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a b s t r a c t

Generative Adversarial Network (GAN) has become an active research field due to its capability to
generate quality simulation data. However, two consistent distributions (generated data distribution
and original data distribution) produced by GAN cannot guarantee that generated data are always
close to real data. Traditionally GAN is mainly applied to images, and it becomes more challenging for
numeric datasets. In this paper, we propose a histogram-based GAN model (His-GAN). The purpose
of our proposed model is to help GAN produce generated data with high quality. Specifically, we
map generated data and original data into a histogram, then we count probability percentile on each
bin and calculate dissimilarity with traditional f-divergence measures (e.g., Hellinger distance, Jensen–
Shannon divergence) and Histogram Intersection Kernel. After that, we incorporate this dissimilarity
score into training of the GAN model to update the generator’s parameters to improve generated data
quality. This is because the parameters have an influence on the generated data quality. Moreover, we
revised GAN training process by feeding GAN model with one group of samples (these samples can
come from one class or one cluster that hold similar characteristics) each time, so the final generated
data could contain the characteristics from a single group to overcome the challenge of figuring out
complex characteristics from mixed groups/clusters of data. In this way, we can generate data that is
more indistinguishable from original data. We conduct extensive experiments to validate our idea with
MNIST, CIFAR-10, and a real-world numeric dataset, and the results clearly show the effectiveness of
our approach.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Generative Adversarial Network (GAN) (Mirza et al., 2014) has
been demonstrated as the state-of-the-art generative model in
various tasks of generating synthetic but realistic-like data (Chen
et al., 2016; Yang et al., 2017; Zhu, Fidler, Urtasun, Lin, & Loy,
2017). A typical GAN usually consists of two main components,
one is the discriminator, which could be regarded as a detective
who could determine whether the data are original or generated;
the other one is the generator, and it could be regarded as a
forger who specializes in generating simulation data to fool the
discriminator into accepting it (Creswell et al., 2018). The model
iterates this process until the discriminator cannot distinguish
whether the current data are generated by the generator or from
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the original dataset. In this case, both distributions of generated
data and original data would be deemed to approach consistent.
The closer two distributions are, the better the effect is. The
principal problem, after the completion of training, is that two
consistent distributions (generated data distribution and original
data distribution) do not mean the generated data being similar
to original data.

The goal of GAN model is to transform a fixed, easy-to-sample
distribution (e.g., Uniform distribution with (−1, 1)) into the
real data distribution. In other words, the major concern of the
generator is distribution transformation. However, the generated
data quality details do not reflect in such a transformation process
even though fooling discriminator successfully. For example, if
one image contains two eyes, a nose and a lip, the generated
image needs to contain the same components. As to generated
data quality (e.g., the color of the eyes or the shape of the nose),
it is usually not addressed by the training process (Mirza et al.,
2014). That is to say, we do not know how well generated data
quality is or how similar generated data and the original data are.
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Fig. 1. Using a regular GAN model to produce generated data on MNIST dataset. The sub-figure (a) indicates the original data (Here we just use the handwritten
figure ‘5’); while the sub-figure (b) and sub-figure (c) are generated images. The sub-figure (d) shows the relationship between the distribution of original data and
that of generated data reflected by the sub-figure (b), while the sub-figure (e) shows generated data distribution for the sub-figure (c). We map all pixel values into
the range of (0, 255), and we use an array of size 256 to save the pixel values. We count the statistical percentile of each entry in this array. After that, we use the
plt.hist() and MLA.normpdf () functions with bins = 10 to plot their distributions.

Fig. 2. The sub-figure (a) indicates an illustration of training a GAN model on multi-group data, and the sub-figure (b) indicates a specific example of training a
GAN model on MNIST dataset. When we feed the multi-group data into the GAN model, it could output such generated data which may include different features
or styles. In sub-figure (b), the red rectangle includes those generated images which are indistinguishable from the real ones. The top generated handwritten image
holds the characteristics of figure ‘8’ and figure ‘9’; as for the generated image at the below of the rectangle, it holds the characteristics of figure ‘2’ and figure ‘0’.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

To visually illustrate this problem, we want to show the rela-
tionship between the distribution and the quality of data in Fig. 1.
In Fig. 1, the sub-figure (a) indicates the original data, the sub-
figure (b) and sub-figure (c) indicate generated data produced by
GAN. The sub-figure (d) indicates the distributions of the original
data and generated data reflected by the sub-figure (b), and the
sub-figure (e) indicates the same scenario with generated data
distribution reflected by the sub-figure (c). Since the range of
pixel values for an image is from 0 to 255, we use an array of
size 256 to save the Hashed pixel values (e.g., array[pixel] + =

1 if we map a pixel into the entry within the array). We repeat
this process until all pixel values are saved. After that, we count
the statistical percentile of each entry (e.g., entryi

H×W , entryi indicates
the value of ith entry and H indicates the height of the image and
W indicates the weight of the image) to plot the corresponding
histograms (See sub-figures (d) and (e)). From Fig. 1, we can see

that the distributions of original data and generated data are
similar as shown in sub-figures (d) and (e). However, the gen-
erated images are blurry and indistinguishable (e.g., a generated
handwritten image is similar to both figures ‘6’ and ‘8’, and more
details are shown in Fig. 2) from real data, and the generation
quality is not well. In other words, the two similar distributions
cannot guarantee generated data being similar to the original
data. Considering the significant influence and potential of the
GAN model, it is critical to develop a new approach to address
this challenge.

From Fig. 1, our insight is that the statistical gap shown in sub-
figure (e) on each bin is smaller than that shown in sub-figure (d),
which implicitly indicates that similarity between two datasets
reflected by the statistical results in sub-figure(e) is better than
that in sub-figure (d). This scenario inspires us integrating the
statistical gap result into the training of GAN to improve the



W. Li, W. Ding, R. Sadasivam et al. / Neural Networks 119 (2019) 31–45 33

generated data quality. Specifically, we measure the dissimilarity
of generation and original data by mapping the two datasets into
a histogram to calculate the relative frequentist statistics on each
bin. After that, we combine the histogram-based measurement
score with the original generator loss to update the generator’s
parameters via back-propagation, because the generator’s param-
eters have an influence on the generated data quality. In this way,
we name our new model His-GAN (discussed in Section 4).

Histogram retains more statistical information about a dataset,
while the distribution (e.g., Gaussian distribution) is often charac-
terized with just mean and variance in practice. Although we can-
not always obtain real data distribution or generated data distri-
bution (we have transformed a randomized space into the origi-
nal data space), we can utilize the mean and variance which can
be easily calculated to determine a distribution (Jaynes, 2003).
Note that both the mean and the variance are the overall descrip-
tion of a dataset, it does not concern with detailed characteristics
of a data sample. If generated distribution is similar to original
data distribution, a GAN model would stop the training and out-
put generated data. We can observe this in sub-figure (d) of Fig. 1.
For histogram, each statistical percentile (bin) saves the statistical
frequency of each entry of generated data. Different entries would
hold different histograms (See sub-figure (e) of Fig. 1). If the
histogram-based measurement score is integrated into training of
GAN model to collectively determine stopping criteria, it will be
required that the value of each entry of generated data is similar
to that of original data. In this way, generated data quality can be
improved. A detailed discussion about our approach is presented
in Section 4.

In a histogram, each bin corresponds to a statistic of a sub-
interval after we normalize and map all data into histogram.
We calculate the statistical results (or probability percentile)
on each bin. After that, we employ the traditional f-divergence
metrics (Nowozin, Cseke, & Tomioka, 2016) (e.g., Hellinger dis-
tance Simpson, 1987, Jensen–Shannon (JS) divergence Manning &
Schütze, 1999) and Histogram Intersection Kernel (HIK) method
(Barla, Odone, & Verri, 2003; Pizer et al., 1987) to produce an
objective value to measure dissimilarity between generated data
and the original data in histogram. The smaller the value for
f-divergence (the larger the value for HIK method), the higher
generated data quality. More details are shown in Section 4.

Another improvement we made targets on different charac-
teristics of generated data when we feed multi-group data into
GAN model. A group can be a class or a cluster, whose data holds
similar characteristics. On one hand, feeding multi-group samples
into a GAN model improves the diversity of generated data; on
the other hand, generating a complex distribution due to multiple
groups is very challenging. To explore a new direction for this
issue, we will investigate a group-based approach. This approach
may hurt diversity of generated data, but provides a trade-off
between a stable model and generated data quality. Multi-group
samples may confuse the GAN model, because a category usually
holds a specific distribution while the distribution of multi-group
samples may be a combination of multiple distributions, and it is
hard to be captured.

In summary, our study proposes a novel GAN variant, which
helps GAN improve the generated data quality. Therefore, the
major innovations and contributions of this paper are:

• This paper proposes the His-GAN, which trains the GAN by
combining the histogram-based measurement score with
the original generator loss to update the generator’s param-
eters. In this way, the generated data quality is significantly
improved.

• We utilize group-based approach to balance between gen-
erated data quality and a stable model.

• Through extensive experiments, we demonstrate the effec-
tiveness of our approach.

The rest part of this paper is organized as follows. In Section 2
we discuss related work. We discuss the challenges of evaluating
generated data quality in Section 3 and present our main ideas in
Section 4. In Section 5 we will show our experiment results, and
we conclude our work in Section 6.

2. Related work

The GAN model has shown impressive generative capabilities
since its invention and has been widely used for various impor-
tant machine learning tasks (Li et al., 2018). However, evaluating
generation quality has been a serious challenge. In Salimans
et al. (2016), Salimans et al. used a web interface to ask an-
notators to distinguish which sample is generated and which is
real. However, this approach can-not be generalized since it was
still limited to the image recognition and just used a program to
evaluate whether a picture is acceptable or not. Gerhard et al.
focused on qualitative comparison (such as comparing the visual
quality). However, this technology was subjective and possibly
misleading (Gerhard, Wichmann, & Bethge, 2013). Theis, Oord,
and Bethge (2015) enumerated a variety of criteria (e.g., average
log-likelihood, Parzen window, visual fidelity) to evaluate gen-
erative models. However, the results from those criteria showed
that evaluating generative model is a problem-specific or domain-
specific task. Some good results appearing in one criterion cannot
extrapolate to another, while the computation of some criteria
(e.g., likelihood) is intractable.

Maximum likelihood. The likelihood approach is widely con-
sidered as the default measure for quantifying generated data
(Zhang et al., 2018). However, the calculation of likelihood is
intractable, because the discrete data distribution has differential
entropy of negative infinity, which causes the arbitrary high
likelihood (Theis et al., 2015). In Wu, Burda, Salakhutdinov, and
Grosse (2016), the study adds the optimal standard deviation of
the noise to a generative model when maximizing likelihood is
around 0.1 to each pixel in the generated image. This is a very
high amount of noise, and the researchers do not add the noise
on which they report likelihood numbers when they report the
model’s samples. In other words, the added noise can make the
maximum likelihood approach work while it is incorrect for the
problem (Arjovsky, Chintala, & Bottou, 2017). In addition, the
generated results would be affected by those noises and cannot
represent the true difference between the two distributions.

Maximum Mean Discrepancy (MMD) (Gretton, Borgwardt,
Rasch, Schölkopf, & Smola, 2012). Lopezpaz and Oquab (2016)
used the Maximum Mean Discrepancy to evaluate the quality of
generated image. The equation is defined as follows:

MMD[p, q] = (Ep,q[k(x, x′) − 2k(x, y) + k(y, y′)])
1
2 (1)

In Eq. (1), x, x′ are random variables and independent to each
other and they follow the distribution p. y, y′ are also random
variables and independent to each other and they follow the
distribution q. p and q are two different distributions from two
datasets. The goal of this equation is to find out whether the
two distributions (p and q) are similar or not. The equation
searches a special continuous function f that can maximize the
mean discrepancy on two distributions to evaluate whether the
two datasets are similar or not. The smaller the discrepancy is,
the more similar the two distributions are. However, the MMD
calculations are unstable within the GAN model. Let us take a look
at an example in Table 1.
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Table 1
Using MMD to assess the quality of generated data on MNIST dataset.

Generated data MMD

Id = 1 0.953

Id = 2 0.4595

Id = 3 0.0109

Id = 4 0.3192

From Table 1, we can see that we obtain high quality genera-
tion (Id = 2), but the MMD score is relatively high. The scenario
(Id = 4) in which the quality of generated data is not as good as
the Id = 2, with a low score. In other words, the MMD measure
is unstable.

3. Preliminaries

3.1. Generative adversarial network

In this section, we formally present GAN model as below to
establish the continuity. The GAN model was first proposed by
Goodfellow (Mirza et al., 2014) as a novel generative model to
simultaneously train a generator and a discriminator using the
following novel loss function:

min
G

max
D

V (G,D) = Ex∼pr (x)[logD(x)]

+ Ez∼pz (z)[log(1 − D(G(z)))]
(2)

In Eq. (2), x comes from a distribution pr (x) underlying the
raw dataset and z comes from a pre-defined noise distribution
pz(z) which is usually an easy-to-sample distribution, e.g., Uni-
form distribution or Gaussian distribution. The principal kernel of
Eq. (2) is that the model can use the value of D(G(z)) that feeds the
generator’s outputs into the discriminator to generate training
signals to update the generator’s parameters. In this manner,
the generator is able to fool the discriminator into accepting its
outputs as real data. The generator G is modeled so that it can
transform the noise z into the realistic-like data. In general, the
generator G builds a mapping function from pz(z) to data space
pr (x), and the discriminator would output a single score sitting in
the range [0, 1] to indicate whether the current data are from the
generator or the raw dataset. Generally, a score closer to 0 indi-
cates that the current data are generated by the generator with
higher probability, while a score closer to 1 indicates that the
current data come from the raw dataset with higher probability.
We repeat this training process until both the discriminator and
the generator reach a Nash equilibrium (Daskalakis, Goldberg, &
Papadimitriou, 2009) when pG(z) = pr (x) = 0.5.

The characteristics of Eq. (2) are that maxD V (G,D) repre-
sents the difference between pG and pr when G is fixed, and
minG V (G,D) indicates that the generator G tries to minimize the
difference between the two distributions when D is fixed. Hence,
the optimization problem for the discriminator can be formulated
as follows.

max
D

(
Ex∼pr (x)[logD(x)] + Ez∼pz (z)[log(1 − D(G(z)))]

)
(3)

The discriminator D minimizes the score it assigns to gener-
ated data G(z) by minimizing D(G(z)), and maximizes the score
it assigns to the raw data x by maximizing D(x). The generator G
tries to fool the discriminator D into accepting its outputs as the

real data by maximizing its score D(G(z)), and this is achieved by
optimizing the function (minG(Ez∼pz (z)[log(1 − D(G(z)))])) in the
generator. D and G are trained adversarially by competing with
each other. As to other GAN variants (e.g., Least Square GAN (LS-
GAN) Mao et al., 2017, Wasserstein GAN (WGAN) Arjovsky et al.,
2017, Improved WGAN Gulrajani, Ahmed, Arjovsky, Dumoulin,
& Courville, 2017 and DeLiGAN Gurumurthy, Sarvadevabhatla, &
Babu, 2017), they all adopt the same generating mechanism. From
the data generation process, it is clear that the major challenge
of generator is how to transform a distribution into another
distribution to fool the discriminator into accepting simulation
data as real data. However, close distribution does not always
mean high generation quality (See Fig. 1).

3.2. Challenges of generating simulation data with GAN model

The training process of a GAN model is a black-box essentially.
The generated data produced by GAN could consist of different
characteristics or styles of different categorical data when we feed
multi-group data into a GAN model. There is an example shown
in Fig. 2.

In sub-figure (a), supposing those data belong to group 1
with n features, named feature11, feature12, . . . , feature1n re-
spectively. Another set of data belonging to group 2 also have n
features, named feature21, feature22, . . . , feature2n. These features
are different from each other. The generated data produced by
a GAN model lies at the right side. The GAN model could mix
all features together during training as we feed multi-group
data into the model, so generated data may include different
features. The sub-figure (b) shows a specific example. We input
handwritten figures into a GAN model, and features are styles
and shapes. In sub-figure (b), the red rectangle indicates those
indistinguishable generated images from the real ones. The top
generated handwritten image holds the characteristics of figure
‘8’ and figure ‘9’; as for the generated image below the rectangle,
it holds the characteristics of figure ‘2’ and figure ‘0’. Especially,
if this dataset belongs to the numeric dataset, the same problem
still exists and it is more hard to distinguish generated data.

Conditional GAN (Mehdi Mirza, 2014) tries to distinguish gen-
erated data by producing class label with extra information that
has been fed into both discriminator and generator. It integrates
noise and extra information into a new vector, and puts it into
the GAN model for training. However, often generated data is
not consistent with the corresponding class label. One example
is shown in Fig. 3.

In Fig. 3, each row represents a category from 0 to 9 (top to
bottom). Obviously, generated data are not consistent with the
corresponding class label. Also, the indistinguishable generated
data are still inevitable.
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Fig. 3. Each row represents a category from 0 to 9 (top to bottom).

4. GAN-based modification and statistical similarity evalua-
tion

In this section, we propose our statistical evaluation metric
and the His-GAN model. As discussed in Section 1, the major in-
novation of our approach is to improve the generated data quality
by combining the histogram-based measurement score with the
original generator loss to update the generator’s parameters. To
this end, there are two important issues to be addressed. How
to use histogram to measure the dissimilarity between generated
data and original data, and how to integrate the measurement
score into the GAN training process.

4.1. The histogram-based similarity measure for GAN model

In a GAN model, if D(x) ≈ D(G(z)) ≈ 0.5, the discriminator
would deem that the distribution of original data is similar to
that of generated data. However, similar distribution does not
always mean high generation quality (See Fig. 1). This is because
the distribution is often oversimplified by being represented with
mean and variance when we map the data into the distribution
(e.g., Gaussian distribution) (Jaynes, 2003). Note that both mean
and variance are the overall description of a dataset, it does not
concern with detailed characteristics of a data sample. Missing
or replacing several data points often do not change the mean
and the variance. On the other hand, histogram retains more
information about a dataset. If taking face images as an example,
a specific image can be saved in the form of a numerical array
with an upper-bound and a lower-bound. All entries in this
array determine what an image sample is because each entry
represents a specific pixel (Zhang et al., 2016). Apparently current
GAN models can-not reach low-level granularity details such as
color or shape of generated eyes. It is noticed that such details
(e.g., color of eyes) can be represented by statistical percentile or
frequency information contained in a histogram. If two images
are different, the frequencies or statistical percentiles would be
different. The two statistical frequencies would be equivalent if
the two datasets have same values at each sub-interval. Inspired
by such a special characteristic of histogram, we can help GAN
model produce high generated data quality by integrating the
histogram-based measurement score into training of GAN. In
the following discussion, we would introduce how to map the
generated data and original data into the histogram and measure
the dissimilarity, and demonstrate to integrate the measurement
score into training of GAN.

4.2. How to map the data into histogram

The histogram function is shown as follows.

Phist (i) =
fi
N

(4)

where N indicates size of a dataset and fi indicates observed
frequency of ith value in the dataset. Phist (i) indicates statistical
result for this value. We map both generated data and original
data with Eq. (4) and calculate corresponding statistical percentile
to assess generated data quality.

For image datasets, we can use an array with size of 256 to
save the pixel values, given that an image only contains 256
values (because the range of color in the computer is from 0
to 255). We directly use the array[pixel] + = 1 to count the
corresponding pixel from the top-left entry to the bottom-right
entry. After that, we plot the array in histogram. We can ei-
ther define each pixel as the sub-interval or the range of pixel
(e.g., Alec Radford & Chintala, 2015; Gulrajani et al., 2017) as the
sub-interval.

For numeric datasets, we can use an array with arbitrary size
to capture each number. For example, there is a dataset with two
features ranging [[35, 60], [38, 65]]. Here we can use an array with
size of 2 to save those values, array [0] indicates the range from
30 to 40 and its value is 2, while array [1] indicates the range from
60 to 70 and its value is also 2. Also, we can use an array with
size of 10 to save those values, array[3] indicates the range from
30 to 40 and array[6] indicates the range from 60 to 70. From a
statistical perspective, we do not care where the value is from,
we just count this value in histogram.

In the traditional histogram similarity calculation, the results
of a histogram would be the same when two images just contain
two colors (e.g., half black and half white), even though the areas
of colors in the two images are inverse to each other (e.g., the one
is top-black and bottom-white and another one is top-white and
bottom-black). In this case, histogram fails to assess similarity of
the two images because it is 50% black and white. However, such
a scenario is hard to occur in the GAN model. Those generated
data contain noise at most and cannot be the inverse or other
shape in practice. Equivalently, the generation for the numeric
dataset (we take the same dataset ([[35, 60], [38, 65]]) as the
example) is similar to the image dataset. The generated data
could be [[30.5, 61], [36, 68]] (the similar generated data) or [[40,
45], [50, 55]] (the dissimilar generated data), and cannot be the
inverse (e.g., [[61, 30.5], [68, 36]]), for GAN model specializes in
generating plausible generation.

4.3. How to measure similarity in histogram

Assuming there are three numeric datasets, X = [0.11, 0.12,
0.13, 0.24, 0.25, 0.26, 0.265, 0.27, 0.36, 0.35], Y = [0.14, 0.22,
0.25, 0.26, 0.27, 0.28, 0.29, 0.31, 0.33, 0.35] and Z = [0.14, 0.12,
0.25, 0.26, 0.27, 0.28, 0.29, 0.264, 0.33, 0.39] (Assuming X is the
original data and the others are the simulation data). Since the
difference between the three datasets are very small (They are
in decimals and the range of all numbers lies in (0.1, 0.4)), it is
hard to directly judge which one (Y or Z) is similar to the original
dataset (X). Thus, we map the three datasets into a histogram,
and each sub-interval is probability percentile. Assuming the
number of sub-intervals is 3 (all samples are counted in the 3
sub-intervals and the range of each sub-interval is 0.1), so Q (X)
= [0.3, 0.5, 0.2] (3\10, 5\10, 2\10) and Q (Y ) = [0.1, 0.6, 0.3] and
Q (Z) = [0.2, 0.6, 0.2] respectively. In other words, we transform
calculating similarity between two datasets (X and Y or Z) into
calculating similarity between Q (X) and Q (Y ) or Q (X) and Q (Z).
The corresponding histogram is shown in Fig. 4.
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Fig. 4. An example to demonstrate histogram-based similarity measure. Sub-figure (a) reflects the statistical similarity between both X and Y , while sub-figure (b)
reflects the statistical similarity between X and Z .

Table 2
Using f-divergence community (Hellinger Distance (HD), KL divergence, JS
divergence, Wasserstein distance (WD)) and Histogram Intersection Kernel (HIK)
method to calculate similarity between X and Y or Z . The first four methods
are from SCIPY, and we utilize the OpenCV to calculate HIK results.
ID HD KL JS WD HIK

P(Q (X),Q (Y )) 0.7959 0.2579 0.0622 0.6667 7.0
P(Q (X),Q (Z)) 0.2707 0.0305 0.0073 0.6667 9.0

In Fig. 4, we find that the statistical gap between X and Z
is smaller than X and Y (In other words, dataset Z is closer to
dataset X than Y ). To measure such statistical gap, we need to
develop an objective single score to reflect which dataset (Y or
Z) is more similar to X . Here we use the f-divergence commu-
nity, such as Kullback–Leibler (KL) divergence (DKL(P ∥ Q ) =∑

x∈X P(x)log P(x)
Q (x) ) (Joyce, 2011), Hellinger distance (H(P,Q ) =

1
√
2

√∑k
i=1(

√
pi −

√
qi)2) (Simpson, 1987), Jensen–Shannon (JS)

divergence (JS(P ∥ Q ) = 0.5 × DKL(P ∥
P+Q
2 ) + 0.5 ×

DKL(Q ∥
P+Q
2 )) (Manning & Schütze, 1999) and Wasserstein

distance (WD(P,Q ) =

∑
i
∑

j dijfij∑
i
∑

j fij
) (Dobrushin, 1970), and His-

togram Intersection Kernel (HIK) (Barla et al., 2003) (HIK⋂(a, b) =∑n
i=1 min(ai, bi) where a and b are two histograms with n bins

each, and the mechanism of HIK is the intersection of minimum
statistical quantities (or histogram intersection) on each bin of
two histograms.) to measure similarity. The results are shown in
Table 2.

In Table 2, the HD, KL, JS and Histogram Intersection Kernel re-
flect the scenario where the dataset Z is more similar to dataset X
than Y , while the WD fails to measure such similarity fluctuation
because the two results are same.

Note that it is unfair in Table 2 if we directly compare the two
results (e.g., comparing 0.7959 with 0.2579), because the value
interval is different for different distance metrics. For example,
the maximum value for HD metric is 0.7959 and 0.2579 for KL
metric when they take the same dataset (e.g., dataset Y ). Thus,
we use the normalization method (Normi =

Xi−min_value
max_value−min_value ,

Xi indicates a specific entry) (Wolfensberger, Nirje, Olshansky,
Perske, & Roos, 1972) to normalize these distances and compare
those metrics. The normalization method is a non-dimensional
method that can transform an absolute value into a relative
value. In addition, we assume that the generated data with high
quality follow the same distribution as the original data, so the
minimum value for f-divergence community (HD, KL, JS and WD)
using the normalization method is set to 0, and the maximum
value is assumed as the generated noise (e.g., 0.7959 for the HD

metric). However, Histogram Intersection Kernel is opposite to
the f-divergence (the larger the result, the better similarity), so
the maximum value for Histogram Intersection Kernel using the
normalization method is set to 10. and the minimum value is also
assumed as the generated noise (e.g., 7.0 in this case).

The five metrics’ results after normalizing are 0.3401 (e.g.,
0.2707−0
0.7959−0 , HD), 0.1183 (KL), 0.1174 (JS), 1 (WD) and 0.6667 (e.g.,
9.0−7.0
10.0−7.0 , Histogram Intersection Kernel), respectively. The first
four metrics have the same evaluation standard (the smaller the
result, the better similarity), we conclude that the JS (0.1174) has
a better evaluation than HD (0.3401), KL (0.1183) and WD (1). In
next subsection, we introduce how to integrate the measurement
score into training of GAN.

4.4. His-GAN

Assuming we have obtained measurement score which can
reflect the similarity between generated data and original data,
we then incorporate this score into training process of the GAN
model. Let us refer back to the Eq. (2), the generator fools the dis-
criminator by maximizing its score D(G(z)), and this is achieved
by optimizing the function (minG(Ez∼pz (z)[log(1 − D(G(z)))])) in
the process of training the generator. As a deep learning model,
the values from this function are used to update the generator’s
parameters, and these parameters have an influence on generated
data quality. In this way, we combine the measurement score
with the generator loss, and use this combination to update the
generator’s parameters. The measurement function is shown in
Eq. (5), and the new function of generator within His-GAN is
shown in Eq. (6).

hist(x,G(z)) = P(x) − P(G(z)), s.t., P(x) =
fi
N

(5)

min
G

V (G∗,D) = min
G

(
Ez∼pz (z)[log(1 − D(G(z)))]

)
+ hist(x,G(z))

(6)

where P(·) indicates the histogram function in which fi indicates
observed frequency of ith value in a batch dataset and N indicates
the size of this dataset. z is sampled from an easy-to-sample
distribution and x is from original dataset. From Eq. (5), we can
see that the term hist is a function of x if we transform G(z)
into x during training. Note that many works adopt the similar
idea to modify the GAN model (e.g., using L1 − loss or MSE)
to achieve their goals according to different tasks. We take the
pix2pix (L1 − loss) (Isola, Zhu, Zhou, & Efros, 2017) and context
encoder (MSE) (Pathak, Krähenbühl, Donahue, Darrell, & Efros,
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Fig. 5. The His-GAN model architecture. We calculate histogram-based measurement score after generating the simulation data. Then, we integrate this score into
training of GAN. The red dash-line indicates the integration process. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

2016) as the example, and give the difference between the two
studies and our approach as follows.

For pix2pix study, the extra loss L = λ × Ex,y,z∥y − G(x, z)∥
where x indicates the edge map and y indicates the original map
as well as z indicates a random noise, given that pix2pix study
focuses on image translation (e.g., an edge map is rendered as an
RGB image). In this study, L is an auxiliary factor and it works
with ‘‘U-Net’’ to translate images. For context encoder study, L =

∥M̂⊙ (x−F ((1−M̂⊙x)))∥2 where x indicates ground truth image
and F indicates the context encoder as well as ⊙ is the element-
wise product operation, because context encoder focuses on image
inpainting. The extra loss L is still an auxiliary factor and it works
with encoder–decoder pipeline to inpaint images. For our study,
the extra loss indicates hist . It is a vital factor and is combined
with the generator loss to update a generator’s parameters.

In the early training stage, the generator basically outputs the
‘‘noise’’ instances, so the discriminator has been easily driven into
the optimal status under such a scenario in which the discrimi-
nator can always distinguish that the current data are from the
real dataset rather than the generator (D(x) outputs 1 while the
value of D(G(z)) approaches to 0). In this way, Loss_G = log[1 −

D(G(z))] ≈ 0, it means that the vanishing gradients arise. If the
generator cannot get the meaningful gradients, the parameters
of the generator would not be updated so generated data quality
cannot be guaranteed, given that the network’s parameters have
an influence on generated data quality. Our function can avoid
this case. We state the benefit of Eq. (6) properly in the following
explanation.

• When the discriminator has been driven into the optimal
status, log(1−D(G(z))) still outputs 0. However, hist outputs
a relative large value (we adopt the JS-divergence to calcu-
late histogram measurement score), given that the quality of
generated data is far from ‘‘real’’. In this way, V (G∗,D) > 0,
and the generator can update its parameters with hist .

• When GAN model has been trained successfully, i.e.,
D(x) ≈ D(G(z)) ≈ 0.5, the term log(1 − D(G(z))) im-
plicitly approaches to log(0.5). The value of hist is very
small (we can view it as 0) under such a scenario. This is
because GAN model has generated the realistic-like data,
and histogram-based measurement score approaches to 0.
The smaller the JS-divergence value is, the better similarity

between generated data and the original data is. Eq. (6) has
been reformulated into minG

(
Ez∼pz (z)[log(1 − D(G(z)))]

)
as

the regular GAN model if GAN model reaches to the Nash
Equilibrium. It implicitly indicates the function Eq. (6) is
convergent.

In addition, we present the pseudo-codes of the algorithm in
Algorithm 1 and illustrate the process of integrating the measure-
ment score into training of GAN in Fig. 5. The goal of Algorithm 1
is still pursuing to minimize the generator G while maximizing
the discriminator D, so the discriminator D is unchanged. The
difference from training of regular GAN model is the generator
G. We calculate the histogram-based measurement score with
f-divergence (e.g., JS-divergence) after generating the simulation
data. After that, we incorporate the measurement score into
the original generator loss to update the parameters of gen-
erator with back-propagation strategy. The parameters would
have an influence on generated data quality. We can observe the
performance of the His-GAN in the Section experiments.

4.5. Applying group-based strategy to GAN training process

When we feed multi-group data samples into GAN model,
generated data holds characteristics from different groups. Al-
though there are many GAN variants (e.g., Least Square GAN
(LSGAN) Mao et al., 2017, Wasserstein GAN (WGAN) Arjovsky
et al., 2017, Improved WGAN Gulrajani et al., 2017 and DeLi-
GAN Gurumurthy et al., 2017), their generating mechanism is
similar to original GAN model, and faces the same challenge
of mixed characteristics from different clusters or classes (See
Fig. 6).

In Fig. 6, these four sub-figures show the images generated by
WGAN (Arjovsky et al., 2017), Improved WGAN (Gulrajani et al.,
2017), LSGAN (Mao et al., 2017), DeLiGAN (Gurumurthy et al.,
2017), respectively. In each sub-figure, we use red rectangles to
indicate the generated images which are indistinguishable from
real ones (e.g., the generated image marked by the red rectangle
shown in sub-figure (d) is similar to figures ‘7’ and ‘9’). It is clear
that the model mixes characteristics of multi-group samples.

In general, data of the same cluster or class is closely related to
each other, and they have the same or similar features (e.g., shape
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Fig. 6. These four sub-figures illustrate data generated by WGAN (Arjovsky et al., 2017), Improved WGAN (Gulrajani et al., 2017), LSGAN (Mao et al., 2017),
DeLiGAN (Gurumurthy et al., 2017), respectively. The red rectangle indicates the indistinguishable image from the real one.

Table 3
Using Hellinger distance (HD(Pdata(x), pz (z)), KL divergence (KL(Pdata(x) ∥ pz (z))), JS divergence (0.5 ∗Pdata(x) ∥ pz (z)+0.5 ∗ (Pz (z) ∥

pdata(x))), Wasserstein distance (WD(Pdata(x), pz (z))) and Histogram Intersection Kernel (HIK⋂(Pdata(x), pz (z))) to assess the quality of
generated data on the MNIST. The first row indicates a scenario where the training epoch = 1, and the second row indicates the
training epoch = 10, and the third row indicates the training epoch = 20, and the fourth row indicates the training epoch = 30.
The last row indicates the original images. The right results reflect similarity between the original data and generated data, after
we map them into histogram . With the generation becoming clear, the scores gradually become smaller (HD, JS and WD) or larger
(HIK). Notice that those results belong to absolute distances so we need to normalize them for comparing those metrics, and the
normalization results are shown in Table 4.
Generated image/
Original image

HD KL JS WD HIK

0.6598 inf 0.3766 0.0055 4 214

0.5432 inf 0.2482 0.0041 7 726

0.3456 inf 0.102 0.0019 13 096

0.2763 0.2866 0.0663 0.0011 14 778

Original data

Algorithm 1 His-GAN.

Input:
Raw dataset;
noise z, pz(z);

Output:
Generated data.

Adam optimizer and BCE loss function
for number of iterations do

• Sampling minibatch of m noise samples z1, ..., zm from
Uniform distribution with (-1,1).

• Sampling minibatch of m original samples x1, ...xm from
the real dataset.

• Updating the discriminator’s parameters by ascending its
stochastic gradient.

• ▽θD
1
m

∑m
1 {logD(x(i)) + log(1 − D(G(z(i))))}.

• Sampling minibatch of m noise samples z1, ..., zm.
• Calculating histogram-based measurement score using

Eq. (5).
• Updating the generator’s parameters by descending its

stochastic gradient using Eq. (6).
• ▽θD

1
m

∑m
1 {log(1 − D(G(z(i)))} + hist(x,G(z)).

end for

or style or color). Features are different when data is from differ-
ent clusters or classes. Data within a cluster is of high cohesion
but low coupling in different clusters.

Our idea is to feed data from one group (e.g., a cluster of
samples that are close and similar to each other) each time to
GAN model for easier training. We first group the original data
into several sub-groups. Then we input the sub-groups into GAN
model one by one. Note that we re-initialize hyperparameters of

GAN model after training this GAN model with a sub-group of
data samples, because hyperparameters should be group-specific.
We repeat the training process until all clusters are used. This
process of feeding multi-group data samples (e.g., one group at
one time) can avoid generating indistinguishable samples. See
Fig. 6.

5. Experiments

To validate our approach, three datasets, MNIST, CIFAR-10,
and a real-world numeric dataset (Smoking Cessation dataset),
are studied. MNIST and CIFAR-10 are image datasets, and they
are widely used in machine learning and computer vision. The
Smoking Cessation dataset is a questionnaire dataset collected in
medical domain.

5.1. MNIST dataset

We first produce simulation images of MNIST dataset where
each sample is a gray image with 28*28 size. This dataset has
10 categories, which are ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’,
respectively. Before applying our proposed His-GAN to MNIST,
we should make sure that the histogram-based measurement
score can objectively reflect the dissimilarity between generated
images and original images. Although we describe the advantage
of histogram-based measurement in previous section, it is nec-
essary to further demonstrate the effectiveness of histogram on
assessing the generated data quality in experiment. Here, we keep
the generated images produced by DCGAN after each completion
of training epoch, and use the evaluation metric (HD, KL, JS,
WD and HIK) to calculate the similarity between the generated
images and original images after mapping these images into the
histogram. The generated images and the measurement scores
calculated by histogram-based measurement metric are shown
in Table 3. In Table 3, the first four rows of the left part are
generated images, and the right part of the first four rows shows
the assessing results.
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Fig. 7. Architectural details of GAN model. Learning rate is 0.0002, and weights of our model are set to Normal(0.0, 0.02) and biases are set to (0.0). We use Adam
gradient method (Kingma & Ba, 2014) and Binary Cross Entropy (Kroese, Rubinstein, Cohen, Porotsky, & Taimre, 2013) to update the parameters of generator and
discriminator. We set LeakyRelu (Xu, Wang, Chen, & Li, 2015) as 0.02 and Dropout (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) as 0.5. Activation
function of last layer for generator is Sigmoid (Han & Moraga, 1995) for MNIST and Smoking Cessation datasets, and that is Tanh for CIFAR-10 dataset. In MS dataset,
the input channel at the first layer for discriminator is set to 68, for this dataset consists of 68 features. In all datasets, the batch size has been set to 20.

Table 4
We use the normalization method to transform those absolute distances shown
in Table 3 into the relative distances. Notice that the maximum value for HIK
is 18724 (width ∗ height) and the minimum value is 4214. As for other four
metrics, the maximum value lies in the first row (e.g., 0.6598 for HD) and the
minimum value is 0. We then test those metrics using only one generated image
(the red rectangle marked in Table 3), and the results are shown in Table 5.
HD KL divergence JS divergence WD HIK

0.8233 inf 0.6591 0.7455 0.242
0.5238 inf 0.2708 0.3455 0.6121
0.4188 inf 0.176 0.2 0.728

Table 5
We pick up only one generated image (red rectangle marked in Table 3). After
we map them into histogram , we use the same metrics to calculate similarity
between the generated image and the original image. The results show the
same trend for similarity like the Table 3. Since those results still belong to the
absolute distances so we need to normalize them for comparing those metrics,
and the normalization results are shown in Table 6.
HD KL divergence JS divergence WD HIK

0.9513 inf 0.6409 0.0064 37
0.7392 inf 0.4267 0.0048 160
0.5285 inf 0.2099 0.0027 429
0.4426 inf 0.1465 0.0018 445

Table 6
We use the normalization method to transform those absolute distances shown
in Table 5 into the relative distances. Here the maximum value for HIK is 784.
HD KL divergence JS divergence WD HIK

0.777 inf 0.6658 0.75 0.1647
0.5556 inf 0.3275 0.4219 0.5248
0.4653 inf 0.2286 0.2813 0.5462

Although the first row shows the noise in Table 3, it still
belongs to generated data produced by the generator and it is
necessary to assess its similarity with original data by using a cer-
tain value, for we want to know how similar or dissimilar the two
datasets are. The KL divergence cannot reflect such fluctuation as
it outputs the inf (which means infinite). The Hellinger distance,
JS divergence, Wasserstein distance and Histogram Intersection
Kernel can royally reflect the fluctuation. However, those four
metrics are essentially different.

Since some values in probability percentile are 0 (these images
could lack some pixels), it causes the log(0). Thus, the results
are inf for KL divergence. As to JS divergence, its denominator
is Pdata(x)+Pz (z)

2 , and it can avoid such scenario in which probability
is 0. Thus, JS divergence avoids the log(0).

We continue to test those metrics with only one generated
image (It has been marked by red rectangle in Table 3), and the
results are shown in Table 5. The corresponding statistical results
are shown in Fig. 8 (we adopt the function of plt.hist() with bins =

Table 7
We map generated data shown in Fig. 9 into histogram, and measure their
similarity to original data. The score clearly shows the improvement using our
approach.

HD KL divergence JS divergence HIK

DCGAN 0.0832 0.0169 0.0047 18 338
His-GAN 0.031 0.0064 0.0015 18 465

10 and alpha = 0.2). Fig. 8 shows that probability similarity on
each sub-interval is gradually approaching (from sub-figure (a)
to sub-figure (c)), with the generated images gradually becoming
less blurry (See Table 3).

Fig. 8 shows the statistical results of both generated data and
the original data. With these generated images gradually becom-
ing less blurry row by row in Table 3, the values of Hellinger
distance and JS divergence and Wasserstein distance are becom-
ing smaller (histogram intersection kernel is becoming larger)
(See Tables 3 and 5).

In this case, the histogram-based measurement shows that
it can objectively reflect the similarity between generated data
and original data. We then incorporate the measurement score
into the GAN training process shown in Algorithm 1. The detailed
architecture is shown in the left part of Fig. 7, and the histogram-
based measurement score is calculated by JS-divergence. In the
experiments, we adopt regular DCGAN as the baseline, because
generated data produced by most GAN variants hold the similar
quality (See Fig. 6). The size of training epoch has been set to the
same number (e.g., Epoch = 30), and generated data are shown
in Fig. 9.

In Fig. 9, sub-figure (b) shows images generated by His-GAN,
while images shown in sub-figure (c) are from DCGAN. Sub-
figure (a) reflects losses from DCGAN’s generator and His-GAN’s
generator. Early in the training of the His-GAN model, generated
data are very different from original data, so the His-GAN’s gen-
erator loss is very large. As training continues, generated data
gradually resemble original data (score ≈ 0, Table 3 shows such
a trend from row 1th to row 4th), and the measurement score
also becomes smaller. His-GAN’s generator loss would approach
to DCGAN’s generator loss under such a scenario. The two models
would converge to such a point where D(x) ≈ D(G(z)) ≈ 0.5.
By comparing, we found that the quantity of indistinguishable
generated data from His-GAN is less than DCGAN. In other words,
generated data quality of His-GAN is better than DCGAN. For
validating effectiveness of our approach, we measure similarity
with f-divergence and Histogram Intersection Kernel in histogram
(bins = 10), and histogram-based measurement scores are shown
in Table 7.

From Fig. 9 and Table 7, we can see that the generated data
quality is significantly improved. However, the generated images
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Fig. 8. The sub-figure (a) corresponds to generated data at the first row in Table 3. The sub-figure (b) and sub-figure (c) correspond to generated data at the second
row and the fourth row in the same table. Here we use the plt.hist() function to obtain histogram. With the appearance of generated data becoming clear, the
statistical results on each sub-interval are approaching.

Fig. 9. Sub-figure (a) indicates generator loss for both His-GAN and DCGAN. Sub-figure (b) shows simulation data generated by His-GAN, while sub-figure (c) shows
simulation data generated by DCGAN.

still exist the indistinguishable samples (e.g., row 2, column 1 and
8 in sub-figure (b)). We then apply the group-based strategy to
search for a trade-off between the diversity and the generated
data quality. The generated data are shown in Fig. 10. Apparently,
those generations produced by our idea are better than other
GAN-based models (See Figs. 3 and 6). The generations are incor-
rectly classified in CGAN or simulation images are not readable
(e.g., the generated image with red rectangle in Fig. 6).

5.2. CIFAR-10 dataset

CIFAR-10 dataset is a color image dataset with 3*32*32 size,
it also consists of 10 classes, which are ‘airplane’, ‘automobile’,
‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’, respectively.
Similar to MNIST dataset, we still need to validate the histogram-
based measurement metric on assessing the similarity between
generated data and original data before applying His-GAN to
this case. We adopt same generating method to generate color
simulation images, and the hyperparameters are shown in the
middle part of Fig. 7. We directly map the generated and training
samples into a histogram, and use the same metrics to calculate
similarity. The results are shown in Table 8.

In Table 8, the first row indicates a scenario where training
epoch = 1, and the second row indicates training epoch = 10, and
the third row indicates training epoch = 20, and the fourth row
indicates training epoch = 30. The last row indicates the original
images (‘truck’). The right part reflects measuring results between
original data and generated data. Like Table 3, KL fails to assess
the quality of generated data while HD, JS, WD and HIK reflect
such similarity fluctuation. We then use normalization method
to calculate relative distances, and results are shown in Table 9.

Fig. 10. We adopt the group-based strategy to train GAN model on MNIST
dataset. We adopt a set of samples with same category (e.g., all samples belong
to category 0) as the training data, and each row represents a set of generated
data in which their categories are from 0 to 9 (top to bottom).

Notice that the maximum value in Table 9 for Histogram
Intersection Kernel is 23940 (width * height) and the minimum
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Table 8
Using GAN model to generate simulation data and using Hellinger distance (HD(Pdata(x), pz (z)), KL divergence (KL(Pdata(x) ∥ pz (z))), JS
divergence (0.5 ∗Pdata(x) ∥ pz (z)+0.5 ∗ (Pz (z) ∥ pdata(x))), Wasserstein distance (WD(Pdata(x), pz (z))) and Histogram Intersection Kernel
(HIK⋂(Pdata(x), pz (z))) to assess the quality of generated data on the CIFAR-10 dataset.

Generated image/
Original image

HD KL JS WD HIK

0.5116 inf 0.2182 0.0034 11 114

0.3216 inf 0.0867 0.0018 17 279

0.2988 inf 0.0734 0.0014 18 094

0.1828 inf 0.0288 0.0006 20 640

Original data

Table 9
We use the normalization method to transform those absolute distances shown
in Table 8 into the relative distances.
HD KL divergence JS divergence WD HIK

0.6286 inf 0.3973 0.5294 0.4807
0.5841 inf 0.3364 0.4118 0.5442
0.3573 inf 0.132 0.1765 0.7427

Table 10
We pick up only one generated image (red rectangle marked in Table 8). After
we map them into histogram, we use the same metrics to calculate similarity
between the generated image and the original image. Results show the same
trend for similarity like Table 8. Same as Table 9, we use normalization method
to calculate relative distances for comparing, and results are shown in Table 11.
HD KL divergence JS divergence WD HIK

0.7156 inf 0.3551 0.0023 261
0.4064 inf 0.2446 0.0008 456
0.4041 inf 0.1731 0.0008 517
0.3986 inf 0.1395 0.0007 607

Table 11
We normalize absolute distances shown in Table 10 into relative distances. Here
the maximum value for HIK is 1024.
HD KL divergence JS divergence WD HIK

0.5679 inf 0.6888 0.3478 0.2556
0.5647 inf 0.4875 0.3478 0.3355
0.557 inf 0.3928 0.3043 0.4535

value is 11114. As for other four metrics, the maximum value lies
in the first row (e.g., 0.5116 for HD) and the minimum value is
0. We then test those metrics using only one generated image
(the red rectangle marked in Table 8), and results are shown in
Table 10. In addition, relative distances are shown in Table 11.

From the two sets of results, we can see that KL diver-
gence fails to calculate similarity between generated data and
original data, and it outputs inf in histogram, while Hellinger
distance, JS divergence, Wasserstein distance and Histogram In-
tersection Kernel methods can royally reflect such similarity. In
f-divergence community, we observe that JS divergence performs
better than other three metrics (Hellinger, JS and Wasserstein)
when we transform absolute distances (Tables 3, 5, 8 and 10)
into relative distances (Tables 4, 6, 9 and 11), for JS divergence
holds the minimum score. For Histogram Intersection Kernel, it
also displays same similarity fluctuation (the score is becoming
larger, with generated images becoming clearer). Thus, in image
dataset, JS divergence and Histogram Intersection Kernel might be
a good choice when normalizing absolute distances into relative
distances, after mapping generated data and original data into
histogram.

Table 12
We map generated data shown in Fig. 11 into histogram, and measure their
similarity with original data. The score shows that our approach is effective.

HD KL divergence JS divergence HIK

DCGAN 0.1148 0.0516 0.01299 21 046
His-GAN 0.065 0.0167 0.0042 22 146

In the color image case, the histogram-based measurement
also shows the effectiveness of assessing the similarity between
generated data and original data. We then integrate histogram-
based measurement score into training process of GAN model,
which is shown in Algorithm 1 (Epoch = 30), to improve the
generated data quality. We adopt the same architecture as Fig. 7,
and the score is still from JS-divergence, given that JS-divergence
outperforms other metrics (See Tables 9 and 11). We continue to
compare His-GAN with regular DCGAN, and generated data are
shown in Fig. 11. In Fig. 11, sub-figure (a) shows loss values of two
generators from His-GAN and DCGAN, and both sub-figure (b) and
sub-figure (c) display generated data produced by His-GAN and
DCGAN, respectively. Trend of generator loss in CIFAR10 dataset
is similar to MNIST. Early in training, His-GAN’s generator loss is
larger than DCGAN’s generator loss. The difference between two
loss curves is small in this case, because measurement score is
very small (See first row of Table 8) but generator loss is relatively
large. When training goes on, generated data gradually resemble
original data, and measurement score becomes smaller (Table 8
shows such a scenario from row 1th to row 4th). From both sub-
figure (b) and sub-figure (c), we can see that the quality of gen-
erated data produced by His-GAN is better than DCGAN. We also
measure histogram similarity (bins = 10) with f-divergence and
Histogram Intersection Kernel, and results are shown in Table 12.
Next, we would apply our approach to the numeric dataset.

5.3. Smoking cessation dataset

The Smoking Cessation dataset consists of smokers
who were invited into the Share2Quit program (Rebecca Kinney,
Sowmya Rao, Sadasivam, Erik Volz, & Thomas Houston, 2013). In
this program, smokers were encouraged and incentivized to par-
ticipate in an online peer recruitment study to try to invite
more smokers to participate in an online tobacco cessation in-
tervention (Sadasivam et al., 2016). The goal of this project is to
invite more smokers to participate in our program while spending
less cost. So, the more smokers are recruited with less cost, the
more excellent the recruiter. In this program, each user was
given 30 days to recruit family and friends smokers. A successful
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Fig. 11. Sub-figure (a) indicates the generator loss for both His-GAN and DCGAN. Sub-figure (b) indicates the simulation data generated by the His-GAN, while
sub-figure (c) indicates the simulation data generated by the DCGAN.

Table 13
Recruitment counts by the number of participants who achieved these counts.
Recruit counts Participants

0 1382
1 22
2 9
3 28
4 20
5 16
6 32
7 128
8 5

18 1

recruitment was defined as a case when a peer recruited smoker
was registered on the online tobacco intervention. Further details
of this study have been published in Sadasivam, Volz, Kinney, Rao,
and Houston (2013).

The program is to specifically target these users who can
recruit many additional members to participate in our program,
given limited incentives. If such members can be identified, we
can use their recruitment strategies to save the limited financial
resources and to maximize the program’s reach for these mem-
bers, without wasting funds on ineffective members. Table 13
describes the distribution of members recruited by recruiters.

The dataset consists of 1643 users with 68 features, in which
261 are active recruiters and 1382 of which did not recruit other
users. This dataset has no explicit categories because it is a ques-
tionnaire investigation. We adopt the Min–Max normalization
method to normalize all samples before applying GAN model to
this dataset, and the hyperparameters are shown in the right part
of Fig. 7.

We randomly run our model 3 times, with three gradient
methods (Adam Kingma & Ba, 2014, Stochastic Gradient Descent
(SGD) Saad, 1998 and Nesterov Nesterov et al., 2007). Each run
produces one generated dataset with the same size (1640). The
statistical results are shown in Fig. 12.

Although the Smoking Cessation dataset holds 68 features,
all values lie in the interval ([0, 1]) after normalization. Since
we set the number of sub-interval as 10, thus, we use an array
with size of 10 to save those values. The array[0] takes up the
values ∈ [0, 0.1), and so on. We count each entry and plot the
array using histogram, which is shown in Fig. 12. In Fig. 12, the

Table 14
The results of generated data quality assessment by using Hellinger distance,
KL divergence, JS divergence, Wasserstein distance and Histogram Intersection
Kernel.
ID HD KL divergence JS divergence WD HIK

(a) 0.2817 0.2839 0.0746 0.0481 79 837
(b) 0.1989 0.1811 0.0381 0.0343 90 100
(c) 0.1807 0.1278 0.0314 0.0214 95 388

Table 15
We use the normalization method to transform the absolute distances shown
in Table 14 into relative distances. Here the maximum value for HIK is 111520
(1640 ∗ 68).
HD KL divergence JS divergence WD HIK

0.7061 0.6379 0.5107 0.7131 0.3239
0.6415 0.4502 0.4209 0.4449 0.4908

blue histogram indicates the statistical count of original data at
each sub-interval, while the orange histogram indicates that of
generated data. Intuitively, those generated data indicated by the
sub-figure (c) is the best, because the statistical results of original
data are similar to that of generated data at each sub-interval. We
then measure the similarity between generated data and original
data reflected by Fig. 12 using Hellinger distance, KL divergence
(KL(Pdata(x) ∥ pz(z))), JS divergence (0.5 ∗ Pdata(x) ∥ pz(z) + 0.5 ∗

(Pz(z) ∥ pdata(x))), Wasserstein distance (WD(Pdata(x), pz(z))) and
Histogram Intersection Kernel (HIK⋂(Pdata(x), pz(z))). The results
are shown in Table 14.

In Smoking Cessation dataset, each sub-interval does not equal
to 0, which means that each entry within probability percentile
for both original data and generated data do not equal to 0. Thus,
the scenario of log(0) does not exist. The KL divergence avoids the
value of inf . Since those results belong to absolute distances, we
continue to use the normalization to transform the results shown
in Table 14 into relative distances, and the results are shown in
Table 15.

The results in Table 15 show the effectiveness of histogram-
based measurement in numerical dataset. In other words, his-
togram can measure similarity between original data and
simulation data as long as we map the two datasets into his-
togram, and no matter what generated data are and no mat-
ter how the quality of generation is. We continue to integrate
histogram-based measurement score into training process of GAN
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Fig. 12. The statistical results of generated data on smoking cessation dataset. There are three generated datasets, which are generated by regular GAN model with
Adam (Kingma & Ba, 2014), SGD (Saad, 1998) and Nesterov (Nesterov et al., 2007) respectively. Here we set the number of sub-interval as 10, and we use an array
with size of 10 to save the values. Each entry within the array indicates a sub-interval. We map all values into the interval and count each entry in terms of values.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 16
We map generated data shown in Fig. 13 and sub-figure (c) of Fig. 12 into
histogram, and measure their similarity with original data. The score shows that
our approach is effective.

HD KL divergence JS divergence HIK

GAN 0.1807 0.1278 0.0314 95 388
His-GAN 0.1802 0.1269 0.03015 96 629

model shown in Algorithm 1(Epoch = 60). We adopt the same
architecture as the right part of Fig. 7, and we still adopt JS-
divergence to calculate the measurement score. The generated
data are shown in Fig. 13. In Fig. 13, sub-figure (a) shows loss
values of two generators from His-GAN and regular GAN while
sub-figure (b) shows the histograms of generated data from His-
GAN and original data samples, respectively. Trend of generator
loss in Smoking Cessation dataset is similar to other two datasets.
His-GAN’s generator loss is larger than GAN’s generator loss in
early training. When training goes on, generated data gradually
resemble original data, and the measurement score becomes
smaller. In this way, the His-GAN’s generator loss would approach
to GAN’s generator loss. By comparing, the generated data quality
produced by His-GAN (sub-figure (b)) is better than traditional
GAN model (sub-figure (c) of Fig. 12). We also measure his-
togram similarity (bins = 10) with f-divergence and Histogram
Intersection Kernel (HIK), and results are shown in Table 16.

5.4. Discussion

Results (from Tables 3 to 15) show the effectiveness of his-
togram on measuring the similarity between generated data and
original data. In this way, we can help GAN model generate high
generated data quality by integrating the histogram-based mea-
surement score into training of GAN model. During calculating
the similarity, although the five metrics (HD, KL divergence, JS
divergence, WD and HIK) show similar trend on assessing gener-
ated data quality, each individual holds its own characteristics in
histogram.

Although KL divergence produces results in Smoking Cessation
dataset, KL divergence is not, theoretically, used for calculat-
ing similar distance measure (because of asymmetry). Assuming
original data distribution follows P(X), and two generated data
distribution are Q (Z1) and Q (Z2) respectively. The purpose of KL
divergence is to measure information loss when distribution Q (Zi)
(i = 1, 2) is used to approximate original data distribution P(X).
In the sub-figure (c) of Fig. 12, statistical distribution of generated
data is similar to original data, which means that both of them
have similar amount of information when we apply KL divergence
to calculate measurement. The smaller the KL divergence is, the
smaller the information loss becomes. The two datasets have
the same information, which means that there is no information

loss and KL divergence is 0. Thus, KL divergence is used for
measuring similarity between two distributions via information
loss. As to image dataset (e.g., Tables 3, 8), an image always
contains rich information while GAN model cannot control what
kind of simulation data would be generated (e.g., ‘King’ − ‘Man’ +
‘Woman’ = ‘Queen’ (Alec Radford & Chintala, 2015)). Thus, gen-
erated image could contain more or less information comparing
with original image. If information contained by the generated
image is not enough, Pz(zi) would be 0 (which leads to log(0)), and
KL divergence fails to determine which generated data is similar
to original data.

JS divergence is based on KL divergence, and the difference is
the denominator where the term is summation of both Pdata(x)
and PG(x). JS is symmetric and it is always a finite value, while its
disadvantage is that JS is useless when overlapping area between
distribution of original data and that of generated data has a
neglected area or even none. However, it can avoid such scenario
when we map the two datasets into histogram space instead of
distribution space. It can calculate similarity even though genera-
tions are noisy. Also, after normalization, JS divergence has better
evaluation than other three metrics of f-divergence no matter
what type (image or numeric dataset) a dataset is.

Wasserstein distance can still reflect dissimilarity of two dis-
tributions even though those distributions have no overlapping
area. When we map generated data and original data into his-
togram, Wasserstein distance displays similarity trend as JS di-
vergence (See Tables 4, 6, 9, 11 and 15). In comparison with JS di-
vergence, we recommend JS divergence in histogram space, given
that distance of JS divergence is smaller than that of Wasserstein
distance in most cases.

As to Hellinger distance, it can directly quantify similarity
between two datasets via probability distribution (or probability
percentile value), and it basically focuses on probability of each
sub-interval. Although Hellinger distance reflects similarity trend
(the clearer generated data, the smaller the score), the scores are
still relatively larger than other three metrics (KL, JS and Wasser-
stein distance) after normalization. Thus, Hellinger distance may
not be a good choice in histogram space.

Histogram Intersection Kernel has been effective for image
classification (Barla et al., 2003), our study applies histogram to
evaluate generated data quality. In fact, no matter how compli-
cated generated data are and no matter what quality of generated
data is, it always holds a certain value. Histogram is an effective
representation for this value, and it measures degree of similarity
between two datasets by counting probability percentile value in
each bin. Moreover, GAN model specializes in generating real-
istic simulation data, and histogram of generated data becomes
more similar to that of original data as training continues (See
Figs. 8 and 12). Thus, histogram intersection kernel is also a good
choice.
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Fig. 13. Sub-figure (a) indicates the generator loss for both His-GAN and regular GAN. Sub-figure (b) indicates the histograms of original data and simulation data
generated by the His-GAN.

His-GAN model is based on objective measurement score. In
His-GAN model, we expand this score into original generator loss,
given that loss would influence parameters updating of generator.
If discriminator reaches into the optimal status (D(x) = 1 and
D(G(z)) = 0), generator loss would be 0. However, the score can
help update the parameters of generator. If GAN model has been
trained successfully, His-GAN would converge to a point where
D(x) ≈ D(G(z)) ≈ 0.5, because generator has produced realistic
data and measurement score is very small. Both Figs. 9 and 11
have shown such a trend.

6. Conclusion

In this paper, we explore to improve the quality of gener-
ated data produced by GAN model. Specifically, we map the
generated data and original data into a single histogram, and
use two objective evaluation strategies, f-divergence community
and Histogram Intersection Kernel, to calculate relative frequency
statistics on each sub-interval to obtain the similarity between
generated data and original data. After that, we propose His-GAN,
which is to incorporate histogram-based measurement score into
training of GAN model to update generator’s parameters with
back-propagation. Also, we adopt group-based method to provide
a trade-off between a stable model and generated data quality.
We conducted extensive experiments with MNIST and CIFAR-10
datasets, and a real-world smoking cessation dataset, to validate
our idea. The results show that our approach is effective.
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