improvement). [Zhang et al. 2000a] Given an EP e,
the growth rate improvement of e, Rateimp(e), is defined as the minimum difference
between its growth rate and the growth rates of all of its subsets,

Rateimp(e) = min(∀e′ ⊂ e,GR(e)−GR(e′)). (3)

3.2. Feature Relevance in Feature Selection

In feature selection, a feature space F in general can be divided into three disjoint
groups, namely, strongly relevant, weakly relevant, and irrelevant features [Koller
and Sahami 1995]. The goal of feature selection is to select a subset from F without
performance degradation on prediction models. In the following definitions, P (C =
Cj |S = s) is the posterior probability of class Cj given a set of values of s of a subset S.

Definition 3.5 (Conditional Independence). Two distinct features Fi ∈ F and Fk ∈
F are conditionally independent on a feature subset S ⊆ F − {Fi ∪ Fk}, iff there exists
an assignment of values fi and fk, s.t.

P (Fi = fi|Fk = fk, S = s) = P (Fi = fi|S = s). (4)

Definition 3.6 (Strong Relevance). A feature Fi is strongly relevant to the class at-
tribute C, iff there exists an assignment of values fi, Cj , and s for which P (S = s, Fi =
fi) > 0,

∀S ⊆ F − {Fi} s.t. P (C = Cj |S = s, Fi = fi) 6= P (C = Cj |S = s). (5)

Definition 3.7 (Weak Relevance). A feature Fi is weakly relevant to the class at-
tribute C, iff it is not strongly relevant, and ∀fi, Cj , and s for which P (S = s) > 0,

∃S ⊂ F − {Fi} s.t. P (C = Cj |S = s) 6= P (C = Cj |S = s, Fi = fi). (6)

Definition 3.8 (Irrelevance). A feature Fi is irrelevant to the class attribute C, iff
it is neither strongly nor weakly relevant, and there exists an assignment of values
fi, Cj , and s for which P (S = s, Fi = fi) > 0,

∀S ⊆ F − {Fi} s.t. P (C = Cj |S = s, Fi = fi) = P (C = Cj |S = s). (7)

Definition 3.9 (Markov Blanket). [Koller and Sahami 1995] The Markov blanket of
feature Fi, denoted as Mi ⊂ F − {Fi} makes all other features independent of Fi given
Mi, that is,

∀Fk ∈ F − (Mi ∪ {Fi}) s.t. P (Fi|Mi, Fk) = P (Fi|Mi). (8)
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New features New features Feature selection Feature selection Feature pool Feature pool EP mining EP mining EP pool EP pool EP classifier EP classifier 

Online feature selection EP mining from feature pool 

Fig. 1. The framework of a semi-streaming approach

With Markov blankets, weakly relevant features can be divided into redundant fea-
tures and non-redundant features [Yu and Liu 2004].

Definition 3.10 (Redundant Feature). A feature is redundant hence should be re-
moved from F , iff it is weakly relevant and has a Markov blanket within F .

4. MINING EMERGING PATTERN WITH STREAMING FEATURES

It is computationally expensive to evaluate the complete item combinations for a high-
dimensional data set. To mitigate this problem, we propose to effectively prune the
feature space before EP mining. Recently, Wu et al. [Wu et al. 2013] proposed stream-
ing feature selection to deal with data with streaming features. In this model, the
number of data instances is fixed, while features keep arriving and each feature is
evaluated upon its arrival. Compared to traditional feature selection, the strength of
streaming feature selection is that the number of features is no longer required to be
fixed in advance. Feature selection is streamlined and conducted online to be able to
deal with streaming features.

Although the emerging pattern mining cannot be made online in theory, in this paper,
we propose a “semi-streaming” approach to bridge streaming feature selection and
EP mining to learn and maintain an EP classification model on data with streaming
features.

Definition 4.1 (Semi-streaming approach). A semi-streaming approach includes an
online feature selection step customized for an offline step to periodically mine emerg-
ing patterns from the features that are picked by the online step.

In the semi-streaming approach, the online feature selection step is to select and main-
tain a pool of effective features from streaming features by scanning features one by
one as they are available, while an offline step is to construct and update an EP clas-
sifier by periodically mining emerging patterns from the pool of selected features that
are picked by the online step. Definition 4.1 indicates that although the emerging pat-
tern mining cannot be fully online, the offline step only needs to be conducted periodi-
cally. When the EP classifier needs to be updated, the offline task of emerging pattern
mining will take place.

The framework of the semi-streaming approach is illustrated in Figure 1. At the first
stage, we present an online feature selection step, which is capable of selecting and
maintaining a pool of effective features from a feature stream. Our feature selection
step processes features one by one as they are available. At the second stage, we pro-
pose an offline step. Periodically we can compute and update emerging patterns from
the pool of selected features that are picked by the online step. There are two key
research problems to be addressed:

(1) How to build an influential feature candidate pool to be used for EP mining as
features are available over time;
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(2) How to build an EP pool to be used for classification by extracting EPs from this
influential feature pool.

4.1. Online Building an Influential Feature Pool

In Figure 1, the feature pool shall keep the features which are only useful for pro-
ducing predictive EPs, and it may be updated over time as features are available one
by one. To customize the online feature selection step for efficient emerging pattern
mining, we must be able to evaluate the degree of feature relevance with the discrimi-
native power of EPs. We have theoretically proved the association of causal relevance
in causal Bayesian networks and EP discriminability in EP mining [Yu et al. 2013].
Here we provide theoretically an analysis on the relationships between feature rele-
vance (irrelevant features, strongly relevant features, and redundant features) and EP
discriminability (non-EPs, strongly predictive EPs, and redundant EPs) in the follow-
ing propositions.

As discussed in Definitions 3.2 and 3.3, the discriminability of an EP is determined by
its support value and growth rate. Proposition 4.2 establishes the relations between
non-EPs and irrelevant features.

PROPOSITION 4.2. For ∀Fi ∈ F , ∀fi ∈ dom(Fi), and ∀Cj ∈ dom(C),
GR{D−Dj}→Dj

(Fi = fi) = 1 holds iff Fi is irrelevant to C.

PROOF. Assume a data set D has two classes: positive class Cp and negative class
Cn, C = {Cp, Cn}.Dp represents Cp class data,Dn represents Cn class data, supDp

(Fi =
fi) is the support value of the itemset {Fi = fi} in Dp, and supDn

(Fi = fi) is its support
value in Dn. Then GR(Fi = fi) from Dn to Dp is calculated as follows.

GRDn→Dp
(Fi = fi) =

supDp (Fi=fi)

supDn (Fi=fi)

=
P (Fi=fi|C=Cp)
P (Fi=fi|C=Cn)

=
P (Fi=fi,C=Cp)

P (C=Cp)
/P (Fi=fi,C=Cn)

P (C=Cn)

=
P (C=Cp|Fi=fi)P (Fi=fi)

P (C=Cp)
/P (C=Cn|Fi=fi)P (Fi=fi)

P (C=Cn)

=
P (C=Cp|Fi=fi)
P (C=Cn|Fi=fi)

• P (C=Cn)
P (C=Cp)

If GRDn→Dp
(Fi = fi) = 1, then the follows holds.

P (C = Cp)

P (C = Cn)
=
P (C = Cp|Fi = fi)

P (C = Cn|Fi = fi)

As P (C = Cp) +P (C = Cn) = 1 and P (C = Cp|Fi = fi) +P (C = Cn|Fi = fi) = 1, we get

P (C = Cp|Fi = fi) = P (C = Cp)

(with a
b = c

d equivalent to a
b+a = c

d+c ), as well as P (C = Cn|Fi = fi) = P (C = Cn).

According to Definition 3.8, for any assignments fi ∈ dom(Fi) and Cj ∈ dom(C) to F
and C, P (C = Cj |Fi = fi) = P (C = Cj) holds, therefore Fi is irrelevant to C. Similarly,
from Dp to Dn, if GRDp→Dn(Fi = fi) = 1, we can also prove that Fi is irrelevant to C.

On the other hand, if Fi is irrelevant to C, we get

GRDn→Dp(Fi = fi) =
P (C=Cp|Fi=fi)
P (C=Cn|Fi=fi)

• P (C=Cn)
P (C=Cp)

=
P (C=Cp|Fi=fi)
P (C=Cn|Fi=fi)

• 1−P (C=Cp)
P (C=Cp)

= 1
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Thus, Proposition 4.2 is proven.

According to Definition 3.4, for an EP e, if we can find an e′ ⊂ e to makeRateimp(e) ≤ 0,
then e is a redundant EP, and might be replaced by a subset within e. Thus, avoiding
generation of those redundant EPs in advance will improve search efficiency. Proposi-
tion 4.3 explains the relationship between feature redundancy and EP redundancy.

PROPOSITION 4.3. For ∃Fi ∈ F, ∃S ⊂ F − Fi,∀fi ∈ dom(Fi),∀s ⊂
⋃|S|

k=1 dom(Sk),
and ∀Cj ∈ dom(C), GR{D−Dj}→Dj

(Fi = fi, S = s) = GR{D−Dj}→Dj
(S = s) holds, iff Fi

is redundant to C conditioning on the subset S.

PROOF. GR(Fi = fi, S = s) from Dn to Dp is calculated as follows.

GRDn→Dp
(Fi = fi, S = s) =

supDp (Fi=fi,S=s)

supDn (Fi=fi,S=s)

=
P (Fi=fi,S=s|C=Cp)
P (Fi=fi,S=s|C=Cn)

=
P (Fi=fi,S=s,C=Cp)

P (C=Cp)
/P (Fi=fi,S=s,C=Cn)

P (C=Cn)

=
P (C=Cp|Fi=fi,S=s)P (Fi=fi,S=s)

P (C=Cp)
/P (C=Cn|Fi=fi,S=s)P (Fi=fi,S=s)

P (C=Cn)

=
P (C=Cp|Fi=fi,S=s)
P (C=Cn|Fi=fi,S=s) •

P (C=Cn)
P (C=Cp)

From Dn to Dp, GR(S = s) = P (S = s|C = Cp)/P (S = s|C = Cn)

P (C=Cp|Fi=fi,S=s)
P (C=Cn|Fi=fi,S=s) •

P (C=Cn)
P (C=Cp)

=
P (S=s|C=Cp)
(P (S=s|C=Cn)

P (C=Cp|Fi=fi,S=s)
P (C=Cn|Fi=fi,S=s) =

P (S=s|C=Cp)P (C=Cp)
(P (S=s|C=Cn)P (C=Cn)

P (C=Cp|Fi=fi,S=s)
P (C=Cn|Fi=fi,S=s) =

P (C=Cp|S=s)
P (C=Cn|S=s)

Using the same reasoning in proving Proposition 4.2, we can get two equations P (C =
Cp|Fi = fi, S = s) = P (C = Cp|S = s) and P (C = Cn|Fi = fi, S = s) = P (C = Cn|S = s).
By Definitions 3.9 and 3.10, we can find a subset S ⊂ F as a Markov blanket of Fi,
and for any assignments fi ∈ dom(Fi), s ⊆ dom(S) and Cj ∈ dom(C) to Fi, S and C,
P (C = Cj |Fi = fi, S = s) = P (C = Cj |S = s) holds, and so Fi is redundant to C given
S.

On the other hand, if Fi is redundant to C, from Dn to Dp, then the follows holds.

GRDn→Dp(Fi = fi, S = s) =
P (C=Cp|Fi=fi,S=s)
P (C=Cn|Fi=fi,S=s) •

P (C=Cn)
P (C=Cp)

= 1−P (C=Cn|Fi=fi,S=s)
P (C=Cn|Fi=fi,S=s) •

P (C=Cn)
P (C=Cp)

= 1−P (C=Cn|S=s)
P (C=Cn|S=s) •

P (C=Cn)
P (C=Cp)

=
P (C=Cp|S=s)
P (C=Cn|S=s) •

P (C=Cn)
P (C=Cp)

=
P (S=s|P (C=Cp)
P (S=s|C=Cn)

= GRDn→Dp
(S = s)

Thus, Proposition 4.3 is proven.

Proposition 4.3 shows that if Fi is redundant to C conditoned on a subset S, then an
itemset ∀fi ∈ dom(Fi) together with an itemset ∀s ⊂

⋃|S|
k=1 dom(Sk) contains the same

predictive information as the itemset ∀s ⊂
⋃|S|

k=1 dom(Sk).

With Propositions 4.2 and 4.3, as features are processed in a sequential scan, we can
online build an influential feature pool and discarding irrelevant and redundant fea-
tures to avoid generating non-EPs or redundant EPs in the EP mining process later
on.
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Once we understand the feature relevance with the discriminative power of EPs, the
next step is to understand how to online build this influential feature pool, and then
how to adjust the feature pool once a new feature is added into the pool. To build an
influential feature pool, we need to online assess whether a new feature is irrelevant
or not. If so, it is discarded. If not, we use Proposition 4.4 proposed by Wu et al. [Wu
et al. 2013] to handle this newly arrived feature.

PROPOSITION 4.4. A current Markov blanket of C at time t is denoted as CMB(C)t.
Assume a new feature Fi at time t + 1 is weakly relevant to C, if ∃S ⊆ CMB(C)t such
that P (C|Fi, S) = P (C|S), then Fi can be discarded.

After Fi is added into CMB(C), we must check whether any existing features in the
feature pool become redundant. We shall use Proposition 4.5 proposed by Wu et al. [Wu
et al. 2013] to online update the current feature pool, that is, determining which of the
existing features in the current feature pool can be removed as Fi is added.

PROPOSITION 4.5. With CMB(C)t at time t, a new feature Fi arrives at time t + 1,
and there does not exist any MB(Fi) within CMB(C)t. If ∃Y ∈ CMB(C)t and ∃S ⊆
{CMB(C)t∪Fi}−{Y } s.t. P (C|Y, S) = P (C|S), then Y can be removed from CMB(C)t.

4.2. Building an EP pool

The EP pool stores the candidate EPs which are mined from the feature pool. To make
the EP pool correspond to the changes of the feature pool, we divide the construction of
the EP pool into two steps. One step is to online build 1-itemset EP pool. This 1-itemset
EP pool should be updated correspondingly as the feature pool is updated. The other
step is offline but periodically mines all EPs from the 1-itemset EP pool to construct
an EP classifier.

4.2.1. Online building a 1-itemset EP pool

(1) Online building 1-itemset EP pool. As a new feature Fi arrives, we first as-
sesses whether it is irrelevant; and if so, it is discarded. Otherwise, we evaluate
whether it is redundant to C by Proposition 4.4; and if so, it is also discarded. If
not, it is added to the feature pool CMB(C). And then, the EPSF algorithm (dis-
cussed in details in Section 4.4) converts feature Fi into a set of itemsets IFi

and
has a mapping between IFi and Fi, named map form. This mapping can guarantee
that itemsets contain items mapped from the same feature, and their supersets
should be pruned. With IFi and the mapping, EPSF divides the training data by
class, mines EPs for each class and stores the EPs in a candidate EP pool named
CEP.

(2) Online updating 1-itemset EP pool. Due to F ′is inclusion, EPSF updates the
feature pool CMB(C) by removing redundant features according to Proposition
4.5. If feature Y is removed from CMB(C), we online update CEP and map form
by removing EPs in CEP generated from Y and the mapping between itemsets Iy
and Y in map form, respectively.
To update CMB(C), EPSF checks all subsets within CMB(C) to re-examine the
redundancy of each feature in CMB(C). To improve this updating efficiency, we
only validate the redundancy of each originally existing feature in CMB(C) by
testing the subsets created by the inclusion of the new feature Fi.

4.2.2. Periodically mining all EPs from the 1-itemset EP pool. With the current 1-itemset
EP pool, we propose an offline step to periodically mine all EPs, for an EP classifier
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construction and maintenance. At this step, we can periodically compute and update
emerging patterns from the 1-itemset EP pool that is picked by the online step. Al-
though the emerging pattern mining step cannot be made online in theory, this step
can be conducted only periodically, and can be separated from the online step. In other
words, when the classification model needs to be updated, an offline task of emerging
pattern mining can take place.

4.3. A Score function for EP classifiers

When applying EPs to classification, we get all the EPs of each class Ci in a training
set. With the EPs for K classes, we derive K scores for a test instance T , one score per
class, by feeding the EPs of each class into a scoring function. In this paper, we use
the score function based on information theory proposed by [Zhang et al. 2000b] for
classifying unlabeled instances, since this function is simpler and more efficient than
the score function proposed by [Dong et al. 1999] by avoiding computing the base score
for each class. Zhang et al. [Zhang et al. 2000b] defined the score function of a test
instance T by the following Eq.(9).

L(T |Ci) = −
|Ei|∑
k=1

log2 P (Xk|Ci), Xk ∈ Ei and Xk ∈ T (9)

where |Ei| is the number of emerging patterns in the EP set Ei, and Xk is an emerg-
ing pattern in Ei. The test instance T is assigned class label Ci when L(T |Ci) is the
minimum. Given an itemset X, P (Xi) is approximately computed by Eq.(10).

P (X|Ci) = (|X ∩ Ci|+ 2|X|/|D|)/(|Ci|+ 2) (10)

where |X∩Ci| is the number of training instances belonging to class Ci and containing
X, |X| is the total number of training instances containing X, |D| is the total number
of training instances, and |Ci| is the number of training instances for class Ci.

In addition, to ensure that we can always find a partition for an instance, all single-
item itemsets of each class whether they satisfy the given thresholds or not are taken
into account when Eq.(9) is used to classify a test instance.

4.4. The EPSF Algorithm

To integrate online feature selection and EP mining, we propose the algorithm EPSF,
mining Emerging Patterns with Streaming Features, as shown in Algorithm 1.

EPSF online builds two pools: a feature pool and a 1-itemset EP pool, and periodically
computes and updates emerging patterns from the 1-itemset EP pool for an EP classi-
fication model construction and maintenance. As a new feature arrives, if it is added
into the feature pool, EPSF transforms it into a set of itemsets, and online mines 1-
itemset EPs which are then added into the 1-itemset EP pool. As the dimensions are
processed one by one, in order to quickly respond to this change, EPSF only online
mines 1-itemset EPs for each feature available, and updates the current 1-itemset EP
pool correspondingly with the change of the feature pool. Then EPSF periodically com-
putes and updates emerging patterns from the 1-itemset EP pool.

As for the EPSF algorithm in its early version (we call it Pre-EPSF) [Yu et al. 2012],
the Pre-EPSF algorithm needs to check all subsets within CMB(C) to re-examine the
redundancy of each feature in CMB(C) due to a new feature F ′is inclusion. In Step 28
of Algorithm 1, the EPSF algorithm in the current version validates the redundancy
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ALGORITHM 1: The EPSF Algorithm
1 Initialize the minimum support threshold α, growth rate threshold ρ, and CMB(C)={};
2 repeat
3 Input a new feature X;
4 /*Discard irrelevant features*/;
5 if P (C|X) = P (C) then
6 Discard X and goto step 41;
7 end
8 /*Remove redundant features*/;
9 if ∃S ⊂ CMB(C) s.t. P (C|X,S) = P (C|S) then

10 Go to step 41;
11 end
12 /*Add X into the current feature pool CMB(C)*/;
13 CMB(C) = CMB(C) ∪ {X};
14 /*Convert feature X into a set of itemsets*/;
15 IX = convert(X), IX ∈ Dom(X);
16 /*Map between IX and X*/;
17 map form=mapping(X,IX );
18 for i = 1 : |C| do
19 /*|C| denotes the number of classes*/;
20 /*Mine 1-itemset EPs for each class with the thresholds α and ρ*/;
21 EPi=mineEP(IX , α, ρ);
22 /*Add EPi to the current EP pool CEP*/;
23 CEP = CEP ∪ EPi;
24 end
25 /*Update CMB(C)*/;
26 for each feature Y within CMB(C) excluding X do
27 /*Find S ⊂ CMB(C) containing X*/;
28 if ∃S ⊂ CMB(C) s.t. P (C|Y, S) = P (C|S) then
29 CMB(C) = CMB(C)− Y ;
30 /*Update CEP by removing EPs generated from feature Y */;
31 for each y ∈ Iy do
32 if y ∈ CEP then
33 CEP = CEP − y;
34 end
35 end
36 /*Update map form*/;
37 map form = map form(Iy);
38 end
39 end
40 Periodically mine all EPs from CEP with map form;
41 until No more features are available;
42 Classify unlabeled instances by the mined EPs using Eq.(9);

of each originally existing feature in CMB(C) by only checking the subsets created
by the inclusion of the new feature Fi at each time point. By avoiding checking all
subsets within CMB(C) at each time point, the revised EPSF significantly reduces the
number of subsets that need to be checked, and thus improves the updating efficiency
by avoiding performing some unnecessary calculation.

Using the Balloon data set from UCI Repository of Machine Learning
Databases [Blake and Merz 1998], we give an illustrating example to explain
the EPSF algorithm. In Table II, the Balloon data set includes 4 features (color, size,
act and age) and one class attribute (inflated) with 20 samples. Assuming the input
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Table II. The Balloon data set

color size act age inflated
yellow small stretch adult True
yellow small stretch child True
yellow small dip adult True
yellow large stretch adult True
yellow large stretch child True
yellow large dip adult True
purple small stretch adult True
purple small stretch child True
purple small dip adult True
purple large stretch adult True
purple large stretch child True
purple large dip adult True
yellow small dip child False
yellow small dip child False
yellow large dip child False
yellow large dip child False
purple small dip child False
purple small dip child False
purple large dip child False
purple large dip child False

Table III. CEP after adding act for class F

Candidate EP Support(class T ) Support(class F ) GRT→F (e)
{act=dip} 0.33 1 3

Table IV. CEP after adding act for class T

Candidate EP Support(class F ) Support(class T ) GRF→T (e)
{act=stretch} 0 0.67 ∞

order of features is color, size, act and age, and the G2 test [Spirtes et al. 2000] is
employed to compute conditional independence defined in Definition 3.5 in Section 3.2
to determine feature relevance and feature redundancy, the EPSF algorithm is traced
as follows.

(1) As feature color arrives, at Step 6 in Algorithm 1, color is discarded as an irrelevant
feature. And then EPSF processes the next feature size directly. Since feature size
is also independent to the class attribute inflated, size is also discarded, and will
never be considered again.

(2) As feature act is available, at Step 5 in Algorithm 1, act is regarded as a rele-
vant feature. And then Step 9 checks whether act is a redundant feature given
the current feature pool CMB(C). If so, act will be discarded and EPSF will con-
sider a next feature available; if not, act will be added to CMB(C). Since the
current feature pool CMB(C) is empty, act is added to CMB(C) at Step 13 and
CMB(C) = {act}. At Steps 14 to 17, feature act is converted into a set of itemsets,
that is, {act = dip} and {act = stretch}. From Steps 18 to 24, EPSF mines 1-itemset
EPs of act from two classes and stores those 1-itemsets into the current EP pool,
CEP , as shown in Tables III and IV, using the minimum support threshold 0.2
and the growth rate threshold ρ > 1. Since the current feature pool CMB(C) only
contains act, so Steps 25 to 39 are not implemented and EPSF directly processes
the next feature age.

(3) As feature age comes, age is considered a relevant feature at Step 5. At Step
9, given the current feature pool CMB(C) = {act}, P (inflated, age|act) 6=
P (inflated, age). Accordingly age is added to CMB(C) at Step 13, and CMB(C) =

ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4, Article 39, Publication date: March 2010.



39:14 K. Yu et al.

Table V. CEP after adding age for class F

Candidate EP Support(class T ) Support(class F ) GRT→F (e)
{act=dip} 0.33 1 3
{age=child} 0.33 1 3

Table VI. CEP after adding age for class T

Candidate EP Support(class F ) Support(class T ) GRF→T (e)
{act=stretch} 0 0.67 ∞
{age=adult} 0 0.70 ∞

{act, age}. At Steps 14 to 17, act is converted into a set of itemsets, i.e., {age = child}
and {age = adult}. From Steps 18 to 24, the current EP pool CEP is updated as
shown in Tables V and VI.

(4) Due to age′s addition to CMB(C), Steps 25 to 39 further check whether act is a
redundant feature. If so, act will be removed from CMB(C), and its corresponding
1-itemsets in CEP also will be removed.

(5) With the current EP pool CEP , EPSF periodically mines all EPs by employing a
level-wise, candidate generation-and-test approach to mine EPs (we use the Con-
sEPMiner algorithm [Zhang et al. 2000a]), then uses them to classify test instances
later on.

In summary, compared to the CE-EP algorithm and other existing EP algorithms, we
are the first group to mine EPs from data with streaming features. With an effective
online feature selection customized for emerging pattern mining, the EPSF algorithm
is designed for data sets with streaming features, as it does not need to store the whole
data in the memory to mine EPs. This practically facilitates emerging pattern mining
dramatically.

Moreover, EPSF can online mine EPs from the features available so far and can
consume new features in an online manner as they become available. Accordingly,
the EPSF algorithm allows more expensive calculation, including feature redundancy
checking (step 9), emerging pattern mining (steps 14-24), CMB(C) and CEP updating
(steps 25-39) all to be online conducted within the current CMB(C), which is usually
much smaller than the whole feature space.

5. EXPERIMENT RESULTS

5.1. Experiment Setup

In order to thoroughly evaluate the proposed EPSF algorithm, 16 data sets (in Table
VII) are selected including four from the UCI machine learning repository (the first
four) [Blake and Merz 1998], four very high-dimensional biomedical data sets (hiva,
ovarian-cancer, lymphoma, and breast-cancer), four NIPS 2003 feature selection chal-
lenge data sets (madelon, arcene, dorothea, and dexter), and four frequently studied
public microarray data sets (the last four).

Our comparative study has the following systematical design, using 10-fold cross-
validation for all the experiments unless specified.

(1) Comparing EPSF with the state-of-the-art EP classifiers, CE-EP [Yu et al. 2013],
the EPSF algorithm in our previous KDD conference version (we call it Pre-
EPSF) [Yu et al. 2012], and the IG-EP classifier, the EP classifier with the infor-
mation gain feature selection method. (We don’t compare EPSF with CAEP [Dong
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Table VII. 16 Data sets used in our comparative study
(#: number of features, SIZE: number of instances)

ID Dataset # SIZE ID Dataset # SIZE
1 kr-vs-kp 36 3,196 9 dexter 20,000 300
2 spectf 44 267 10 breast-cancer 17,816 286
3 promoters 57 106 11 arcene 10,000 100
4 infant 86 5,337 12 dorothea 100,000 800
5 madelon 500 2,000 13 colon 2,000 62
6 hiva 1,617 4,229 14 leukemia 7,129 72
7 ovarian-cancer 2,190 216 15 lung-cancer 12,533 181
8 lymphoma 7,399 227 16 prostate 6,033 102

et al. 1999], CBA [Liu et al. 1998], CMAR [Li et al. 2001b] and CPAR [Yin and Han
2003] since they fail to deal with high dimensionality in the scale of thousands or
more.)

(2) Comparing the prediction accuracy of EPSF with that of the state-of-the-art non-
associative classifiers, including Naı̈ve Bayes (NB), KNN, Decision Tree J48, SVM,
Bagging and AdaBoost using their implementation provided by the Weka tool [Hall
et al. 2009].

(3) Comparing the prediction accuracy of EPSF with that of NB, KNN, J48, SVM, Bag-
ging and AdaBoost classifiers with the add-on information gain feature selection
method in Weka.

(4) Analyzing the statistical qualities of the EPSF algorithm against the rivals men-
tioned above using the kappa statistic [Cohen 1960], the Friedman test [Friedman
1940], and the Nemenyi test [Demšar 2006].

We simulate the steaming feature setting using benchmark data sets to evaluate EPSF
and Pre-EPSF, by assuming that the dimensions on a benchmark training data set are
available one by one at a time and each dimension is processed upon its arrival. To dis-
cretize continuous features, we use the discretization method in the Causal Explorer
Toolkit proposed by Aliferis et al. [Aliferis et al. 2003]. In the experiments, we set the
growth rate to 20 for EPSF and CE-EP. To test the impact of the minimum support
threshold, we set seven minimum supports for EPSF, Pre-EPSF, and CE-EP, including
0.005, 0.01, 0.05, 0.1, 0.2, 0.3, and 0.4, respectively. The experiments were performed
on a Window 7 DELL workstation with an Intel Xeon 2.93 GHz processor and 12.0GB
RAM.

5.2. Comparison of EPSF and Pre-EPSF

Table VIII gives the results of computer running time of EPSF against Pre-EPSF (the
EPSF algorithm in our previous version [Yu et al. 2012]). Comparing to Pre-EPSF, for
validating the redundancy of each originally existing feature in the current feature
subset, EPSF in this paper avoids checking all subsets within the current feature sub-
set at each round by only testing the subsets created by the inclusion of a new feature
at each time point. Thus, in comparison with Pre-EPSF, EPSF in this paper signifi-
cantly improves the updating efficiency, as shown in Table VIII. The best results are
highlighted in bold face.

Moreover, since EPSF needs fewer statistical tests to determine the redundancy of a
feature in the current feature subset than Pre-EPSF (hence less unintended estima-
tion errors are introduced), Table IX shows that EPSF gets higher prediction accuracy
on some data sets than Pre-EPSF, especially on high-dimensional data sets with small
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Table VIII. Running time (in seconds):
EPSF and Pre-EPSF

Dataset EPSF Pre-EPSF
infant 26 41
kr-vs-kp 24 43
promoters 17 16
spectf 17 17
madelon 20 23
hiva 33 163
ovarian-cancer 20 68
lymphoma 20 44
dexter 31 387
arcene 19 30
breast-cancer 101 958
dorothea 146 440
colon 17 18
leukemia 19 22
lung-cancer 30 117
prostate 20 27

Table IX. Prediction accuracy (%):
EPSF and Pre-EPSF

Dataset EPSF Pre-EPSF
infant 91.44 91.35
kr-vs-kp 92.39 92.42
promoters 72.00 71.00
spectf 86.92 86.92
madelon 59.80 61.20
hiva 90.71 95.17
ovarian-cancer 92.38 93.81
lymphoma 80.91 76.82
dexter 90.67 89.67
arcene 84.44 80.00
breast-cancer 95.19 92.59
dorothea 95.06 94.94
colon 95.00 91.67
leukemia 100 100
lung-cancer 99.44 98.89
prostate 98.00 95.00

Table X. Kappa statistic and its corresponding Kappa agreement

Kappa statistic < 0 0.01-0.20 0.21-0.40 0.61-0.80 0.81-0.99
Kappa Agreement less than chance

agreement
slight
agreement

moderate
agreement

substantial
agreement

almost perfect
agreement

samples, such as four NIPS 2003 feature selection challenge data sets and four fre-
quently studied public microarray data sets. In Table IX, we select the best prediction
accuracy under the seven minimum supports as the results for our comparative study.

Finally, Figure 2 reports the Kappa statistics of EPSF and Pre-EPSF. In Figure 2, the
x-axis denotes all of the 16 data sets corresponding to Table VII. The kappa statistic is
a measure of consistency amongst different raters, taking into account the agreement
occurring by chance [Cohen 1960]. The kappa statistic is standardized to lie on a -1 to 1
scale, where 1 is perfect agreement, 0 is exactly what would be expected by chance, and
negative values indicate agreement less than chance, and the other values of Kappa
statistics and their corresponding Kappa agreements are shown in Table X [Landis
and Koch 1977].
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Fig. 2. Kappa statistics of Pre-EPSF and EPSF on 16 data sets

From Figure 2, EPSF is better than Pre-EPSF using Kappa statistics, and then we
can conclude that EPSF is more reliable than Pre-EPSF. The explanation is that fewer
statistical tests of EPSF than those of Pre-EPSF make EPSF have more statistical
power than Pre-EPSF. We can see that both EPSF and Pre-EPSF have only two kappa
statistics (the madelon and hive data sets) that are lower than 0.4 (under the red line
in Figure 2), since the madelon data set is a synthetic data set including many redun-
dant and noise features and hive is a very class-imbalanced data set (the proportion
of positive class is only 3.52%). Meanwhile both of them have 11 kappa statistics that
are higher than 0.6 (above the blue line in Figure 2). Pre-EPSF is a reliable emerging
pattern classifier, while the improved EPSF is more reliable and more efficient.

5.3. Comparison of EPSF with CE-EP and IG-EP

5.3.1. Comparison of Prediction Accuracy. Table XI reports detailed results in terms of
prediction accuracy (the percentage of the correctly classified test instances which are
previously unseen) of EPSF, CE-EP, and IG-EP on the 16 benchmark data sets. As for
EPSF, CE-EP, and IG-EP, we select the best prediction accuracy under the seven min-
imum supports as the results for our comparative study. The best result is highlighted
in bold face for each data set.

To further investigate the classification results, we conduct paired t-tests at a 95%
significance level and summarize the win/tie/loss counts of EPSF against CE-EP and
IG-EP. For example, as shown in the last row of Table XI, against CE-EP, EPSF wins
five times, ties eight times and loses three times on the 16 data sets. And EPSF is
always superior to or tie with IG-EP.

5.3.2. Comparison of the Numbers of Patterns and Running Time. Figures 3 and 4 compare
the numbers of patterns mined by EPSF against CE-EP and IG-EP. We report the av-
erage numbers of mined patterns over all seven minimum support thresholds. In Fig.3,
the x-axis denotes all of the 16 data sets corresponding to Table VII. From Fig. 3, we
can see that EPSF is very competitive with CE-EP on the number of mined patterns,
while IG-EP selects more patterns than EPSF and CE-EP, as shown in Figure 4. These
results illustrate that both EPSF and CE-EP can select a small set of strongly predic-
tive EPs from a very high-dimensional data set. Furthermore, we can see that even
with very high dimensionality, the numbers of patterns selected by both EPSF and
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Table XI. Prediction accuracy (%): EPSF, CE-EP, and IG-EP

Dataset EPSF CE-EP IG-EP
infant 91.44 94.92 91.61
kr-vs-kp 92.39 92.23 87.58
promoters 72.00 72.00 75.00
spectf 86.92 83.85 83.08
madelon 59.80 59.00 60.80
hiva 90.71 93.70 93.36
ovarian-cancer 92.38 92.86 83.33
lymphoma 80.91 77.73 78.18
dexter 90.67 88.33 79.33
arcene 84.44 86.67 68.89
breast-cancer 95.19 92.22 90.74
dorothea 95.06 95.06 93.92
colon 95.00 95.00 88.33
leukemia 100 100 100
lung-cancer 99.44 99.44 98.89
prostate 98.00 94.00 94.00
win/tie/loss / 5/8/3 10/3/3
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Fig. 3. Numbers of mined EPs: EPSF against CE-EP

CE-EP do not change much in comparison with those on the first four low-dimensional
data sets in Table VII.

 

Fig. 4. Numbers of mined EPs: EPSF against IG-EP
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Table XII. Kappa statistics of EPSF, CE-EP, and IG-EP

Dataset EPSF CE-EP IG-EP
infant 0.4493 0.7875 0.4774
kr-vs-kp 0.8448 0.8448 0.7508
promoters 0.5133 0.5133 0.5400
spectf 0.7131 0.6476 0.6306
madelon 0.2007 0.1866 0.2191
hiva 0.2477 0.3497 0.2311
ovarian-cancer 0.8485 0.8621 0.7077
lymphoma 0.6318 0.5818 0.5864
dexter 0.8200 0.7742 0.5983
arcene 0.7467 0.7800 0.4867
breast-cancer 0.8548 0.8197 0.7888
dorothea 0.7488 0.7362 0.6381
colon 0.9000 0.9167 0.7833
leukemia 0.9667 1.0000 1.0000
lung-cancer 0.9857 0.9857 0.9714
prostate 0.9600 0.8733 0.8800

The running time (in seconds) of EPSF, CE-EP, and IG-EP contains all learning time,
including importing data sets, and 10-fold cross validation learning and testing. Figure
5 reports the average running time over all seven minimum support thresholds. In
Figure 5, we can see that EPSF is the fastest algorithm while IG-EP is the slowest
one.
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Fig. 5. Running time (in seconds): EPSF, CE-EP, and IG-EP

5.3.3. Analysis of the Statistical Qualities. To further analyze EPSF, CE-EP, and IG-EP,
we compare them by the kappa statistic and the Nemenyi test. To calculate the kappa
statistic, we set the support threshold to 0.2 and the growth rate threshold to 20 for
EPSF, CE-EP, and IG-EP. Table XII shows the kappa statistics of EPSF, CE-EP, and IG-
EP. We observe that with the kappa statistics, the three classifiers have no significant
difference according to Table X.

Accordingly, we further use the Friedman test [Friedman 1940] and the Nemenyi
test [Demšar 2006] to assess whether the performance of our algorithm EPSF is com-
parable to that of CE-EP and IG-EP in prediction accuracy. With the Friedman test
at 95% significance level, under the null-hypothesis, which states that whether the
performance of EPSF and that of CE-EP and IG-EP have no significant difference in
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Table XIII. Comparison of prediction accuracy (%):
EPSF, NB, IG-NB, KNN, IG-KNN, J48, and IG-J48

Dataset EPSF NB IG-NB KNN IG-KNN J48 IG-J48
infant 91.44 91.91 92.69 94.92 95.05 95.39 95.43
kr-vs-kp 92.39 83.92 85.89 96.46 96.37 99.31 96.75
promoters 72.00 74.53 71.70 62.26 65.09 63.21 70.75
spectf 86.92 86.63 83.90 84.27 86.52 86.14 87.27
madelon 59.80 59.20 62.30 53.55 61.95 57.50 62.20
hiva 90.71 87.06 94.16 96.50 96.38 96.39 96.62
lymphoma 80.91 68.28 80.61 63.88 73.57 71.81 70.93
breast-cancer 95.19 93.01 89.96 86.36 90.55 80.77 85.66
ovarian-cancer 92.38 70.83 84.26 85.19 88.89 91.67 89.35
dorothea 95.06 90.25 93.63 90.63 93.38 89.38 93.13
arcene 84.44 63.00 73.00 80.00 79.00 62.00 77.00
dexter 90.67 93.33 78.33 63.67 86.00 82.67 87.00
colon 95.00 79.03 91.94 83.87 93.55 82.26 90.32
leukemia 100 93.06 100 97.22 100 93.06 95.83
lung-cancer 99.44 98.34 98.90 98.34 98.34 90.61 96.69
prostate 98.00 69.61 94.12 93.14 94.12 88.24 93.14

prediction accuracy, the null-hypothesis is rejected. We get the average ranks for EPSF,
CE-EP, and IG-EP as 2.3125, 2.1563, and 1.5313, respectively.

Then we proceed with the Nemenyi test as a post-hoc test to deal with this situation.
With the Nemenyi test, the performance of the two classifiers is significantly different
if the corresponding average ranks differ by at least the critical difference (how to cal-
culate the average ranks and the critical difference, please see Section 3.2.2 of [Demšar
2006]). With the Nemenyi test, the critical difference we get is up to 0.8275.

Thus, with the critical difference and the average ranks calculated above, we conclude
that the performance of EPSF and that of CE-EP have no significant difference in
prediction accuracy, but is significantly better than that of IG-EP.

5.4. Comparison of EPSF against the Non-Associative Classifiers

Tables XIII to XIV give the empirical results in terms of prediction accuracy of EPSF,
six non-associative classifiers, and the same six classifiers with the add-on information
gain feature selection method on the 16 benchmark data sets. We denote the six classi-
fiers with information gain feature selection as IG-NB, IG-KNN, IG-J48, IG-SVM, IG-
Bagging, and IG-AdaBoost, respectively. Table XV reports the running time of EPSF,
NB, KNN, J48, SVM, Bagging, and AdaBoost. EPSF is very competitive with these
six non-associative classifiers. But on data sets with very high dimensionality or large
sample sizes, such as the madelon, hiva, and dorothea data sets, the running time of
most of non-associative classifiers is more than that of EPSF.

To investigate the classification results of prediction accuracy, we conduct paired t-
tests at a 95% significance level and summarize the win/tie/loss counts of EPSF against
the other rivals in Table XVI. In Table XVI, we can see that EPSF is superior to NB,
KNN, J48, Bagging and AdaBoost and their variants with the information gain feature
selection method, and also very competitive with SVM and IG-SVM. We have observed
in the experiments that the integration of streaming feature selection into EP mining
can avoid generating non-EPs and redundant EPs. This enables EPSF not only to
handle high-dimensional data sets such as the last 12 data sets in Table VII, but also
to produce very promising prediction accuracy.
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Table XIV. Comparison of prediction accuracy (%):
EPSF, SVM, IG-SVM, Bagging, IG-Bagging, AdaBoost, and IG-AdaBoost

Dataset EPSF SVM IG-SVM Bagging IG-Bagging AdaBoost IG-AdaBoost
infant 91.44 95.45 95.48 95.65 95.51 95.43 95.43
kr-vs-kp 92.39 95.06 94.02 99.22 96.25 93.84 93.84
promoters 72.00 79.25 70.75 66.98 72.64 66.04 72.64
spectf 86.92 88.02 89.89 90.37 87.64 84.27 85.39
madelon 59.80 56.45 62.75 62.20 62.45 60.50 60.7
hiva 90.71 94.70 96.26 96.76 96.57 96.48 96.48
lymphoma 80.91 77.53 79.30 68.28 78.85 62.56 68.72
breast-cancer 95.19 92.31 90.21 84.97 88.81 84.61 87.41
ovarian-cancer 92.38 93.52 91.67 88.89 87.96 91.67 89.35
dorothea 95.06 92.00 94.00 94.13 93.75 93.75 93.75
arcene 84.44 81.00 74.00 72.00 78.00 71.00 79.00
dexter 90.67 91.33 86.33 89.33 88.67 83.33 85.00
colon 95.00 85.48 88.71 85.48 85.48 85.48 91.94
leukemia 100 98.61 100 94.44 97.22 100 100
lung-cancer 99.44 100 100 93.92 99.45 96.69 99.45
prostate 98.00 94.12 94.12 92.16 95.10 92.16 94.12

Table XV. Comparison of running time (in seconds):
EPSF, NB, KNN, J48, SVM, Bagging, and AdaBoost

Dataset EPSF NB KNN J48 SVM Bagging AdaBoost
infant 26 5 5 10 59 20 8
kr-vs-kp 24 5 5 5 10 5 5
promoters 17 5 5 5 5 5 5
spectf 17 5 5 5 5 5 5
madelon 20 1 21 14 770 50 21
hiva 33 5 95 185 269 430 43
lymphoma 20 6 6 6 6 15 6
breast-cancer 101 10 10 21 33 51 26
ovarian-cancer 20 5 5 5 5 5 5
dorothea 146 70 975 675 670 1425 625
arcene 19 1 1 1 5 14 3
dexter 31 5 5 52 27 94 17
colon 17 5 5 5 5 5 5
leukemia 19 5 6 6 10 10 10
lung-cancer 30 5 5 5 10 15 10
prostate 20 5 5 5 10 10 10

Table XVI. Win/tie/loss counts of EPSF vs. the other 12 non-associative classifiers
(pairwise t-test at 95% significance level)

NB KNN J48 SVM Bagging AdaBoost
EPSF 11/3/2 13/0/3 11/2/3 8/2/6 10/2/4 10/3/3

IG-NB IG-KNN IG-J48 IG-SVM IG-Bagging IG-AdaBoost
EPSF 9/4/3 10/2/4 11/1/4 8/3/5 9/3/4 9/4/3

To further analyze prediction accuraces of these classifiers, we use the Friedman test
and the Nemenyi test to assess their performance. With the Friedman test at 95%
significance level for EPSF, NB, KNN, J48, SVM, Bagging and AdaBoost, the null-
hypothesis is also rejected. The average ranks of EPSF, NB, KNN, J48, SVM, Bagging
and AdaBoost are 5.4063, 3.0313, 3.1875, 2.75, 5.375, 4.5, and 3.75, respectively. After
the Nemenyi test, the critical difference is up to 2.252. Therefore, we can conclude that
the performance of EPSF is significantly better than that of NB and J48, but is highly
comparable to that of KNN, SVM, Bagging and AdaBoost.

Finally, with the Friedman test at 95% significance level for EPSF, IG-NB, IG-KNN,
IG-J48, IG-SVM, IG-Bagging and IG-AdaBoost, the null-hypothesis cannot be rejected.
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Table XVII. Comparison of kappa statistics:
EPSF against 6 associative classifiers with information gain feature selection method

Dataset EPSF IG-NB IG-KNN IG-J48 IG-SVM IG-Bagging IG-AdaBoost
infant 0.4493 0.4548 0.4328 0.5019 0.4851 0.5012 0.5174
kr-vs-kp 0.8448 0.7165 0.9273 0.9348 0.8800 0.9248 0.8762
promoters 0.5133 0.4340 0.3019 0.4151 0.4151 0.4528 0.4528
spectf 0.7131 0.5528 0.5933 0.5886 0.6845 0.5797 0.5314
madelon 0.2007 0.2460 0.2390 0.2440 0.2550 0.2490 0.2140
hiva 0.2477 0.2327 0.0663 0.0996 0.0077 0.0731 0.0596
lymphoma 0.6318 0.6124 0.4717 0.4185 0.5859 0.5571 0.3743
breast-cancer 0.8548 0.7515 0.7668 0.6281 0.7470 0.7035 0.6853
ovarian-cancer 0.8485 0.6862 0.7765 0.7837 0.8305 0.7552 0.7827
dorothea 0.7488 0.6181 0.5425 0.5502 0.6100 0.5884 0.6091
arcene 0.7467 0.4664 0.5728 0.5298 0.4698 0.5557 0.5770
dexter 0.8200 0.5567 0.7200 0.7400 0.7267 0.7733 0.7000
colon 0.9000 0.8256 0.8561 0.7842 0.7456 0.6729 0.8220
leukemia 0.9667 1.0000 1.0000 0.9089 1.0000 0.9376 1.0000
lung-cancer 0.9857 0.9620 0.9438 0.8861 1.0000 0.9808 0.9808
prostate 0.9600 0.8825 0.8825 0.8627 0.8824 0.9020 0.8823

Thus, the performance of EPSF has no significant difference from that of the six non-
associative classifiers using the information gain feature selection method.

To further analyze the statistical qualities of EPSF, we compare EPSF with IG-NB, IG-
KNN, IG-J48, IG-SVM, IG-Bagging, and IG-AdaBoost by the kappa statistics and the
Nemenyi test. Since the prediction accuracy of IG-NB, IG-KNN, IG-J48, IG-SVM, IG-
Bagging and IG-AdaBoost is better than NB, KNN, J48, SVM, Bagging, and AdaBoost,
we do not give the kappa statistics of NB, KNN, J48, SVM, Bagging, and AdaBoost.
We can see that EPSF gets higher kappa statistics than the other six classifiers in
Table XVII, especially on the class-imbalance data sets, such as hiva and dorothea,
or the data sets with high dimensionality but small sample sizes, such as lymphoma
and prostate. A possible explanation is that the emerging patterns of each class are
correctly mined by EPSF from the corresponding class data and represent strong con-
trasts between different classes of data.

Why is the prediction accuracy of EPSF not better than that of IG-EP and 12 non-
associative classifiers on the low-dimensional data sets, such as infant, kr-vs-kp, pro-
moters, spectf, madelon, and hiva, while it is better than that of these algorithms on
the remaining high-dimensional data sets? The explanation is that a high-dimensional
data set would have a better chance of including excessive irrelevant or redundant
features than a low-dimensional data set. Those excessive irrelevant or redundant
features might significantly reduce performance of predictive models. Thus, on a high-
dimensional data set, the adverse impact of irrelevant or redundant features on pre-
dictive models is more significant than that on low-dimensional data sets. Our em-
pirical results reveal that EPSF can deal with irrelevant or redundant features in
high-dimensional data sets much better than the other rivals.

In summary, we can conclude that on data sets with streaming features, the perfor-
mance of EPSF is very competitive with that of CE-EP and is better than that of IG-
EP, which both need to obtain a complete set of features in advance. Furthermore, in
comparison with the six non-associative classifiers, and the six classifiers with the in-
formation gain feature selection method, the prediction accuracy of EPSF is also very
competitive with that of these 12 non-associative classifiers.
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Fig. 6. Sensitivity analysis of support thresholds on prediction accuracy

5.5. Analysis of Prediction Accuracy on Support Thresholds

Figure 6 shows the prediction accuracy of EPSF and CE-EP under the seven support
thresholds, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, and 0.4. We can see that in prediction accu-
racy, for all 16 data sets, EPSF is insensitive to the different support thresholds, even
for those high-dimensional data sets. Furthermore, EPSF is not only more insensitive,
but also always achieves higher accuracy under all the seven support thresholds than
CE-EP.

5.6. Analysis of Prediction Accuracy on Growth-rate Thresholds

To further explore the performance of EPSF and CE-EP, we conduct an analysis on
prediction accuracy of EPSF and CE-EP under seven minimum growth rate thresh-
olds, as shown in Figures 7 and 8, where GR stands for Growth Rate thresholds and
the minimum support threshold is fixed at 0.1. In Figures 7 and 8, the x-axis denotes
all of the 16 data sets corresponding to Table VII. From Figures 7 and 8, we can see
that CE-EP and EPSF are not sensitive to the minimum growth rate thresholds at all.
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Fig. 8. The effect of growth rate thresholds on EPSF

5.7. Effect of the Input Orders of Features

Since streaming features are processed one by one as they are available, we conduct an
analysis of prediction accuracy on the input (or scan) order of features, against CE-EP
and SVM as the rival algorithms. We generate a number of trials in which each trial
represents a random input order of features. We apply EPSF to each randomized trial
and report the results in Figure 9, where the x-axis represents each of the randomized
trials and the y-axis represents the prediction accuracy from the corresponding trial.
The results in Figure 9 confirm that varying the input order of features does slightly
impact on the prediction accuracy, however, the results demonstrate that EPSF has
relatively stable performance.

5.8. Mining EPs with Features Kept Arriving

When the features keep arriving, EPSF provides a solution to this problem by pro-
cessing features one by one and stopping this process using the EPs seen so far with
a user-specified criterion. CE-EP cannot deal with this situation since it needs to ac-
cess all features in advance to identify the causes and effects of the class attribute.
We evaluate this performance of EPSF in Fig.10. For four gene data sets, we select
the first 2/3 data instances as the training instances and the remaining for testing;
for the breast-cancer data set, we select the first 200 data instances as the training
instances and the remaining for testing. With respect to the dorothea data set, we use
its original training and testing data sets. SVM and AdaBoost are used as baselines on
the training and testing sets with a complete set of features. With streaming features,
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Fig. 9. Effect of the input order of features
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Fig. 10. Comparative performance of EPSF with features keeping arriving

EPSF mines EPs on the training samples as the features are available one by one and
evaluates the current EPs on the testing samples.

On the colon data set, when the percentage of features available is up to 20% or 50%,
the prediction accuracy of EPSF is the same as SVM. And when features are all avail-
able, the accuracy of EPSF is up to 100%, and is better than SVM. For the remaining
data sets, EPSF can be also up to the accuracy of SVM or AdaBoost without exhaustive
search over an entire feature set. This demonstrates that EPSF provides an effective
and efficient solution to the EP mining problem when it is impossible to get a complete
set of features in advance and must be consumed features in an online manner.

5.9. A Case Study on Automatic Impact Crater Detection

In addition to the validation on the publicly available benchmark data sets, we also ap-
ply our new approach to automatic impact crater detection in real planetary images.
Impact craters, the structures formed by the collisions of meteoroids on planetary sur-
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A B 

Fig. 11. (A) An illustration explaining why an image of a sub-kilometer crater consists of crescent-like
highlight and shadow regions. (B) An image of an actual 1 km crater showing the highlight and shadow
regions [Ding et al. 2011].

Table XVIII. Summary of crater datasets

#samples (crater candidates) #features
West region 6,708 1,089
Central region 2,935 1,089
East region 2,026 1,089

faces, are among the most studied geomorphic features in the solar system because
they yield information about past and present geological processes and provide the
only tool for measuring relative ages of planetary surfaces, i.e., heavily cratered sur-
faces are relatively older than less cratered surfaces [Urbach and Stepinski 2009; Ding
et al. 2011].

In this case study, the EPSF algorithm is plugged into the crater detection framework
designed by Ding et al. [Ding et al. 2011]. The calculation contains three steps: (1)
identifying crater candidates; (2) extracting image texture features; and (3) detecting
craters using supervised learning algorithms.

Crater candidates are the regions of an image that may potentially contain craters.
A key insight to identifying crater candidates is that a crater can be recognized as a
pair of crescent-like highlight and shadow regions in an image, as shown in Figure
11. Those highlight and shadow regions are matched so that each pair will be used
to construct crater candidates, that is, the locations where craters are likely to reside.
The experiments in crater detection are evaluated on Mars because it is at the center
of NASA exploration efforts. A portion of the High Resolution Stereo Camera (HRSC)
nadir panchromatic image h0905 is selected, taken by the Mars Express spacecraft, to
serve as the test set [Ding et al. 2011]. The selected image has a resolution of 12.5 me-
ters/pixel and a size of 3,000 by 4,500 pixels (37,500×56,250m2). The image represents
a significant challenge to automatic crater detection algorithms because it covers a
terrain that has spatially variable morphology and because its contrast is rather poor
(mostly noticeable when the image is inspected at a small spatial scale).

As the image arrives, it is divided into three sections denoted as the west region, the
central region, and the east region (see Figure 12) for the test sets summarized in
Table XVIII. The central region is characterized by surface morphology that is distinct
from the rest of the image. The west and east regions have similar morphology but the
west region is much more heavily cratered than the east region. 1,089 image texture
features are constructed. The training set consists of 204 true craters and 292 non-
crater examples selected randomly from crater candidates located in the northern half
of the east region.
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Fig. 12. Impact craters in a 37,500×56,250m2 test image from Mars [Ding et al. 2011].
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Fig. 13. Emerging patterns for crater detection

5.9.1. Emerging patterns for Crater Detection. With the crate datasets summarized above,
the framework for counting craters by emerging patterns is shown in Fig.13. In steps
4 to 5 of Figure 13, we apply the EPSF and CE-EP algorithms to high-dimensional
crater data for counting craters. Tables XIX and XX show the top 5 EPs mined from
the crater training data sets for the crater class and non-crater class using the EPSF
algorithm, respectively. In Tables XIX and XX, f45 denotes the 45th feature in the
training crate data set while [-138.46, -12.52] represents the value of feature f45. In
Table XIX, the supports of the EPs in the crater class are much larger than in the
non-crater class. An instance containing one of those EPs will favor the crater class. In
Table XX, the first three EPs are the jumping EPs of the non-crater class, and denote
the instances containing those EPs as the non-crater class. Accordingly, we conclude
that the EPs mined by the EPSF algorithm are high-quality patterns and possess the
most discriminative power. They are the best candidates to be used to construct a
highly accurate classifier and also can produce an understandable classifier for crater
data.

5.9.2. Comparison with Existing Crater Detection Methods. In this section, we com-
pare EPSF with the state-of-the-art crater detection algorithms, CE-EP and Nave
Boost [Ding et al. 2011]. The best results are bold-faced in Table XXI. Table XXI shows
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Table XIX. Top 5 emerging patterns for craters

ID Emerging patterns for craters Support in
non-craters

Support
in craters

Growth
rate

1 {f45∈[-138.46, -12.52], f46∈[-165.18, -27.76],
f185∈[-102.58, -9.99], f420∈[-39.82,136.04]}

0.34% 59.31% 173.1961

2 {f45∈[-138.46, -12.52], f46∈[-165.18, -27.76],
f68∈[-140.53, 2.97], f420∈[-39.82,136.04]}

0.68% 62.75% 91.6078

3 {f45∈[-138.46, -12.52], f46∈[ -165.18, -27.76],
f358∈[-113.51, 2.4], f420∈[-39.82,136.04]}

0.68% 62.25% 90.8922

4 {f45∈[-138.46, -12.52], f53∈[-155.16, 10.36],
f185∈[-102.58, -9.99], f420∈[-39.82,136.04]}

0.68% 58.33% 85.1667

5 {f45∈[-138.46, -12.52], f185∈[-102.58, -9.99],
f420∈[-39.82,136.04]}

1% 60.29% 58.6863

Table XX. Top 5 emerging patterns for non-craters

ID Emerging patterns for non-craters Support
in crater

Support
in non-
crater

Growth
rate

1 {f46∈[-27.76,144.03], f185∈[-9.99,120.97], f358∈[2.4, 88.26]} 0 60.96% ∞
2 {f45∈[-12.52,158.41], f185∈[-9.99,120.97], f358∈[2.4, 88.26]} 0 57.53% ∞
3 {f68∈[2.97, 140.72], f185∈[-9.99,120.97], f358∈[2.4, 88.26]} 0 56.16% ∞
4 {[f53∈[10.36, 154.01], f358∈[2.4, 88.26]} 9.8% 61.30% 62.55
5 {f45∈[-12.52,158.41], f53∈[10.359,154.01], f185∈[-9.99,120.97],

f420∈[136.04,276.73]}
1.47% 66.10% 44.95

Table XXI. The prediction accuracy on three regions

West region Central region East region
EPSF 0.7847 0.7959 0.7784
CE-EP 0.7852 0.7802 0.7739
Nave Boost 0.7661 0.7888 0.7749

that, except for the west region, EPSF outperforms the CE-EP and Nave Boost algo-
rithms.

5.9.3. Comparison with the Other Methods. In this section, we compare the prediction ac-
curacy of EPSF with that of the classifiers, KNN and SVM, with some state-of-the-art
feature selection algorithms, OSFS [Wu et al. 2013], HITON-PC [Aliferis et al. 2010],
LARS [Efron et al. 2004], and FCBF [Yu and Liu 2004]. The best results are bold-faced
in Tables XXII to XXIII. From Tables XXII to XXIII, we can see that EPSF produces
higher prediction accuracy than the other four algorithms in the central region and
gets very competitive results with the other rivals in the remaining regions. Moreover,
the classifier constructed with the mined EPs can help us understand the crated data.

Table XXII. The prediction accuracy on three regions (KNN)

West region Central region East region
EPSF 0.7847 0.7959 0.7784
OSFS 0.7809 0.7874 0.7828
HITON-PC 0.7749 0.7792 0.7813
LARS 0.7740 0.7881 0.7799
FCBF 0.7821 0.7833 0.7828
All features(1089) 0.7303 0.7499 0.7710
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Table XXIII. The prediction accuracy on three regions (SVM)

West region Central region East region
EPSF 0.7847 0.7959 0.7784
OSFS 0.7856 0.7874 0.7730
HITON-PC 0.7815 0.7877 0.7710
LARS 0.7840 0.7888 0.7794
FCBF 0.7826 0.7923 0.7794
All features(1089) 0.7683 0.7710 0.7754

6. CONCLUSIONS

In this paper, to learn and maintain a classification model on data with streaming fea-
tures, we have adapted the well-known emerging pattern based classification methods
and proposed a semi-streaming approach. This new approach is fundamentally dif-
ferent from applying emerging pattern mining straightforwardly on a data set with
streaming features. With streaming feature selection, our approach online builds two
pools: a feature pool and a 1-itemset EP pool, and periodically computes and updates
emerging patterns from the 1-itemset EP pool for classification model construction and
maintenance. The streaming feature selection step substantially reduces the dimen-
sionality of the feature space under which the offline emerging pattern mining step
has to operate. Due to the effective streaming feature selection customized for emerg-
ing pattern mining, the emerging patterns mined in the offline step tend to be short,
and this practically facilitates emerging pattern mining dramatically. Comprehensive
experimental results on benchmark data sets and a real-world case study on auto-
matic impact crater detection have demonstrated the effectiveness and efficiency of
our approach.
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