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Causal discovery is highly desirable in science and technology. In this paper, we study a new research
problem of discovery of causal relationships in the context of streaming features, where the features
steam in one by one. With a Bayesian network to represent causal relationships, we propose a novel
algorithm called causal discovery from streaming features (CDFSF) which consists of a two-phase
scheme. In the first phase, CDFSF dynamically discovers causal relationships between each feature
seen so far with an arriving feature, while in the second phase CDFSF removes the false positives
of each arrived feature from its current set of direct causes and effects. To improve the efficiency of
CDFSF, using the symmetry properties between parents (causes) and children (effects) in a faithful
Bayesian network, we present a variant of CDFSF, S-CDFSF. Experimental results validate our

algorithms in comparison with the existing algorithms of causal relationship discovery.
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1. INTRODUCTION

Causal discovery is of fundamental and practical interest in
many areas of science and technology, including medicine,
biology, finance and pharmacology. The goal of causal
discovery is to uncover causal relationships between features.
For example, in the domain of medicine, causal discovery can
determine the cause of a disease and help the disease and
treatment prevention.

A causal model represents causal relationships with two
components: a statistical model, and a causal graph that
describes the causal relationships between features. One of the
most frequently used causal models is causal Bayesian networks
introduced by Pearl [1, 2]. A causal Bayesian network is a
Bayesian network in which each edge is described as a direct
causal influence between a parent node (feature) and a child
node, with regard to the other nodes in the network. Structure

∗A shorter, preliminary version of this paper with the title “Causal Discovery
from Streaming Features” was published in the Proceedings of the 10th IEEE
International Conference on Data Mining (ICDM), pp. 1163-1168. The new
content added here, compared with the conference version of this paper, includes
Sections 2, 4.3 and 4.5, Figures 1, 4–6, Tables 2–4, and major changes in
Sections 1, 2 and 3.

learning of causal Bayesian networks in the observational data
are essentially the same as structure learning of Bayesian
networks, thus, one of the most exciting prospects in the last two
decades has been the possibility of using Bayesian networks to
discover causal relationships among features in the observed
data [3–5], stemming from the seminal work of Pearl [6].

Bayesian network structure learning methods can be
classified as global or local learning approaches. Global learning
attempts to learn a unified Bayesian network over all the
features, but it can only deal with no more than 300 features
[7–13]. With emerging datasets containing tens or hundreds of
thousands of features, the global learning approach does not
reliably scale up to thousands of variables in a reasonable time
[14]. Thus, the local learning approach aims to learn a local
causal structure around a target feature of interest, for example,
the identification of features that are direct causes and direct
effects of a target node of interest, or the discovery of the Markov
blanket (parents, children and parents of the children of a node
in a Bayesian network) of the target [15–18]. When we identify
direct causes and direct effects, or the Markov blanket (MB for
short) for all features using a local discovery algorithm, we can
get the skeleton (i.e. the edges without their orientations) of a
Bayesian network. With this skeleton, we can develop efficient
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local-to-global algorithms to orient the skeleton for getting local
causal structures on the subsets of model features or the global
causal structures of all features in the data [14–16].

The current state-of-the-art algorithms have significantly
advanced the techniques of learning Bayesian networks, but
they need all features available before learning starts. However,
in many real-world applications, we cannot get/know all
features initially. For example, in spam filtering, the feature
space could change over time, since new words (features) may
appear which are not within the original feature vectors. When
new words come, they must be integrated into the current model
as new unsolicited commercials come into vogue [19]. Another
example is with personalized news filtering. Since the user
interests may change over time, new words that can discriminate
users’ new interests also need to be involved in the current
feature vector [20]. Under such circumstances, the feature space
is changing over time, and then we cannot get all features before
learning takes place, that is, not all features are available in
advance.

An intriguing question from the above observations is when
the full feature space is unavailable before learning begins, how
can we uncover causal relationships between features?

Recently, the concept of streaming features has been
proposed to interpret the situation where not all features can
present initially [21–23]. Unlike a data stream, with streaming
features, feature dimensions are modeled as a feature stream,
and features stream in one by one and each feature is processed
upon its arrival. With streaming features, it is natural for us
to convert our research problem above into learning a causal
model in streaming features. Here we will focus on the local
learning approach with streaming features. As features stream
in one by one, we can design efficient local learning algorithms
to dynamically discover direct causes and direct effects, or the
Markov blankets for the features seen so far without a full feature
space in advance. Meanwhile, integrating streaming features
into local learning, the major challenges are 2-fold.

First, aggregating all features to discover causal relationships
is practically infeasible with streaming features, since in the
context of streaming features, features stream in one by one
instead of having all features in advance. We have to devise
new causal learning methods for the changing size of feature
volumes over time.

Secondly, causal relationships among features seen so far
should be all achieved as if no more available features arrive.
The current state-of-the-art local learning algorithms, like
HITON_PC or MMPC (as described in detail in Section 5), are
limited to learn both the direct causes and direct effects only for
one target of interest at each run. If we get the direct causes and
direct effects for all features, we need to run the HITON_PC
or MMPC algorithms for each feature independently. When the
features steam in one by one over time, those existing local
learning algorithms cannot deal with streaming features since
(i) not all features are available in advance and (ii) mining causal
relationships for all available features must be done before a

new feature arrives or no available features are still arriving.
We have to provide effective ongoing mechanisms to process
the new features as they arrive.

To tackle the above challenges, with a Bayesian network
used as the language to represent causal relationships between
features, in this paper, we present a new algorithm, called
causal discovery from streaming features (CDFSF) to discover
the direct causal relationships between features with streaming
features. In order to further improve its efficiency, we use the
symmetry properties between parents and children in a faithful
Bayesian network to present a Symmetrical CDFSF (S-CDFSF)
algorithm.

As it is hard to statistically distinguish between direct causes
(parents) and direct effects (children) of a target feature T , in this
work, like HITON_PC and MMPC, we identify only the feature
sets of the direct causes and direct effects without distinguishing
between the two when features stream in.

CDFSF is designed with a two-phase scheme. With the
features steaming in one by one, in the first phase, CDFSF
dynamically discovers causal relationships between each
feature seen so far with an arriving feature. In this phase, when
a new feature arrives, CDFSF takes each feature arrived so far
as a target T and assesses whether the new one belongs to
its candidate parents and children (CPC(T ) for short). If so,
CDFSF regards the new one as a target T and discovers its
CPC(T ) from the features arrived already. In the second phase,
CDFSF removes the false positives of each arrived feature from
its current CPC(T ) set. When no more available features arrive,
the sets of CPC(T ) for all features arrived so far, not just for
a special one of interest, are achieved. In order to improve the
efficiency of CDFSF, we plug in the symmetry check and present
an S-CDFSF algorithm.

State-of-the-art algorithms for the discovery of MB(T )
consist of two steps: identification of parents and children of
the target (PC(T ) for short), and then discovery of the candidate
spouses of the target from the candidate parents of each feature
within PC(T ). The key difference between our algorithms and
the existing algorithms is the identification of PC(T ).

The rest of the paper is organized as follows: Background
work is given in Section 2. Section 3 discusses the proposed
algorithms and Section 4 presents the experimental results.
Related work is reviewed in Section 5, and finally Section 6
concludes the paper with some discussions on future work.

2. BACKGROUND

In this paper, we denote variables in uppercase letters (X; Y ),
and states or values of these variables by the same lowercase
letters (x; y). We deal with discrete probability distributions
and complete datasets only and the words ‘variable’, ‘node’and
‘feature’ are all used interchangeably in the rest of this paper.

Definition 2.1 (Conditional Independence) [4]. In a vari-
able set V, two variables X ∈ V and Y ∈ V are conditionally
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Exploring Causal Relationships 3

FIGURE 1. A simple example of a Bayesian network [6].

independent given a set of variables Z ⊆ V with respect to a
probability distribution P, iff P(X|Y, Z) = P(X|Z).

For notational convenience, the conditional independence
is denoted as Ind(X,Y |Z) and conditional dependence as
Dep(X,Y |Z).

Definition 2.2 (Bayesian Network) [6]. Let P be a dis-
crete joint probability distribution of a set of random vari-
ables V via a directed acyclic graph G. We call the triplet
< V, G, P > a (discrete) Bayesian network if < V, G, P >

satisfies the Markov condition: every variable is independent of
any subset of its non-descendant variables conditioned on its
parents.

A simple Bayesian network is shown in Fig. 1, which
encodes the joint probability P over a set of variables V =
{X1, X2, . . ., Xn} and decomposes it into a product of the
conditional probability distributions over each variable given
its parents in the graph. Assuming Pa(Xi) is the set of parents
of Xi , the joint probability P is written as:

P(X1, X2, . . . , Xn) =
n∏

i=1

P(Xi |Pa(Xi)). (2.1)

In this network, the set V contains five variables in the
directed acyclic graph G and the conditional probability table
P for each variable is given in Fig. 1.

Definition 2.3 (Faithfulness) [3]. A Bayesian network sat-
isfies the faithfulness condition if and only if every conditional
independence entailed by the directed acyclic graph G is also
present in P.

The directed acyclic graph of a network in conjunction
with the Markov condition directly encodes some of the
independencies of the probability distribution and entails others.
A graphical criterion called d-separation captures exactly all the
conditional independence relationships that are implied by the
Markov condition [6].

Definition 2.4 (d-separation) [6]. A collider on a path p is
a node with two incoming edges that belong to p. A path between
X and Y given a conditioning set Z is open, if (a) every collider
of p is in Z or has a descendant in Z and (b) no other nodes on
p are in Z. If a path is not open, then it is blocked. Two nodes
X and Y are d-separated (denoted as Dsep(X, Y |Z)) given a
conditioning set Z in a Bayesian network if and only if every
path between X and Y is blocked by Z.

The ‘d’in d-separation stands for dependence. If two variables
are d-separated relative to a set of variables Z in a Bayesian
network, then they are independent conditional on Z in all
probability distributions which this Bayesian network can
represent.

Definition 2.5. A causal Bayesian network < V, G, P > is
a Bayesian network with the additional semantics that X ∈ V

and Y ∈ V if a node X is a parent of a node Y in G, then X
directly causes Y.

Definition 2.6 (Causal Markov Condition) [3]. In a
causal Bayesian network, if every node is independent of its
non-effects given its direct causes, then the causal Markov
condition holds.

The causal Markov condition permits the joint distribution of
the variables in a causal Bayesian network to be factored as in
Equation (2.1).

Definition 2.7 (Causal Faithfulness) [3]. A causal Baye-
sian network satisfies the faithfulness condition if it satisfies the
faithfulness condition of Definition 2.3.

Theorem 2.1 [4]. In a faithful Bayesian network, the
following term holds:

Dsep(X, Y |Z) ⇔ Ind(X, Y |Z).

Theorem 2.1 proves that d-separation can be replaced with
conditional independence tests to compute all the conditional
independence relationships in a faithful Bayesian network.

With the causal Markov condition and causal faithfulness
assumptions made on structure learning of Bayesian networks,
structure learning of causal Bayesian networks in the obser-
vational data is essentially the same as structure learning of
Bayesian network [3, 4]. Therefore, the task of causal discovery
can be converted into the task of learning Bayesian network
structure.
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3. PROPOSED ALGORITHMS

3.1. The CDSFS algorithm

With a Bayesian network used as the language to represent data-
generating processes and causal relationships, we design and
implement the CDFSF algorithm to address the challenges on
discovery of direct causal relationships with streaming features
as defined in Definition 3.1.

Definition 3.1 (Streaming Features). Streaming features
involve a feature vector that streams in one by one over time
while the number of training examples is fixed.

One key contribution of CDFSF is on efficiently discovering
causal relationships between each feature seen so far. In a
faithful Bayesian network, direct causes and direct effects
of feature X are its parents and children, respectively. Thus,
Theorem 3.1 proves that finding a direct cause or a direct effect
of feature X can be reduced to determine whether or not an edge
exists between a feature and feature X in a faithful Bayesian
network.

Theorem 3.1 [3, 4]. In a faithful Bayesian network, there is
an edge between the pair of nodes X ∈ V and Y ∈ V iff
∀S ⊆ V \{X, Y }, s.t. Dep(X, Y |S).

From Theorem 3.1, when a new feature X arrives, we obtain
an immediate method to determine causal relationships between
X and a target T : for any feature X ∈ V \{T }, find a subset
Z ⊆ V \{X, T } and test whether Ind(X,T |Z). If the term
Ind(X,T |Z) holds, then X /∈ PC(T ), otherwise X ∈ PC(T ).
The major drawback here is that the variables within V are
not all available before learning with streaming features. This
method is also very inefficient for testing all subsets of the
set V excluding X and T . To improve its efficiency, Aliferis
et al. [15] proved the following Corollary 3.1, which shows that
to test whether Ind(X,T |Z), it is sufficient to test all subsets
Z ⊆ PC(X)\T and all Z ⊆ PC(T )\X.

Corollary 3.1. In a faithful Bayesian network, there is an
edge between the pair of nodes X ∈V andY ∈V iff Dep(X, Y |S),

for all S ⊆ PC(X)\{Y } and S ⊆ PC(Y )\{X}.

The problem with Corollary 3.1 is that, in real-world
applications, we cannot get true PC(X) and PC(T ). Thus,
Corollary 3.2 shows that we can work on a superset of true
PC(X) or PC(T ) [15].

Corollary 3.2. In a faithful Bayesian network, there is
an edge between the pair of nodes X ∈ V and Y ∈ V

iff Dep(X, Y |Z), for all Z ⊆ S where PC(X)\Y ⊆ S ⊆
V \{X, Y }.

With Corollary 3.2, when the features steam in one by one,
we can work on a superset of true PC(X) or PC(T ) which can
start from an empty set or a specified set with some domain
knowledge. More specially, we set the candidate PC set of a
new feature as an empty set and gradually build the PC sets
for arrived features as time goes on. From Theorem 3.1, if
X ∈ PC(T ), Dep(X,T |Z) for any Z exists. Therefore, we can
work on the current PC set of a target T to online determine the
causal relationships between a new arriving feature X and T .

The other key contribution of the CDFSF algorithm
is on providing effective ongoing mechanisms in dealing
with increasing feature volumes. CDFSF adopts an online
mechanism with a two-phase scheme: discovering causal
relationships and removing false positives. In the first
(discovering causal relations) phase, when a new feature X

arrives, CDFSF first takes each feature seen so far as a target T

and assesses whether X belongs to its CPC(T ). Next, CDFSF
regards X as the target, and then discovers its CPC(X) from the
features arrived so far in turn. In the second (removing false
positives) phase, CDFSF re-evaluates each feature within the
sets of CPC for all features seen so far and eliminates false
positives from them. When the process of generating features
is over, the sets CPC for all features seen so far are returned.

Algorithm 1 The pseudo-code of CDFSF.
Input: Streaming features X
Output: CPC(X), X = {X1, X2, . . ., Xn}

Initialization
GFS={},CPC(X)={};

Repeat
/* The discovering phase for causal relations*/

generate a new feature Xi ;
GFS=GFS∪Xi;
for each feature T ∈ GFS\Xi

if ∀S ⊆ CPC(T ) s.t Dep(Xi, T |S)

CPC(T)= CPC(T) ∪ Xi;
end
if ∀Z ⊆ CPC(Xi) s.t Dep(T , Xi|Z)

CPC(Xi)= CPC(Xi ) ∪ T ;
end

/*The removing phase for false positives*/
for each feature Y ∈ CPC(T), T ∈ GFS

if ∃S ⊆ CPC(T )\Y s.t Ind(Y, T |S)

CPC(T)= CPC(T)-Y;
end

end
end

until no available features to arrive or a given threshold is
satisfied.

The pseudo-code of CDFSF is shown in Algorithm 1. The set
GFS stores the features arrived so far, CPC(Xi) denotes the set
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FIGURE 2. An illustrating Bayesian network to demonstrate the trace
of the CDFSF algorithm.

of candidate parents and children of Xi , and conditional inde-
pendence tests use G2 test which is a modified version of χ2.

As an illustration, we assume the Bayesian network in Fig. 2 is
faithful and so the conditional dependencies and independences
can be read off the graph directly using the d-separation
criterion. Now we assume that the set V = {1, 2, 3, 4, 5} and
the set ordering = {5, 1, 4, 2, 3} which denotes the ordering of
arriving features. We initialize GFS = {} and CPC(X) = {}. A
trace of CDFSF is as follows.

(i) First, feature 5 arrives. The set GFS is empty excluding
feature 5 and so CPC(5) = {}.

(ii) Feature 1 arrives where GFS = {5, 1}, CPC(5) =
{} and CPC(1) = {}. In the first phase, feature 5
inside GFS is first regarded as a target, and then our
approach determines whether 1 ∈ CPC(5). Since there
are all subsets within CPC(5) that make feature 1
conditionally dependent of feature 5, Dep(1,5|φ), we
obtain 1 ∈ CPC(5). Next, feature 1 is regarded as
a target and our method tests whether 5 ∈ CPC(1).
In a similar way, 1 ∈ CPC(5). Since there are new
features being added into CPC(5) and CPC(1), the
second phase is performed. Finally, CPC(5) = {1}
and CPC(1) = {5}.

(iii) Feature 4 arrives where GFS = {5, 1, 4}, CPC(5) = {1}
and CPC(1) = {5}. In the first phase, feature 5 inside
GFS is first regarded as a target, then our method tests
whether the new feature 4 ∈ CPC(5). Since all subsets
of CPC(5) that make 4 conditionally dependent of 5,
Dep(4,5|φ) and Dep(4,5|1), feature 4 enters CPC(5),
and then CPC(5) = {1, 4}. Then the second phase re-
evaluates each feature within CPC(5) to remove false
positives. Our method regards feature 1 as a target.
As for testing whether feature 4 ∈ CPC(1), in a
similar way, we can obtain 4 ∈ CPC(1). Finally, our
method keeps the new arriving feature 4 as a target
and discovers CPC(4) from the set {5, 1}. When the
phase is over, CPC(5) = {1, 4}, CPC(1) = {5, 4}
and CPC(4) = {5, 1}.

(iv) Feature 2 arrives where GFS = {5, 1, 4, 2}, CPC(5) =
{1, 4}, CPC(1) = {5, 4} and CPC(4) = {5, 1}. In the
first phase, feature 5 inside GFS is first regarded as a
target, then our method tests whether the new feature
2 ∈ CPC(5). Since there is a subset within CPC(5)
to make Ind(5,2|1, 4) exist, we obtain 2 /∈ CPC(5).
Now, feature 1 is considered as a target. Since there

is a subset {4} within CPC(1) to make 2 /∈ CPC(1).
In a similar way, we obtain 2 ∈ CPC(4). In turn, our
method keeps the new arriving feature 2 as a target and
discovers CPC(2) from the set {5, 1, 4}. And then we
obtain CPC(2) = {5, 1, 4}. During the second phase,
we cannot remove any features from CPC(5), CPC(1)
and CPC(4). We remove features 5 and 1 from CPC(2),
since we can find that the subset {4} within CPC(2)
makes the terms Ind(2,5|4) and Ind(2,1|4) exist. Finally,
CPC(5) = {1, 4}, CPC(1) = {5, 4} and CPC(2) = {4},
CPC(4) = {5, 1, 2}.

In a similar way after the arrival of feature 3, the final outputs
are CPC(5) = {1, 4, 3}, CPC(1) = {5, 4}, CPC(4) = {5, 1, 2},
CPC(2) = {4} and CPC(3) = {5}.

From the above illustration, we can see that when a new
feature arrives, CDFSF needs to perform two conditional
independence tests between the new one and each feature inside
GFS in the first phase. This is very time-consuming when the
feature space is large. In order to improve the efficiency of
CDFSF, we propose an S-CDFSF algorithm by plugging the
symmetry check into CDFSF.

3.2. The S-CDFSF algorithm

With Theorem 3.1, the following two properties can easily be
obtained.

Property 1. In a faithful Bayesian network, if X ∈ PC(Y ),

then Y ∈ PC(X).

Property 2. In a faithful Bayesian network, if X /∈ PC(Y ),

then Y /∈ PC(X).

These properties show the symmetrical relationships between
parents and children in a faithful Bayesian network. With
these two properties, the proposed S-CDFSF algorithm uses
two strategies to improve its efficiency. One strategy is to use
Property 1 in the causal relationships discovering phase. In this
phase, S-CDFSF only regards each feature inside GFS as a
target T to test whether the new feature X belongs to CPC(T )
while the set CPC(X) is determined according to Property 1.
For example, assuming Y ∈ GFS, when a new feature X arrives
and X ∈ CPC(Y ), we directly get Y ∈ CPC(X) and do not need
to regard X as a target feature again.

The other strategy is to use Property 2 in the false-positive
removing phase. In a similar way, if X is removed from CPC(T ),
then T should also be removed from CPC(X) if T is inside
CPC(X) according to Property 2. The pseudo-code of S-CDFSF
is shown in Algorithm 2.

S-CDFSF performs as follows. In the first phase, when a new
feature Xi arrives, S-CDFSF selects the first feature inside GFS
as a target T , then tests whether Xi belongs to its CPC(T ). If
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so, Xi is added to CPC(T ), otherwise it is discarded. If Xi is
added, by Property 1, S-CDFSF also adds T into CPC(Xi).

If Xi is put into CPC(T ), the second phase is performed. In
this phase, S-CDFSF re-evaluates each feature within CPC(T )
and eliminates false positives from CPC(T ). For example, if
Y /∈ CPC(T ), S-CDFSF removes Y from CPC(T ). According
to Property 2, T should be removed from CPC(Y ) without
performing any tests on whether T is inside CPC(Y ). Then
S-CDFSF considers a next feature within GFS as a target feature
until the last feature inside GFS is visited.

Algorithm 2 The pseudo-code of S-CDFSF.
Input: Streaming features X
Output: CPC(X), X = {X1, X2, . . ., Xn}
Initialization

GFS = {}, CPC(X) = {};
repeat
/∗ The discovering phase for causal relations∗/

generate a new feature Xi;
for each feature T ∈ GFS

if ∀S ⊆ CPC(T ) s.t. Dep(Xi, T |S)

CPC(T ) = CPC(T ) ∪ Xi;
CPC(Xi) = CPC(Xi) ∪ T ;

end
/*The removing phase for false positives*/

for each feature Y ∈ CPC(T ), T ∈ GFS
if ∃S ⊆ CPC(T )\Y s.t Ind(Y, T |S)

CPC(T ) = CPC(T ) − Y ;
if T inside CPC(Y)

CPC(Y ) = CPC(Y ) − T ;
end

end
end

end
GFS=GFS ∪ Xi;

until no available features to arrive or a given threshold is
satisfied.

With the same conditions as in the trace of CDFSF, a trace of
S-CDFSF is as follows using the Bayesian network example in
Fig. 2.

(i) First, feature 5 arrives. The set GFS is empty excluding
feature 5 and so CPC(5) = {}.

(ii) Feature 1 arrives where GFS = {5, 1}, CPC(5) = {}
and CPC(1) = {}. In the first phase, feature 5 inside GFS
is first regarded as a target, and then we get 1 ∈ CPC(5).
According to Property 1, feature 5 is added to CPC(1).
After the second phase is performed, CPC(5) = {1},
and CPC(1) = {5}.

(iii) Feature 4 arrives where GFS = {5, 1, 4}, CPC(5) =
{1} and CPC(1) = {5}. In the first phase, feature
5 inside GFS is first regarded as a target, feature 4

enters CPC(5), and then CPC(5) = {1, 4}. According
to Property 1, feature 5 is added to CPC(4). Then the
second phase re-evaluates each feature within CPC(5)
to remove false positives. Next, feature 1 is regarded
as a target. We can get 4 ∈ CPC(1). At the same time,
we also get 1 ∈ CPC(4). Finally, CPC(5) = {1, 4},
CPC(1) = {5, 4} and CPC(4) = {5, 1}.

(iv) Feature 2 arrives where GFS = {5, 1, 4, 2}, CPC(5) =
{1, 4}, CPC(1) = {5, 4} and CPC(4) = {5, 1}. In the
first phase, we obtain 2 /∈ CPC(5) and 2 /∈ CPC(1). In a
similar way, we obtain 2 ∈ CPC(4). Thus, we obtain
CPC(2) = {4}. After the second phase, CPC(5) =
{1, 4}, CPC(1) = {5, 4} and CPC(2) = {4}, CPC(4) =
{5, 1, 2}.

After the arrival of features 3, the final outputs are the same
as those of CDFSF.

3.3. Time complexity analysis

The complexity of the algorithms CDFSF and S-CDFSF
depends on the time for the independence tests. For the G2 test
of independence for discrete variables, for example, we use, in
our experiments in Section 4, an implementation linear to the
sample size and exponential to the number of variables in the
conditional set. However, because the latter number is small in
practice, tests are relatively efficient.

Since CDFSF interleaves the two phases, the number of tests
consists of two parts: the number of tests of the discovering
phase and that of the removing phase. Assuming N features
arrive at time t , then the number of conditional independence
tests of CDFSF is approximately O(N2(|CPC|k|CPC| +
N2k|CPC|)). Since we plug the symmetry check into S-CDFSF,
in the discovering phase S-CDFSF does not discover CPC of a
new feature from the features within GFS. At the mean time,
in the removing phase, S-CDFSF does not need check false
positives in CPC of a new feature. Thus, the time complexity
of S-CDFSF is approximately O(N2|CPC|k|CPC|), where k is
the maximum allowable size that a conditioning set may grow
and |CPC| is the largest size of the set CPC(T ) over all arrived
features. Thus, S-CDFSF is more efficient than CDFSF.

4. EXPERIMENTAL RESULTS

4.1. Experimental setup

To simulate the scenario of streaming features, we apply our
algorithms to the datasets used in the traditional settings, that
is, those of fixed features, but the features steam in one by one
over time. Since there is no related work about exploring causal
relationships in the context of streaming features, in order to
validate our algorithms, we compare them with the state-of-
the-art local learning algorithms: HITON_PC and MMPC (as
described in detail in Section 5) which are applied to standard
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Exploring Causal Relationships 7

TABLE 1. Summary of selected networks.

Bayesian network Number of variables

Child 20
Alarm 37
Insurance10 270
Child10 200
Gene 801

settings where all features are available before learning (the
software is available on the Web [24]).

We evaluate the four algorithms using data sampled from
probability distributions of Bayesian networks used in real
decision support systems that capture a wide variety of real-
life applications (medicine, gene, device troubleshooting and so
on): Child [25], Insurance [26] and Alarm [27]. The networks
insurance10 and child10 were created by tiling 10 copies of the
real Bayesian networks, the insurance network and the child
network, respectively, in a way that retains their structural and
probabilistic properties, hoping that the simulated networks
will exhibit the same characteristics as the real Bayesian
network tiles [28]. Gene was constructed by Tsamardinos et
al. [14] on gene expression microarray data [29] with the same
procedure as in Friedman et al. [30]. Since the true structure of
each network is known, there exists a rigorous gold standard
for assessing the performance of each algorithm, and then
five benchmark Bayesian networks are selected as shown in
Table 1.

The experiments were conducted on a computer with
Windows XP, 2.6 GHz CPU and 2 GB memory. We evaluate the
algorithms using the following metrics. Since the HITON_PC
algorithm gave extremely similar results as the MMPC
algorithm, we adopt the MMPC algorithm in our experiments.

(i) Precision, the number of true positives (real parents
or children in a real Bayesian network) in the output
divided by the number of features in the output.

(ii) Recall, the number of true positives in the output divided
by the number of true positives in a test Bayesian
network.

(iii) Distance, combining precision and recall to measure the
Euclidean distance from the perfect precision and recall.

distance =
√

(1 − precision)2 + (1 − recall)2.

(iv) Efficiency: we employ two metrics, the execution time
and the total number of conditional independence tests.

(v) Asymptotic behavior: we provide a preliminary study on
the asymptotic behavior of both CDFSF and S-CDFSF
as the number of features increases. The purpose of this
study may help us to decide whether to stop an algorithm
at some point (e.g. when no more features is available)
or to continue until the last feature is added.

The conditional independence tests in our implementation are
G2 tests and the parameter α (alpha) is a statistical significance
level for the independence tests which equals to 0.01 and 0.05
in our experiments.

4.2. Comparison of the metrics of precision, recall and
distance

We run the algorithms, including CDFSF, S-CDFSF and
MMPC, with each feature in each Bayesian network as a target
of interest, and then report the average precision, recall and
distance over all features for each Bayesian network.

With the value of α up to 0.01, Fig. 3 reports the experimental
results by the three algorithms on five networks with different
sample sizes. From Fig. 3, we can draw the following
conclusions:

(i) CDFSF vs. S-CDFSF. On small networks, like child,
alarm, child10 and insurance10, S-CDFSF is highly
competitive with CDFSF. On a large network, like
gene, with a small sample size, the performance of
CDFSF is superior to S-CDFSF. The explanation is that
when the size of samples is smaller than the size of
dimensions, some conditional independence tests could
be unreliable. Thus, the principle of symmetry (Property
1 and Property 2) used in the S-CDFSF algorithm could
fail. But when the number of samples is much larger
than the number of dimensions, S-CDFSF is highly
competitive with CDFSF, even superior to CDFSF
on the alarm network. Assuming that all conditional
independence tests are reliable, the performance of
S-CDFSF might be very competitive with CDFSF.
For example, when the sample size is up to 2000,
the performance of S-CDFSF is almost the same
as CDFSF.

(ii) Our algorithms vs. MMPC. On the precision metric,
our algorithms achieve a higher precision with various
sample sizes on most networks. Our algorithms usually
return fewer false positives. On the recall metric, our
algorithms are a little lower than the MMPC algorithm,
especially when the number of samples is smaller than
the number of dimensions. The explanation is that with
streaming features, without the global information of all
features, our algorithms cannot discover a best candidate
for each target of interest from all features at each time
like MMPC, but they can find a ‘best so far’candidate for
each target of interest. But when the sample size is large,
our algorithms are competitive with MMPC. Combining
the precision and recall metrics, our algorithms even
achieve a shorter distance than the MMPC algorithm on
some networks.

Figure 4 reports the experimental results when the value of
α is up to 0.05. The observations are as follows:
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FIGURE 3. Experimental results for three algorithms with α = 0.01.

(i) CDFSF vs. S-CDFSF. From Fig. 4, we can see that the
performance of our two algorithms is similar with α up
to 0.01. S-CDFSF is highly competitive with CDFSF.

(ii) Our algorithms vs. MMPC. On the precision metric,
our algorithms achieve a higher precision with various
sample sizes on all networks. On the recall metric, our

algorithms are still lower than the MMPC algorithm
when the sample size is up to 200 or 500. But when the
sample size is up to 2000, our algorithms are highly com-
petitive with MMPC on all networks. Combining the
precision and recall metrics, our algorithms get a shorter
distance than the MMPC algorithm on all networks.
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FIGURE 4. Experimental results for three algorithms with α = 0.05.

Table 2 summarizes the average precisions, recalls and
distances of S-CDFSF, CDFSF and MMPC on all five networks
with 200, 500, 2000 and 5000 samples, respectively, under the
value of α up to 0.01. In the table, A/B/C denotes the results of
S-CDFSF, CDFSF and MMPC, respectively.

From Table 2, we can see that the average precisions of our
two algorithms on all five networks are higher than those of
MMPC while MMPC gets higher average recalls than our two
algorithms. Therefore, those three algorithms all get competitive
average distances on five networks.
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10 K. Yu et al.

TABLE 2. Average precisions, recalls and distances of three algorithms on five networks (α = 0.01).

Number of
samples Precision Recall Distance

200 0.7373/0.7436/0.6351 0.6271/0.6606/0.7259 0.5067/0.4696/0.5098
500 0.8500/0.8729/0.8126 0.7459/0.7794/0.8033 0.3387/0.2909/0.3214

2000 0.9123/0.9098/0.9131 0.8520/0.8657/0.8961 0.2034/0.1903/0.1686
5000 0.9400/0.9360/0.9212 0.9167/0.9110/0.9203 0.1392/0.1315/0.1429

200 500 2000 5000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
ec

al
l

Sample size
200 500 2000 5000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
ec

al
l

Sample size

200 500 2000 5000
0.5

0.6

0.7

0.8

0.9

R
ec

al
l

Sample size
200 500 2000 5000

0.8

0.85

0.9

0.95

1

R
ec

al
l

Sample size

200 500 2000 5000
0.75

0.8

0.85

0.9

0.95

1

R
ec

al
l

Sample size

alpha=0.05

alpha=0.01

alarm

child

child10

geneinsurance10

FIGURE 5. The performance of CDFSF with different values of α.

4.3. An analysis of CDSFS algorithms with different
values of α

We also have an analysis of the influence of different values of
α on the recall metric, as shown in Fig. 5. Our experimental
results reveal that with a small sample size, the performance of
CDSFS is improved a little when the value of α is up to 0.01.
With a large sample size, the performance of CDSFS is little
sensitive to the value of α. Since the S-CDSFS algorithm gave
extremely similar performances as the CDFSF algorithm, we
do not report the results of S-CDFSF with different values of α

on the recall metric.

4.4. Comparison of running time

In this section, we employ two metrics to compare our
algorithms in terms of the running time. The first metric

indicating computational efficiency is the total number of
conditional independence tests, while the second metric is the
execution time.

Since the MMPC algorithm was implemented in the
traditional scenario in Matlab codes while our algorithms
were performed in the context of steaming features in C
codes, a time–performance comparison between them was not
conducted. However, we still give a comparison of the time
complexity of MMPC as follows. In the worst case, MMPC
will calculate the association of every variable with the target
conditioned on all subsets of CPC. Thus, the total number of
tests is bounded by O(N22|CPC|) for all features while instead
of conditioning on all subsets of the CPC, the number of
tests is bound by O(N2|CPC|k+1) conditioning on all subsets
of sizes up to k [14]. The time complexity of S-CDFSF is
approximately O(N2|CPC|k|CPC|) where |CPC| is always very
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TABLE 3. Normalized numbers of conditional independence tests
with α = 0.01.

Sample size

Networks 200 500 2000 5000

Child 0.57 0.61 0.72 0.70
Alarm 0.49 0.45 0.49 0.47
Child10 0.54 0.53 0.54 0.58
Insurance10 0.52 0.52 0.53 0.55
Gene 0.51 0.50 0.48 0.49

TABLE 4. Normalized numbers of conditional independence tests
with α = 0.05.

Sample size

Networks 200 500 2000 5000

Child 0.54 0.59 0.70 0.71
Alarm 0.45 0.47 0.47 0.47
Child10 0.55 0.56 0.53 0.56
Insurance10 0.50 0.50 0.51 0.51
Gene 0.51 0.49 0.48 0.49

small. Thus, the time complexity of S-CDFSF is almost the same
as MMPC.

Tables 3 and 4 show the normalized numbers of the
conditional independence tests performed for the CDFSF and S-
CDFSF algorithms that we have implemented when the values
of α are up to 0.01 and 0.05, respectively. The normalized
number of the conditional independence tests is the number
of conditional independence tests performed by S-CDFSF for a
particular sample size of a network divided by CDFSF’s tests on
the same dataset. The normalized value is smaller than the one
corresponding to S-CDFSF performing fewer tests than CDFSF.
From these two tables, we can see that, in general, S-CDFSF
performs fewer tests than CDFSF.

Tables 5 and 6 compare the running time of CDFSF
and S-CDFSF with the values of α up to 0.01 and 0.05,
respectively. In these two tables, A and B denotes the running
time of S-CDFSF and CDFSF, respectively. From the tables,
we can see that S-CDFSF is more efficient than CDFSF,
especially with large sample sizes. Therefore, we can see that
S-CDFSF is not only time-efficient, but also exhibits a highly
competitive performance with CDFSF, especially with large
sample sizes.

4.5. An analysis of the asymptotic behavior of three
algorithms

With streaming features, the following question is also
interesting: how close to the real CPCs are the CPCs provided

TABLE 5. Running time (seconds) of S-CDFSF vs. CDFSF with
α = 0.01.

Sample size

Networks 200 500 2000 5000

Child 0/0 0/0 0/0 0/1
Alarm 0/0 0/0 0/1 3/7
Insurance10 1/2 3/4 11/21 61/113
Child10 0/1 1/2 8/13 51/83
Gene 10/19 25/46 127/268 1613/3293

TABLE 6. Running time (seconds) of S-CDFSF vs. CDFSF with
α = 0.05.

Sample size

Networks 200 500 2000 5000

Child 0/0 0/0 0/0 0/1
Alarm 0/0 0/0 1/2 4/9
Insurance10 1/2 3/5 14/27 53/109
Child10 1/1 1/3 9/17 67/116
Gene 12/22 32/64 191/410 2306/4668

by CDFSF and S-CDFSF as the number of features increases?
Studying this question may help us to decide whether to stop
each of these algorithms at some point (e.g. when calculating
the next feature becomes too expensive or no more available
features arrive) or to continue until the last feature is added.
This study can also help us to determine how to build CPC
sets gradually as the time goes on. The precision metric
evaluates the true positives in the output, that is, the number
of real parents and children in the output, and the recall
metric assesses how close to the real CPCs in a real Bayesian
network are the CPCs in the output provided by CDFSF
and S-CDFSF. Thus, those two metrics can characterize the
gradual building process of CPC sets as the number of features
increases.

In this section, we study this asymptotic behavior of our two
algorithms using precision and recall metrics to dynamically
assess CPC sets by stages. At the same time, compared with the
proposed algorithms, the asymptotic behavior of MMPC is also
studied. In this situation, we run MMPC separately many times
for retrieving the CPC set of each available feature so far after
the introduction of each feature.

Figure 6 shows how the average precision and recall measures
of all features in a real Bayesian network change as the number
of the total features increases, when the parameter α is up to
0.01 and the number of samples is set 5000. From Fig. 6, we
can see how much worse our algorithms are on the precision
and recall metrics to do the gradual buildup of CPC set of each
feature available so far as time goes on. Thus, we can decide
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whether to stop each algorithm at some point when retrieving
the CPC set of each available feature so far reaches satisfied
thresholds of the two metrics.

From Fig. 6, we can see that, at every stage, our two
algorithms have a higher precision than MMPC except for the
child network. On the recall metric, as the number of features
increases, the numbers of real parents and children found by
the three algorithms gradually approach the number of parents
and children in a real Bayesian network. Moreover, the recalls
of our two algorithms are almost the same as that of MMPC.
Thus, our two algorithms can efficiently deal with the discovery
problems of direct causes and effects with streaming features
and we can dynamically control the process of generating
features according to the asymptotic behavior of our algorithms
and some given thresholds.

In summary, from the precision, recall and distance metrics,
under the assumption that all independence tests are reliable,
S-CDFSF is highly competitive with CDFSF. Compared with
MMPC, our algorithms are superior on most of the networks
on the precision and distance metrics. On the recall metric, our
algorithms are inferior to MMPC when the sample size is small
because of lacking the global information of the feature set. But
our algorithms are highly competitive with MMPC with large
samples.

Moreover, on time efficiency, S-CDFSF is not only efficient,
but also exhibits a highly competitive performance with CDFSF,
especially with large sample sizes. Compared with MMPC, the
time complexity of S-CDFSF is also almost the same.

Finally, we can conclude that our algorithms can not only
learn direct causal relationships with streaming features well,
but also dynamically control the learning process given a user
pre-defined threshold when features stream in over time, as
shown in Fig. 6.

5. RELATED WORK

Learning Bayesian networks is one of the most common
methods to explore the causal relationships in the observed
data. Structure learning of Bayesian networks is broadly
classified into two classes of methods: score-based methods
and constraint-based methods. Score-based methods compute
the probability of the data D given a structure. Exhaustive model
selection involves scoring all possible network structures on a
given set of features and then picking the structure with the
highest scores [7, 9, 11–13, 31–33]. Constraint-based methods
use independence/dependence tests between two features to
add/remove edges between features and orient them [4, 8, 10].
Typically, the tests are performed using statistical or information
theoretic measures.

Structure learning of Bayesian network methods can also be
classified as global or local learning approaches. The global
learning approach attempts to uncover a complete Bayesian
network over all of model features, but can only deal with no

more than 300 features. Moreover, learning a full Bayesian
network structure is an NP-hard problem from data, as the
number of directed acyclic graphs is exponential to the number
of variables, and an exhaustive search is intractable [34–36].

The recent explosion of high dimensionality data sets in
the biomedical realm and other domains has posed a great
challenge to existing global learning algorithms, since they do
not reliably scale up to thousands of variables in a reasonable
time [14]. Thus, the local learning approach without learning
a full Bayesian network in advance has received considerable
attention in machine learning [14–17]. In general, local learning
as an effective means when dealing with hundreds of thousands
of features is emphasized on two specific tasks: (i) identification
of features that are direct causes or direct effects of the target
of interest and (ii) discovery of the Markov blanket of the target
of interest. With the direct causes or direct effects, or Markov
blankets of all features by a local learning algorithm, we can
first get the skeleton (i.e. edges without their orientation) of a
Bayesian network and then orient the skeleton using a greedy
search.

With a faithful Bayesian network, the first task is to find
the parents and children of a target of interest (PC(T ) for
short). Two major algorithms HITON_PC and MMPC for
the discovery of PC(T ) were introduced by Aliferis et al.
[37] and Tsamardinos et al. [38], respectively. The Max–Min
Parents and Children (MMPC) algorithm discovers the parents
or children of a target of interest using a two-phase scheme.
MMPC first includes in CPC (candidate parents and children)
the variable with the highest univariate association with T .
MMPC chooses to include next into CPC the variable that
exhibits the maximum association with T conditioned on the
subset of CPC that achieves the minimum association possible
for this variable. Intuitively the heuristic is the following:
select the variable that, despite our best efforts to make it
independent of T (i.e. considering the minimum association
conditioned on all possible subsets of CPC) has the highest
such minimum association with T among all other candidate
variables. In the second phase, MMPC examines whether each
variable of CPC can be d-separated from T by conditioning
on all possible subsets of CPC. HITON_PC is similar to
MMPC and also has a two-phase scheme. The differences are
that the former interleaves the two phases and the heuristic
used in the first phase is simpler than the one used by
MMPC.

Both MMPC and HITON_PC can only discover the
parents or children of one target at each run. If we get the
parents or children for all features, we need to run MMPC
or HITON_PC for each feature independently. Meanwhile,
MMPC and HITON_PC identify only the feature set of parents
or children of one target of interest without distinguishing
between the two.

For the second task, the discovery of the Markov blanket of a
target T (MB(T ) for short) is to find the set of parents, children
and parents of the children for the target of interest in a faithful
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Bayesian network. Margaritis and Thrun [17] first invented a
sound algorithm, GS for discovery of MB(T ). Based on the GS
algorithm, an IAMB algorithm was presented which guarantees
to find the actual Markov blanket given enough training data and
is more sample efficient than GS [39]. However, it still requires
a sample size exponential in the size of the Markov blanket.
Based on the IAMB algorithm and HITON_MB derived from
HITON_PC, MMMB developed from MMPC was introduced
without requiring samples exponential to the size of the Markov
blanket. Following the idea of MMMB and HITON-MB, PCMB
was also proposed to conquer the data inefficiency problem of
IAMB [18].

6. CONCLUSIONS

Although there have been many studies on causal discovery,
there is no related work for causal discovery in the context
of streaming features. In this paper, we have studied this new
research problem and presented two novel algorithms. To the
best of our knowledge, this is the first attempt to address
causal discovery from steaming features. Since statistically
distinguishing between direct causes and direct effects of a
target feature of interest is a hard problem, in this work, we
deal with the problem of identifying the feature set of both the
direct causes and direct effects of a target feature from streaming
features without distinguishing between the two.

In order to demonstrate the effectiveness of our algorithms,
we compared them with the state-of-the-art algorithm of causal
discovery, MMPC, which assumes that all features are known
in advance. The experimental results showed that our methods
are highly competitive with the MMPC algorithm and also
revealed the effectiveness of our algorithms for the task of causal
discovery from streaming features. Meanwhile, many issues for
causal discovery from streaming features remain wide open. We
list here two problems which, in our opinion, deserve further
investigations. One is that our work only identifies both the
direct causes and direct effects of the targets of interest, and
how to extend our work for dynamical construction of Bayesian
network structure for real-world data sets for classification with
streaming features needs to be further explored. The other is to
improve the recall metric of our methods on data sets with a
small sample size.
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