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Abstract

Physical activity consists complex behavior, typically structured in bouts which can consist of one continuous movement (e.g.
exercise) or many sporadic movements (e.g. household chores). Each bout can be represented as a block of feature vectors
corresponding to the same activity type. This paper introduces a general distance metric technique to use this block representation
to first predict activity type, and then uses the predicted activity to estimate energy expenditure within a novel framework. This distance
metric, dubbed Bipart, learns block-level information from both training and test sets, combining both to form a projection space
which materializes block-level constraints. Thus, Bipart provides a space which can improve the bout classification performance of
all classifiers. We also propose an energy expenditure estimation framework which leverages activity classification in order to improve
estimates. Comprehensive experiments on waist-mounted accelerometer data, comparing Bipart against many similar methods as well
as other classifiers, demonstrate the superior activity recognition of Bipart, especially in low-information experimental settings.

Index Terms

Accelerometers, semisupervised learning, distance learning.

1 INTRODUCTION

In time series classification tasks, samples adjacent in
time often have block structure, in which adjacent sam-
ples correspond to the same class. Given the potential
benefit of knowing same-class samples, it would be
folly not to use this information. This paper proposes
a method to learn this block information from both
training and test sets, and shows that such information
improves classification performance empirically.

Our method is tested on waist-mounted accelerometer
data, with the aim of determining activity type. In this
dataset, each participant performed activities in blocks.
The feature vectors extracted from each minute spent
in a single block correspond to a single activity label
[18], [21]. Both training and test data contain information
about which feature vectors belong to which blocks.
Though this study only uses waist data, analysis meth-
ods could be applied to data sets collected from other
body locations in a similar manner [9].

To use this block structure, a classifier may label
each vector individually, and vote on one class label
within the block structure. However, this only takes into
account block structure during classification, not during
the learning phase. The proposed Bipart distance metric
instead learns from the class labels, when given, and
the block structure. This would hypothetically utilize
information not otherwise used, and thus improve clas-
sification performance.

Ideally, feature vectors belonging to the same block
should be well-clustered in feature space. The proposed
distance metric method makes this clustering more ap-
parent by creating a projection matrix which moves

same-block instances closer together. The method, which
is dubbed Bipart, learns block structure from both the
training and the test sets, and then combines the two
parts to form a space which clusters same-class and
same-block instances together. The samples embedded
in this resulting Bipart space contains the same-block in-
formation, thus allowing any classifier to take advantage
of this information by using the embedded samples.

Fig. 1 shows sample data projected onto 2-dimensional
space; first in its original form, then with one Bipart
projection (learned from the training set), and then
with both Bipart matrices combined. Clustering between
items in the same class improves as Bipart projections
are applied to the dataset. This makes classification on
the Bipart space easier compared to the original feature
space, as any classifier operating in Bipart space will
implicitly consider block-level information.

In this study, accelerometer data is classified into ac-
tivities in order to effectively predict energy expenditure
(measured as metabolic equivalents, or METs). Current
models for translating accelerometer data (e.g. counts;
“area under the curve” aggregated over a specific time
interval, such as 1 sec) to a physical activity outcome (e.g.
energy expenditure, time spent in moderate activity)
mainly use single or multiple regression models, which
don’t utilize the full capability of the data collected [5],
[13]. To date, most accelerometer algorithms focus on
energy expenditure without having a context for the
activity taking place, which limits the accuracy of these
models.

This work proposes that by first predicting the activity
type, one should be able to better estimate energy ex-
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Fig. 1. Visualizations of real data. Top row shows training data, bottom row shows test data. Subfigures (a) and (d)
shows the 2-dimensional PCA projection of the data. (b) and (e) shows the effect of projecting the data onto one
distance metric (learned from the training set). (c) and (f) show the data projected onto Bipart space, combining the
effects of both the training and test distance metric. The different activities begin to separate under one distance
metric, and separates even further under Bipart space. Pink circles show problem areas, which disappear with more
Bipart information. Other regions surrounded by dotted lines show the improved separation of data.

penditure, as this provides more information than count
values. The proposed model, shown in Fig. 2, first uses
classification to determine the activity of accelerometer
bouts, then uses the activity class to select an appropriate
regression model. One regression model is trained for
each class; thus the classification piece is crucial for
obtaining the correct energy expenditure. Using ma-
chine learning in the proposed model allows it to be
more flexible and robust than the specific accelerometer,
single-regression models which have predominated in
the physical activity measurement field.

In summary, the contributions of this paper are as
follows:

1) A framework which uses activity classification and
multiple regression models to first predict activity
type and then predicts energy expenditure (in the
form of metabolic equivalents, or METs) using
accelerometer data.

2) Formulation of the many-to-one classification prob-
lem, in which some data points are known to share
the same class, and which generalizes to many
other problems.

3) The Bipart method, a distance metric learning
method which utilizes block structure in both the
training and test sets, in addition to labeled training
set data.

4) Extensive experiments which demonstrate the use
of Bipart compared to other classifiers for the given
problem.

2 RELATED WORK

The case study described in this paper relates three
disparate fields of study: activity prediction and estimat-
ing energy expenditure using accelerometer data, multi-
instance single label classification problems, and distance
metric learning.

2.1 Energy Expenditure Estimation and Activity Pre-
diction

The primary goal of this study is to use Bipart to classify
activities or groups of activities using accelerometer data;
the secondary goal is to develop methods to estimate
energy expenditure from activities and activity groups.

A linear relationship between accelerometer counts
and energy expenditure has been shown during loco-
motion [8]. Since this work, linear regression methods
(which are specific to the activities developed on, and ac-
celerometer model), have been the primary way to con-
vert accelerometer data to a physical activity outcome.
Recently, there has been a movement away from single
regression models on limited activities [5], [13]. For
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Fig. 2. Overview of energy expenditure (MET) prediction
framework. Each bout of activity is formed into several
feature vectors. One Bipart projection matrix is learned
from the training set and one from the test set. The data
samples are projected into the combination of the two.
An activity is determined through classification, and this
activity is used to select a regression model with which to
predict energy expenditure.

example, Crouter and colleagues have developed a two-
regression model that differentiates between walking
and running activities and intermittent lifestyle activities
based on the variability in the accelerometer counts [3],
[4]. Compared to other models available, the 2-regression
model reduces both the mean group error and individual
error for estimating energy expenditure and time spent
in intensity categories (e.g. moderate activity) [18], [22].

With advancements in technology and reduced cost
of the devices, rapid advancements are taking place in
how accelerometer data is used for physical activity
assessment. Activity classification has begun to gain

momentum as a feasible way to get activity type and
then estimate energy expenditure, especially with ma-
chine learning techniques. Among these, feedforward
backpropagation neural networks are the most popular
and tend to be very successful [7], [18], [22]. Naive
Bayes and other classifiers have also been applied to the
problem of task classification [12], [20].

2.2 Multiple Instance Single Label Problem

The Bipart activity classification method uses block
structure information from both the training and test
sets. In particular, it applies to datasets in which data
instances are grouped, and within these groups, the data
instances are known to share the same class label. In
addition to class labels, Bipart learns about this group
membership information from both the training and test
set data in order to transform the original feature space.

This block structure is superficially similar to the
structure delineated in the multiple instance single la-
bel problem (MISL) literature. MISL classification also
generalizes normal classification by assigning labels to
bags of feature vectors, rather than to feature vectors
themselves. However, there are a few key differences:

1) In the original formulation of MISL, only binary
classification is allowed [6].

2) MISL requires that any instance in a “bag” found
to be positive makes the entire bag positive.

Thus, many approaches derived for MISL do not
apply to our many-to-one classification problem [30].
One exception is citation kNN (CkNN), a lazy learning
method which extends the kNN method for multiple-
instance classification [23].

2.3 Distance Metric Learning

Bipart incorporates block-level information by material-
izing block-level relationships as closer distances in a
projection matrix. The decision to use distance metric
learning allows for other classifiers to use the block level
information, thereby allowing for more flexibility.

Distance metric learning approaches transform data
into a representation which reflects relationships be-
tween data points. This typically means moving mem-
bers of the same class (similar) together, and separating
samples of different classes (dissimilar). Many exist-
ing approaches generalize Mahalanobis distance metrics
[10], [19], [24], [26], [27]. It is worth pointing out that all
the generalized Mahalanobis distances are equivalent to
Euclidean distance under a projected space [17].

Xing’s algorithm is typical of many global distance
metric methods; it uses convex optimization to satisfy
both similarity and dissimilarity constraints simultane-
ously [26]. These constraints are built globally over the
entire dataset. Some methods, such as large margin near-
est neighbor (LMNN) [24] and local Fisher discriminant
analysis (LFDA) [19], utilize only neighborhood con-
straints, rather than all constraints in the dataset, to learn
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the distance. It has been shown that global constraint
methods have difficulty with multimodal distributions,
which local constraint methods do not suffer from [15].

Like LMNN and LFDA, Bipart uses local constraints
to learn its distance metric. We decided on the local ap-
proach, which has been shown to have superior discrimi-
nation and more robustness to multimodal distributions.

Bipart uses a distance metric constructed from the
training set and modified by the bag (not class) in-
formation in the test set. This differs from the above
approaches, which only obtain discriminative informa-
tion from the training set. The closest to Bipart are
the semi-supervised approaches, e.g, semi-supervised
discriminant analysis (SDA) [1], which considers both
labeled and unlabeled samples. However, the dataset in
this paper includes bag-level information, which cannot
be utilized by SDA and related methods. Bipart takes
advantage of this information to similarity and dissimi-
larity constraints, and thus is novel in this regard.

3 OVERVIEW

The framework used in this paper first categorizes a
group of accelerometer signals into an activity, uses
the activity to select a regression model, then applies
the regression on the original data to estimate energy
expenditure.

Specifically, training the framework consists of two
steps:

1) Using activities as class labels, and using a bout
of activity as a bag to be classified, learn a Bipart
matrix with the appropriate constraints.

2) Using class labels to divide the dataset, train one
regression model for each activity.

After training, the framework is ready to be applied
to test data. It processes such data as follows:

1) Using bag information in the test set, learn a second
Bipart matrix.

2) Combine the two Bipart matrices to form a unified
distance matrix, and project each data-point into
the space defined by the matrix.

3) Classify the projected data-point using kNN.
4) Use the predicted activity to select the regres-

sion model for that activity, and use the model
to estimate energy expenditure from the original
accelerometer data.

This block structure differentiates the classifica-
tion problem in this paper with typical classifica-
tion. In the latter, one example is associated with
one label. That is, given a data set (X, Y ) =
{(x1, y1), · · · , (xi, yi), · · · , (xn, yn)}, where xi ∈ R

d, and
yi is the label of xi, the goal is to generate a model to
classify unknown examples.

For this many-to-one classification problem, instead
of classifying unknown examples, the goal is to clas-
sify the unknown block, which is defined as Bi =
{xBi

1 , · · · ,xBi

ki
}, where ki is the number of examples in

block Bi. The corresponding label yBi of Bi is defined

X Dataset of n samples with d dimensions

xi Data sample i

Y Labels for each element in X

yi Label for data sample i

Bi i-th block of samples, {xBi

1
, · · · ,xBi

ki
}

yBi Label for block i

ki Number of elements in block Bi

dA Distance metric defined by matrix A

A The unified objective distance metric

W1 Distance metric learned from training

W2 Distance metric learned from testing

Bd
i Block nearest Bi with different class label

Bs
i Block nearest Bi with same class class label

x
B

d

i
q qth sample from block Bd

i

x
B

s

i
q qth sample from block Bs

i

β Balancing parameter for training and test metrics

Si Selection matrix

n1 number of samples in the test set

TABLE 1
Notation used.

as yBi = yBi

1 =, · · · ,= yBi

ki
. All vectors in the same block

have the same label.

4 THE B IPART METHOD

The Bipart metric is forged from two distance metrics:
one learned from the labels and block structure of the
training set, and the other is learned just from the block
structure of the test set. The two are combined into a
single metric, which is used to project the data onto for
classification.

4.1 Distance Metric Learning

Between any two samples of time series data, xi and
xj , is the distance dA(xi,xj), defined by the metric dA.
Many distance metric learning methods generalize the
Mahalanobis distance, which are of the form:

dA(xi,xj) =
√

(xi − xj)TA(xi − xj), (1)

where A is positive semi-definite. Note that when A is
the identity matrix, this simplifies to Euclidean distance.
Technically, this allows pseudometrics, i.e. dA(xi,xj) = 0
does not imply xi = xj . Using the Cholesky decompo-
sition, A can be replaced with WTW in Equation (1),
giving:

dA(xi,xj) =
√

(xi − xj)TWWT (xi − xj)

=
∥
∥WT (xi − xj)

∥
∥ . (2)

Approaches differ in how to learn A in Equation (1)
[24], [26], [27], but all ensure that similar examples have
a small distance under the learned metric.
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Our proposed Bipart distance metric is similar to the
second form (Equation 2). It uses two distance metrics
by replacing W with W1W2:

dA(xi,xj) =
∥
∥WT

2 W
T
1 (xi − xj)

∥
∥ , (3)

where W1 and W2 correspond to the distance metrics
learned from test and training data respectively.

Equation (3) is equivalent to projecting all samples
onto the space defined by projection matrix W1, then
to W2. The projection matrix W2 defines the space in
which all the data ends up, and so should be learned
from more reliable data. Thus, W2 is learned from the
training set, as it includes activity label information, and
W1 is learned from the test set.

4.2 Bipart Distance Metric Objective

Learning the projection matrices W1 and W2 in Equa-
tion (3) requires finding a metric space that keeps all
the examples in the same classes and blocks close, and
those from different classes and blocks separated. The
local patch alignment framework [28] and similarity and
dissimilarity constraints [26] formulates two objectives:
first, to minimize the distance between any two samples
in the same labeled blocks, and second, to maximize
the distance between any two samples in two different
labeled blocks.

Previous studies [24], [26], [27] have shown that build-
ing constraints from only neighborhood information is
superior to the global constraints approach in dealing
with multi-modal distributions. Taking this into account,
Bipart forms its objectives using local constraints. For
any example xi in block Bs

i , similarity constraints are
formed from other elements in the same block. Dissim-
ilarity constraints are formed only from elements in the
nearest (according to the minimal Hausdorff distance)
block in a different class, denoted as Bd

i .
The training procedure for the Bipart distance metrics

contains two phases: first, learn W1 from the test set, and
second, learn W2 from the training set. As there is no
mathematical difference between learning from W1 and
W2, we use the test data distance metric W1 to illustrate
the training procedure.

Let xi be a sample, the ksi vectors in the nearest block

with the same class x
Bs

i

p ∈ Bs
i , and kdi vectors in the

nearest different-class block x
Bd

i

q ∈ Bd
i . The following

objective function minimizes the similarity constraints:

argmin
A1

n1∑

i=1

ks

i∑

p=1

d2A1
(xi,x

Bs

i

p ), (4)

The following objective function maximizes the dissim-
ilarity constraints:

argmax
A1

n1∑

i=1

kd

i∑

q=1

d2A1
(xi,x

Bd

i

q ) (5)

where A1 = WT
1 W1 is the distance metric learned from

the test set.
Equations (4) and (5) can be combined into one objec-

tive function, utilizing the scaling parameter β:

argmin
A1

n1∑

i=1





ks

i∑

p=1

d2A1
(xi,x

Bs

i

p )− β

kd

i∑

q=1

d2A1
(xi,x

Bd

i

q )



 (6)

The distance metric A1, as well as W1, can be solved
from the objective function in Equation (6). Similarly,
W2 can be solved using the training set under the
distance metric A1. With W1 and W2, we can obtain
the final distance metric A using Equation (3). Under this
distance metric, the abundant discriminative information
of training set as well as the test set is well preserved.

4.3 Bipart Distance Metric Solution

In this section, the closed form solution for W1 in
Equation (6) is derived.

Let the test sample be xi, its same-class blocks be Bs
i ,

and nearest different-class block Bd
i be combined into a

matrix Xi, where:

Xi = [xi,B
s
i ,B

d
i ] (7)

= [xi,x
Bs

i

1 , · · · ,x
Bs

i

ks

i

,x
Bd

i

1 , · · · ,x
Bd

i

kd

i

].

Let the coefficients wi be defined as follors:

wi =






ks

i

︷ ︸︸ ︷

1, · · · , 1

kd

i

︷ ︸︸ ︷

−β, · · · ,−β




 . (8)

Using Equations (7) and (8), Equation (6) can be
reduced to:

argmin
A1

n1∑

i=1





ks

i
+kd

i∑

j=1

d2A1
(Xi{1},Xi{j + 1}) (wi)j





=argmin
W1

n1∑

i=1





ks

i
+kd

i∑

j=1

‖W1 (Xi{1} −Xi{j + 1}) ‖22(wi)j





=argmin
W1

n1∑

i=1

tr
(
WT

1 XiLiX
T
i W1

)
, (9)

where Xi{j} is the jth column of matrix Xi, (wi)j is

the jth element of (wi), and Li ∈ R
(ks

i
+kd

i
+1)×(ks

i
+kd

i
+1) is

given by

Li =

[
∑ks

i
+kd

i

j=1 (wi)j −wT
i

−wi diag(wi)

]

. (10)

Since Xi is selected from the entire test data set X, Xi

can be written as:

Xi = XSi, (11)

where Si ∈ R
n1×(ks

i
+kd

i
+1) is a selection matrix, with

elements defined as follows:
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(Si)pq =

{

1 if p = Di{q}

0 else
, (12)

where Di = [i, ı
Bs

i

1 , · · · , i
Bs

i

ks

i

, i
Bd

i

1 , · · · , i
Bd

i

kd

i

] is the index set

for Xi. With all this, Equation (9) can be rewritten as:

argmin
W1

n1∑

i=1

tr
(
WT

1 XiLiX
T
i W1

)

=argmin
A1

tr

(

WT
1 X

n1∑

i=1

(SiLiSi)X
TW1

)

=argmin
A1

tr
(
WT

1 XLXTW1

)
, (13)

where L =
∑n1

i=1 SiLiS
T
i ∈ R

n1×n1 is the alignment
matrix [29] [28].

To make the projection matrix W1 linear and orthog-
onal, we impose the constraint condition WT

1 W1 = Id,
where Id is a d×d identity matrix. The objective function
in Equation (13) then becomes:

argmin
A1

tr
(
WT

1 XLXTW1

)
s.t.WT

1 W1 = Id. (14)

Solutions of Equation (14) can be obtained by using
standard eigen-decomposition:

XLXTu = λu. (15)

Let the column vectors u1,u2, · · · ,ud be the solution
of Equation (15), ordered according to the eigenvalues
λ1 < λ2 < · · · < λd. The optimal projection matrix W1

is then given by: W1 = [u1,u2, · · · ,ud1
], where d1 < d.

Once W1 is calculated, the distance metric of the first
part A1 can be obtained by Equation (2), which is not
required to be calculated explicitly.

Similarly, W2 can be obtained by using projected
training data by W1. Finally, we have the final projection
matrix W = W1W2 and the corresponding Bipart
distance metric A. W1 reduces the dimension from d to
d1, and W2 further reduces the dimension to d1 from
d2. d2 is the dimension of the final low-dimensional
discriminative Bipart distance metric space.

5 MET PREDICTION

5.1 Classification

Projecting the dataset onto the Bipart metric preserves
block structure information by ingraining it into the re-
sulting dataset. In this study, classification is done on the
resulting dataset using a k-nearest neighbor approach.
Each example in a block is classified individually, and
the resulting classes are voted on to assign the label of
the entire block.

Though this is a relatively unsophisticated classifier, it
is hypothesized to perform better than methods which
do not consider block-level information. Block level in-
formation could be exploited by voting within the block;
however, this only takes advantage of block structure

during the testing phase, not training. Thus, Bipart kNN
is expected to outperform classification with voting as
well.

5.2 Multi-Linear Regression

The label outputed by the kNN classifier is used to
select an appropriate multi-linear regression model [25].
The models are pre-trained. For the activity classification
paradigm, one model was trained for each activity, and
for categorized classification, one model was trained for
each category.

The linear regression method requires finding a linear
model β which, when applied to X, results in the
predicted METs y with minimal error ε.

y = Xβ + ε (16)

where X is an n× (d+1) matrix representing n samples.
The values in the extra dimension are always 1; this is
for learning the constant bias β0.

yi = β0 + β1xi,1 + β2xi,2 + . . .+ βdxi,d

The model is learned from the training set Xtrain by
minimizing εtrain and solving for β in the following
equation:

ytrain = Xtrainβ + εtrain

The model can then be applied to predict the MET values
ytest for the testing set Xtest.

ytest = Xtestβ + εtest

6 EXPERIMENTS

6.1 Data Description and Feature Representation

This was part of a larger study, and the data and
the participant characteristics and methods have been
published elsewhere [3]. Data from indirect calorime-
try and waist-mounted accelerometers attached to 112
children were used in this study. Each child performed
lying rest (30 minutes) and six of the other 18 physical
activities (7 minutes each). The physical activities, and
the corresponding categories, are:

• Sedentary activities: lying rest, reading, watching
TV, searching the internet

• Household chores: sweeping, vacuuming
• Locomotion: slow track walking, brisk track walk-

ing, walking with a 10-lb backpack, track running
• Interactive Video Games: Nintendo Wii, Light Space,

Wall Light Space, Dance Dance Revolution, Trazer
• Exercise and Sports: playing catch, soccer around

cones, sport wall, workout video

During all activity measurements energy expenditure
was measured using indirect calorimetry (Cosmed K4b2)
so that the predicted energy expenditure estimates could
be compared to a gold standard. Accelerometer measure-
ments were simultaneously collected using an ActiGraph
GT3X tri-axial accelerometer, worn on the right hip.
Accelerometer measurements in the x, y, and z directions
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were aggregated to produce one count for every dimen-
sion and every second. From this aggregate, a feature
vector block of 60 instances for every minute of activity
was constructed. This feature block was associated with
one class label. The types of features used are the same
as in other energy expenditure estimation studies using
neural networks [18], [22], except that all three axes of
data are used, whereas the authors of those papers only
used x-axis data.

The constructed feature vectors consist of the follow-
ing:

• Block ID.
• 10th, 25th, 50th, 75th, and 90th percentile values for

60 one-second counts.
• Lag-1 to lag-9 autocorrelations, to represent tempo-

ral relations.

6.2 Experimental Design

Two general types of experiments were performed: ac-
tivity classification and estimation of energy expenditure
(i.e. METs). Within these two experiments, three types of
training validation were performed:

• Leave-one-person-out (LOPO), as in [18]. All partic-
ipants but one were used for training, and the held
out participant’s activities were used for validation.
This is the most realistic experimental setting.

• Random splitting (RS). The percentage of subjects
used in training varied incrementally from 10% to
90%, and the rest were used for testing. This setting
tests the performance of various classifiers under
different training conditions (insufficient/sufficient
training data).

• 10-fold cross validation (CV). This setting is widely
used in many data mining problems to combat
overfitting.

Two different types of datasets were used. As shown
in Table 2 and Fig. 3, the first dataset contains all 19
class labels, and the second dataset categorizes the 19
activities into five category labels.

6.3 Activity Classification

The following classifiers were tested:

• State-of-the-art classifiers, which have been used in
previous work on mining accelerometer data [7],
[12], [18], [20], [22].

– Feedforward Backpropagation Artificial Neural
Network (ANN)

– k Nearest Neighbor (kNN)
– Support Vector Machine, using the one-vs-all

method to handle multiple classes [16], and the
following kernels:

1) Linear kernel (SVM-linear)
2) Radial basis function kernel (SVM-RBF)

– Naive Bayes

• Citation-kNN (CkNN) [23], a multi-instance classi-
fier. CkNN is suitable for the proposed problem,

while other multi-instance multi-label approaches
[14], [30], [31] are not, as they are trained based on
the diversity of the blocks.

• The proposed method, Bipart, using a 3NN classi-
fier.

• The following distance metric learning methods,
with a 3NN classifier.

– No distance metric (Euclidean)
– Xing’s method (Xing)
– Local Fisher’s discriminant analysis (LFDA)
– Semi-supervised discriminant analysis (SDA)

Classification was performed in two different ways:

• In the first, each feature vector was classified, as in
typical classification problem (no-voting).

• In the second, majority voting between labels in
a block were used to determine the block label
(voting). For CkNN and Bipart, there is no difference
between voting and no-voting.

For a visual summary of the different experimental
variations, see Fig. 4.

Classification is evaluated using accuracy, which is the
ratio of correct classifications over the total number of
test samples [11].

6.4 Classifier Parameters

The feedforward backpropagation neural network had
one hidden layer and 25 hidden neurons, as in [18], [22].

The CkNN classifier was used with k = 2 and c = 4,
optimal values in [23].

The kNN classifier had k = 3.
Naive Bayes was used with default settings. Linear

kernel SVM was applied with optimal settings on vali-
dation sets.

The Bipart distance metric had two parameters: the
scaling parameter β, as shown in Equation (6), and di-
mension d2, as discussed for Equation (15). β is selected
in a range of (2−3−23). d2 is automatically decided when
90% energy is achieved according to the eigenvalues.

6.5 Regression

Regression models for each activity (or category) were
trained to predict METs from the feature representation
shown in Section 6.1. In the classification-regression
framework, all classifiers share the same linear regres-
sion models. That is, if two classifiers result in the same
activity classification, then the same regression model is
selected, and the resulting predicted MET will be the
same.

The classification step determines the class label, and
this labeled activity (or category) is used to select the
regression trained specifically for this activity (or cat-
egory). The selected regression model is used on the
original data in order to predict a MET value.

Regression results are reported using the RMSE (root-
mean-square error). For a visualization of the scale of
RMSE, see Fig. 3.
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Category Activity
MET range (min. - max.)

Activity Category

Sedentary

Lying Rest 1.0000 - 1.0000

0.6448 - 2.4799
Reading 0.7702 - 2.4799

Watching TV 0.6523 - 2.1141

Searching Internet 0.6448 - 1.6608

Chores
Sweeping 1.2728 - 5.8562

1.2728 - 5.8562
Vacuuming 1.7355 - 4.8597

Locomotion

Slow Track Walking 2.0546 - 7.2180

2.0546 - 11.2163
Brisk Track Walking 2.3348 - 8.8780

Walking with 10 lb Backpack 2.3274 - 6.4440

Track Running 4.6846 - 11.2163

Interactive Video Games

Nintendo Wii 1.1206 - 5.7367

1.1206 - 9.1458

Light Space 2.4098 - 9.1458

Wall Light Space 2.5449 - 8.6164

Dance Dance Revolution 1.7943 - 6.1126

Trazer 1.8256 - 8.7463

Exercise and Sports

Playing Catch 1.6448 - 5.8235

1.4361 - 10.9344
Soccer Around Cones 2.0343 - 10.5173

Sport Wall 3.0160 - 10.9344

Workout Video 1.4361 - 4.5338

TABLE 2
Physical activities, categories of physical activities, and the corresponding range of measured METs for those

activities and categories.
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Fig. 3. Distribution of measured energy expenditure for the different physical activities and categories. Energy
expenditure is described by measured METs. ”x” marks represent the mean values, and bars correspond to standard
deviations. (a) Activities. The x-axis shows the 19 physical activities. (b) Categories. The x-axis shows the five
categories of activities.



9

Fig. 4. Structure of classification experiments. Experi-
ments are divided by class label, evaluation methodology,
algorithm type, and whether or not voting is done. At each
level, all experimental conditions to the right are applied;
e.g., CV, LOPO, and RS are done for both categorized
and uncategorized data. The sole exception is that voting
was not done for the CkNN classifier.

7 RESULTS

7.1 Classification

Results for activity classification experiments are shown
in Table 3 for classifiers with no voting, and Table 4 with
voting. Category classification results are shown in Table
5 before voting, and Table 6 after voting.

The difficulty of multi-class classification is directly de-
termined by the number of classes - for example, in our
19 activity classification scenario, random guess would
only yield an accuracy of 1

19 = 5.26%; comparatively,
naive Bayes (the worst) achieves 16.35% and Bipart
53.00% accuracy on pre-voting cross-validation, as seen
in Table 3. Categorizing activities will benefit accuracy
both by reducing the number of classes to 5, and by
grouping similar activities together in a meaningful way;
in categorized classification, random guess will yield
1
5 = 20.00% accuracy. Comparatively, CkNN (the worst)
achieves an accuracy of 57.66% and Bipart yields 81.64%
on pre-voting cross-validation, as seen in Table 5. More
detailed explanations are given below.

In experiments without voting (Tables 3 and 5), Bipart
comes out as a clear winner. Thus, Bipart with kNN
outperforms any unaided classifier or distance metric
method. In voting experiments, LFDA and neural net-
works approached Bipart’s performance under certain
experimental conditions.

Bipart also performs best in LOPO experiments, which
are the most realistic. It also consistently outperforms in
situations with low training data, as is evident in the
random split conditions, especially in “rs 9”, in which
only 10% of subjects were used for training. This is
presumably due to Bipart using block-level information
in the testing phase.

All classifiers performed much better in predicting cat-
egories than predicting activity types. As shown in [2]–
[4], categorization improves classification performance.
The confusion matrix in Table 7 show that sedentary
activities often get confused as one another, as do lo-
comotor activities. Table 8 shows that there is much less
confusion after categorization.

The predictability of these activities and categories

were not obviously related to size of the range of mea-
sured METs as shown in Table 2. However, they were
somewhat related to the “regularity” of the activities
in terms of the accelerometer measurements; sedentary
activities all involve little movement, but there is little
in common in the many different actions performed in
exercise and sports.

Table 9 shows that sedentary activities are difficult
to differentiate. Sweeping and vacuuming are difficult
for all classifiers, though categorization improves perfor-
mance, as seen in 10. Locomotion activities are the easiest
to distinguish, aside from sedentary. Exercise and sports
and interactive video games have varying difficulty.

7.2 Regression

Regression results of each classifier over all experimental
conditions are presented in Table 11. Prediction accuracy
is directly related with classification accuracy under the
proposed framework; thus, Bipart performs best in most
settings, ceding a few to neural networks. LOPO results
can be seen in Fig. 5. Though neural networks followed
closely, Bipart achieved the lowest RMSE.

Fig. 5. Root mean square error (RMSE) for each classifier
for estimation of METs across all activities in the LOPO
experiment. Bipart achieves the lowest RMSE at 1.37,
followed by ANN at 1.39, and Naive Bayes at 1.41.

MET prediction results using activity category are
shown in Table 12. Bipart performs better than other
approaches in interactive video games or exercise and
sports, and is comparable on sedentary activities. In
locomotion activities, neural networks outperforms by
Bipart by a small margin.

RMSEs achieved by Bipart are relatively low, consid-
ering the range of MET values per category as shown in
Fig. 3. The wide range of MET values for each activity
group puts a limit on the accuracy of regression results.



10

Other Classifiers kNN
SVM-linear SVM-RBF NaiveBayes ANN CkNN Euclidean Xing LFDA SDA Bipart

cv 47.80 49.99 16.35 51.25 39.06 46.96 43.85 44.48 42.68 53.00
lopo 48.93 51.08 17.44 52.21 39.96 48.02 44.53 48.73 43.23 59.81
rs 1 46.53 48.70 15.28 48.65 38.36 46.58 42.72 42.87 42.03 52.29
rs 2 48.63 51.15 16.24 51.70 39.13 48.74 45.03 45.25 44.30 54.03
rs 3 47.17 50.02 15.95 49.95 38.36 46.73 42.67 42.81 41.96 51.54
rs 4 46.92 50.34 18.51 50.38 38.58 47.39 43.17 43.07 42.54 51.94
rs 5 45.54 49.21 37.53 48.85 38.57 46.39 42.37 42.16 42.13 51.12
rs 6 45.39 49.37 46.30 48.48 38.58 46.18 42.62 41.97 41.94 51.22
rs 7 45.13 49.31 45.06 47.86 38.67 46.06 41.94 41.33 41.69 51.49
rs 8 43.52 47.56 37.95 46.18 37.89 45.00 41.05 39.85 40.61 50.09
rs 9 41.41 45.96 43.69 44.59 38.37 43.78 40.29 39.13 39.53 48.43

TABLE 3
Accuracy (%) under various experimental paradigms for classifying individual activities, without voting. Best results

highlighted.

Other Classifiers kNN
SVM-linear SVM-RBF NaiveBayes ANN CkNN Euclidean Xing LFDA SDA Bipart

cv 50.38 52.67 16.46 54.21 39.06 50.49 51.44 52.12 48.86 53.00
lopo 51.23 53.82 18.00 55.97 39.96 52.32 53.29 57.94 51.29 59.81
rs 1 48.65 50.96 15.69 50.95 38.36 50.16 50.02 52.13 47.82 52.29
rs 2 52.05 54.52 17.05 55.45 39.13 52.62 53.34 53.25 51.48 54.03
rs 3 49.59 52.54 15.39 53.21 38.36 50.58 51.15 50.95 50.02 51.54
rs 4 48.41 53.14 18.78 54.17 38.58 51.40 52.03 51.26 50.23 51.94
rs 5 46.26 51.88 38.31 51.74 38.57 49.82 49.71 49.69 49.83 51.12
rs 6 46.33 51.86 47.44 51.06 38.58 49.83 50.17 50.01 49.38 51.22
rs 7 45.74 51.53 46.20 50.49 38.67 49.34 49.54 48.41 48.45 51.49
rs 8 43.98 49.63 39.28 47.95 37.89 48.09 48.09 47.08 47.49 50.09
rs 9 41.51 47.29 45.04 45.53 38.37 46.41 46.80 45.15 45.85 48.43

TABLE 4
Accuracy (%) for several classifiers under various experimental paradigms for classifying individual activities, after

voting. Best results highlighted.

Other Classifiers kNN
SVM-linear SVM-RBF NaiveBayes ANN CkNN Euclidean Xing LFDA SDA Bipart

cv 74.02 76.30 61.14 78.59 57.66 74.93 72.33 74.41 71.24 81.64
lopo 74.73 77.26 59.96 79.63 58.21 75.32 72.85 77.28 72.06 87.05
rs 1 74.89 77.66 61.73 79.00 58.39 75.09 72.37 74.27 71.70 80.92
rs 2 74.03 77.17 62.68 79.14 57.54 75.61 73.09 73.83 71.91 82.41
rs 3 73.47 75.53 64.38 77.34 57.61 74.80 71.45 72.25 70.67 80.90
rs 4 73.51 75.90 63.03 76.80 57.89 74.89 71.83 72.26 70.97 80.30
rs 5 72.45 74.36 63.12 75.86 57.18 73.73 70.66 70.99 69.92 79.18
rs 6 72.41 74.82 64.75 75.09 57.33 74.01 70.91 70.32 70.12 79.16
rs 7 72.23 74.82 64.91 74.65 57.54 73.88 70.57 70.15 70.08 79.79
rs 8 71.11 73.97 69.02 73.83 56.74 72.94 69.70 69.42 69.17 78.00
rs 9 68.96 72.44 69.69 72.21 56.75 71.48 68.35 67.36 68.41 77.02

TABLE 5
Accuracy (%) for several classifiers under experimental paradigms for classifying activity categories, without voting.

Best results highlighted.

7.3 Discussion and Future Directions

Despite the difficulty of classifying activities, as shown
in the confusion matrices, Bipart with kNN outperforms
other classifiers overall.

The performance of kNN in Euclidean space suggests
that using 3NN as a classifier in Bipart space may limit
the accuracy of the Bipart method. Results may improve
if more sophisticated classifiers, such as SVMs or neural
networks, were used in Bipart space. As Bipart allows
for any classification method to be adapted for the block

classification problem, future work may involve other
classifiers. Comparing performance in both Euclidean
and Bipart space will help demonstrate the utility of bag-
level information.

Categorization improves performance, but as seen
in the confusion matrices, there is still some overlap
between categories, particularly between exercise and
games. Choosing a different categorization, for exam-
ple based on MET level, may improve results [21].
Noting that these categorizations are arbitrary, perhaps
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Other Classifiers kNN
SVM-linear SVM-RBF NaiveBayes ANN CkNN Euclidean Xing LFDA SDA Bipart

cv 76.03 78.12 63.55 81.91 57.66 78.49 78.49 80.02 79.28 81.64
lopo 77.02 79.88 63.13 83.22 58.21 79.78 79.36 84.84 79.66 87.05
rs 1 76.41 80.14 63.47 81.87 58.39 78.14 78.49 80.50 78.54 80.92
rs 2 76.28 79.25 65.21 82.91 57.54 80.43 80.53 81.00 80.01 82.41
rs 3 75.61 77.95 66.21 80.38 57.61 79.56 80.00 79.50 77.71 80.90
rs 4 75.39 77.76 65.47 79.99 57.89 79.49 79.02 80.09 78.63 80.30
rs 5 73.86 76.49 65.21 78.31 57.18 77.83 77.42 78.13 76.71 79.18
rs 6 73.86 76.67 66.66 77.34 57.33 78.46 78.09 78.20 77.40 79.16
rs 7 73.50 77.09 66.71 76.57 57.54 78.14 77.24 77.07 76.81 79.79
rs 8 72.06 75.65 70.32 75.52 56.74 77.00 76.94 76.49 76.53 78.00
rs 9 70.03 73.86 70.69 73.21 56.75 75.34 74.79 74.29 75.10 77.02

TABLE 6
Accuracy (%) under various experimental paradigms for classifying activity categories, after voting. Best results

highlighted.
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Lying Rest 1922 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Reading 225 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Watching TV 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Searching Internet 189 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sweeping 74 0 7 0 76 17 0 0 0 0 20 12 5 0 0 7 0 0 7

Vacuuming 81 0 0 0 25 50 0 0 0 0 20 0 0 0 0 0 7 0 5

Slow Track Walking 28 0 0 0 10 0 153 24 10 0 0 0 0 0 0 0 6 0 0

Brisk Track Walking 34 0 0 0 0 0 41 174 17 5 3 0 0 0 0 0 0 0 0

Walking with 10 lb Backpack 0 0 0 0 0 0 55 55 69 0 0 0 0 0 0 0 0 0 5

Track Running 0 0 0 0 0 0 16 31 5 52 0 0 0 0 0 0 4 0 0

Nintendo Wii 140 5 0 0 7 7 0 0 0 0 45 0 12 0 5 0 0 0 10

Light Space 32 0 0 0 0 0 0 0 0 0 10 142 11 10 5 5 12 7 0

Wall Light Space 25 0 0 0 5 0 5 0 0 0 5 45 87 0 0 0 0 10 0

Dance Dance Revolution 80 0 0 0 16 0 5 0 0 0 15 10 5 20 5 15 10 0 5

Trazer 5 0 0 0 5 0 0 0 0 0 5 10 0 0 161 0 0 0 0

Playing Catch 33 0 0 0 15 5 0 0 0 0 5 20 20 5 17 45 0 15 0

Soccer around cones 25 0 0 0 20 15 10 5 5 0 5 15 5 0 0 5 56 15 0

Sport Wall 19 0 0 0 0 0 0 0 0 0 0 10 0 5 5 0 3 141 5

Workout Video 97 0 0 0 0 10 0 0 0 0 12 10 0 0 5 0 0 10 45

TABLE 7
Confusion matrix for activity data. Only Bipart and LOPO experiments considered. Rows represent true class, and

columns represent predicted class.
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Sedentary 2520 0 0 0 0

Chores 114 228 0 57 14

Locomotion 50 0 742 5 0

Interactive Video Games 172 31 0 789 27

Exercise and Sports 116 68 15 97 442

TABLE 8
Confusion matrix for categorized data. Only LOPO

experiments considered. Rows represent true class, and
columns represent predicted class.

deriving natural categories, through clustering or other
techniques, may improve classification.

The linear regression model used in this study may
limit MET prediction performance, as even with perfect
classification, error still exists.

Though multiple linear regression models allow more
accuracy than one, they are still unable to cope with
nonlinear relationships, and counts and METs may not
be linear. Though it is outside the scope of the current
project, future work may allow for non-linear regression
models to be used for energy estimation. This may in-
clude kernel support vector regression, neural networks,
and regression methods used in Bipart space.

8 CONCLUSION

This study proposes a novel distance metric learning
method which utilizes block-level constraints. The Bipart
method exploits block structure, which is assumed to
be known for both the training and the test set. Two
distance metrics, learned from both test and training
sets, are combined into the Bipart metric, and a kNN
classifier is used. Experiments show that Bipart performs
favorably compared to other classifiers and distance
metrics, especially in LOPO and low-information condi-
tions. These results demonstrate the utility of the Bipart
method on datasets which contain feature vectors known
to belong to the same class.
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SVM-linear SVM-RBF NaiveBayes ANN CkNN kNN Xing LFDA SDA Bipart

Lying Rest 100.00 100.00 2.19 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Reading 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Watching TV 0.00 0.00 89.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Searching Internet 0.00 0.00 2.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Sweeping 0.00 27.56 0.00 17.78 0.00 29.78 23.11 38.22 23.11 33.78

Vacuuming 0.00 2.66 21.28 5.32 0.00 5.32 18.62 18.62 21.28 26.60

Slow Track Walking 50.22 45.89 8.23 53.25 45.89 64.94 53.68 55.84 47.62 66.23

Brisk Track Walking 61.68 59.12 13.14 56.20 31.75 35.40 37.23 47.08 30.29 63.50

Walking with 10 lb backpack 0.00 4.89 74.46 7.61 0.00 11.96 20.65 45.11 19.57 37.50

Track Running 37.04 48.15 79.63 51.85 31.48 50.93 52.78 54.63 34.26 48.15

Nintendo Wii 0.00 0.00 0.00 0.00 0.00 0.00 3.03 3.03 6.06 19.48

Light Space 61.54 57.26 16.67 47.44 0.00 53.85 39.32 52.14 49.57 60.68

Wall Light Space 0.00 0.00 35.71 16.49 0.00 21.98 35.71 32.97 30.77 47.80

Dance Dance Revolution 8.06 5.38 8.06 5.38 0.00 2.69 9.14 18.82 0.00 10.75

Trazer 59.68 84.41 62.90 100.00 5.38 79.03 76.34 79.57 71.51 86.56

Playing Catch 42.78 45.56 51.11 48.33 0.00 9.44 19.44 45.56 11.11 25.00

Soccer around cones 35.91 44.75 41.99 69.61 0.00 24.86 38.67 50.28 27.62 30.94

Sport Wall 61.70 62.77 13.30 73.94 0.00 59.04 60.64 60.11 38.30 75.00

Workout Video 0.00 5.29 0.00 5.29 0.00 7.94 5.29 15.87 19.58 23.81

TABLE 9
Classification performance (in terms of accuracy) of each activity. Only LOPO experiments were considered. Best

results highlighted.

SVM-linear SVM-RBF NaiveBayes ANN CkNN kNN Xing LFDA SDA Bipart

Sedentary 100.00 100.00 71.27 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Chores 0.00 31.96 93.46 51.09 0.00 35.84 29.30 50.85 37.05 55.21

Locomotion 92.35 91.72 85.07 93.73 76.54 93.73 93.10 94.48 93.85 93.10

Interactive Video Games 73.31 72.82 36.80 72.03 0.98 62.32 61.83 71.93 58.98 77.43

Exercise and Sports 23.44 27.51 29.00 42.14 2.03 38.48 39.70 52.85 41.87 59.90

TABLE 10
Classification performance (in terms of accuracy) of each activity category. Only Bipart and LOPO experiments were

considered. Best results highlighted.

CV LOPO RS1 RS2 RS3 RS4 RS5 RS6 RS7 RS8 RS9

SVM-linear 1.50 1.47 1.41 1.52 1.42 1.53 1.51 1.53 1.63 1.74 2.19

SVM-RBF 1.47 1.46 1.48 1.43 1.41 1.46 1.44 1.47 1.63 1.75 2.28

NaiveBayes 1.46 1.41 1.43 1.53 1.47 1.57 1.60 1.61 1.79 1.84 2.17

ANN 1.40 1.39 1.39 1.44 1.36 1.47 1.45 1.46 1.55 1.66 2.16

CkNN 2.55 2.62 2.40 2.40 2.22 2.35 2.18 2.28 2.14 2.21 2.39

kNN 2.55 2.62 2.40 2.40 2.22 2.35 2.18 2.28 2.14 2.21 2.39

Xing 1.42 1.43 1.41 1.41 1.39 1.46 1.44 1.50 1.66 1.80 2.27

LFDA 2.22 2.04 2.02 2.56 2.35 2.57 2.84 2.84 2.88 2.96 2.92

SDA 1.41 1.41 1.45 1.42 1.38 1.50 1.47 1.50 1.65 1.82 2.30

Bipart 1.42 1.37 1.37 1.43 1.37 1.45 1.46 1.48 1.58 1.68 2.12

TABLE 11
MET expenditure error for each experimental condition and each classifier. Performance is given by root mean

square error (RMSE). Best results highlighted.
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SVM-linear SVM-RBF NaiveBayes ANN CkNN kNN Xing LFDA SDA Bipart

Sedentary 0.42 1.41 0.68 0.42 0.42 0.42 1.41 2.04 1.41 0.42

Chores 2.14 1.46 1.40 1.64 2.25 2.25 1.46 2.04 1.46 1.61

Locomotion 1.64 1.43 1.64 1.63 1.99 1.99 1.43 2.04 1.43 1.64

Sports and Games 1.65 1.35 1.60 1.62 3.54 3.54 1.35 2.04 1.35 1.57

Exercise and Sports 1.62 2.04 1.67 1.63 3.65 3.65 2.04 2.04 2.04 1.59

TABLE 12
Root mean square error (RMSE) showing of each classifier for estimating METs for each activity category. LOPO

results only.
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