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Abstract Modeling spatially distributed phenomena in terms of its control-
ling factors is a recurring problem in geoscience. Most efforts concentrate on
predicting the value of response variable in terms of controlling variables either
through a physical model or a regression model. However, many geospatial sys-
tems comprises complex, nonlinear, and spatially non-uniform relationships,
making it difficult to even formulate a viable model. This paper focuses on
spatial partitioning of controlling variables that are attributed to a particular
range of a response variable. Thus, the presented method surveys spatially dis-
tributed relationships between predictors and response. The method is based
on association analysis technique of identifying emerging patterns, which is
extended in order to be applied more effectively to geospatial data sets. The
outcome of the method is a list of spatial footprints, each characterized by a
unique “controlling pattern”—a list of specific values of predictors that locally
correlate with a specified value of response variable. Mapping the controlling
footprints reveals geographic regionalization of relationship between predictors
and response. The data mining underpinnings of the method are given and its
application to a real world problem is demonstrated using an expository ex-

Tomasz F. Stepinski
Lunar and Planetary Institute
Houston, TX 77058
E-mail: tom@lpi.usra.edu

Wei Ding
Department of Computer Science
University of Massachusetts Boston
Boston, MA 02125-3393 E-mail: ding@cs.umb.edu

Christoph F. Eick
Department of Computer Science
University of Houston
Houston, TX 77004
E-mail: ceick@uh.edu



2

ample focusing on determining variety of environmental associations of high
vegetation density across the continental United States.

Keywords Predictors-Response Relationship, Association Analysis, Mapping
Predicting Relationship, Vegetation Density, Data Mining

1 Introduction

A common problem in geoscience is to model an observed phenomenon in terms
of its likely predictors. Because physical models are usually difficult to formu-
late, the data-centric regression modeling approach is prevalent. The most
popular regression models are global—a single predictive formula is holding
over the entire data space. However, in the geospatial context, where variables
are often mutually interdependent in a spatially distributed fashion, assem-
bling a viable global model can be very difficult. One solution is to construct
a model in the form of a regression tree [30], which models different subsets of
the data set by different linear regressions. This approach is frequently used
in geoscience. For example, in studying contamination of soil by heavy metals,
environmental engineers attempt to model occurrence of contaminant on fac-
tors such as soil parameters, and catchment properties [18,15,28]. Similarly,
hydrologists are modeling [26,24] concentration of nitrate and/or phosphorus
in stream water in terms of factors such as antecedent precipitation index,
air and water temperatures, amount of discharge etc. Biologist model [11,10]
occurrence of different species of plants based on co-occurrence of environ-
mental factors such as climate, landform, soil type, geomorphology and level
of urbanization, and, in agriculture, the crop yields are modeled [16] in terms
of climate and soil properties. In general, these (and similar) studies have two
different but related goals: (1) to obtain a classifier to be applied for objects for
which the values of predictors are know but the values of response are not, (2)
to accept or reject a regression model as a good description of the relationship
between predictors and response. However, it has been pointed out [29] that
the regression tree model can also be used for mapping spatial distribution
of objects on the basis of the leaves of the tree to which they belong. The
resulting map reveals a geographic partition of the data set on the basis of dif-
ferences in relationships between predictors and response. For example, in [29]
it was demonstrated that the same level of richness of native species of birds
in Oregon is associated with different set of predictors (different leaves in the
regression tree) mapped to different geographical parts of Oregon. Thus, such
methodology can reveal a diversity of predictors leading to the same response.

In this paper we propose a new, fundamentally different approach to the
discovery of geographic regionalization of relationships between predictors and
response. Presented method follows our earlier efforts [7,27] to develop means
for studying relationships between various spatial variables using a branch
of data mining techniques called association analysis. The goal of association
analysis is to discover rules (or patterns) that specify affinity of objects in a
data set. Association analysis was originally developed [1] to analyze so-called
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market basked transactions but was since applied to other domains, such as
bioinformatics, medical diagnosis, and Web mining. Because of its origins, the
association analysis works natively on categorical, non-spatial variables and
needs to be modified for applications in geoscience. On the other hand, the
analysis is completely data-centric, it requires no modeling assumptions, and
is capable of yielding results based on simple, clearly understood principles.

Our core idea is as follows. First, we assemble a geospatial data set where
objects are the pixels carrying local values of predictor and response variables.
Throughout this paper we will also refer to predictors as “explanatory vari-
ables,” and to response as “class variable.” Second, we mine this data set for
frequent emerging patterns. Note that in the context of this paper a pattern
refers to a composition of non-spatial attributes (explanatory variables) and
not to a spatial object which we refer to as a footprint. Initially introduced
by [9], emerging patterns are the patterns that contrast two different data
classes; they are frequent in one data class but rare in another data class. In
our context, we divide the range of response variable into “interesting” (re-
ferred to as phenomenon) and “other” and mine for emerging patterns with
respect to the phenomenon. Such emerging patterns are controlling patterns of
the phenomenon because they are associated predominantly with its presence.
Different patterns represent different combinations of predictors leading to a
phenomenon. Mapping the footprints of controlling patterns revels regional-
ization and diversity of predictors leading to the same phenomenon.

The rest of the paper is organized as follows. Section 2 gives a brief in-
troduction into emerging patterns. In Section 3 we give a detailed description
of our methodology. This includes spatially-specific extensions to a standard
technique of association analysis and methods for pre-processing original data
to categorical form required by the association analysis. In Section 3 we present
an application of our methodology to an expository example pertaining to en-
vironmental correlates of high vegetation density across the continental United
States. Conclusions and future research directions are given in Section 5.

2 Emerging Patterns

Emerging patterns are patterns whose supports increase significantly from one
data set to another [9], hence they are a useful tool to capture a contrast be-
tween two different data sets or between two classes within a single data set.
Emerging patterns have been successfully applied in many domains including
medical science [2,13,12,14], monitoring network traffic [5], data credibility
analysis [20], etc. For example, in medical studies, a single data set of subjects
(R) can be divided into two mutually exclusive and exhaustive classes: sub-
jects showing symptoms of a disease (D) and those in a control group (C) free
from the symptoms. The patterns to be considered consist of various factors
that can potentially lead to the development of the disease. The task is to
mine for emerging patterns that are frequent in D but absent or significantly
less frequent in C. Taken collectively, the emerging patterns identify all com-



4

binations of risk factors leading to disease development and thus contribute
to the understanding of the root causes of the disease.

Our method is based on an analogous application of emerging patterns but
to the spatial data sets. The previous application of emerging pattern to spa-
tial data sets [4] concentrated on a small number of objects making possible
to store their spatial interactions in a relational table. In this paper we apply
emerging patterns to raster data sets which call for a different approach. First,
because most geospatial rasters contain continuous variables, these variables
need to be categorized in order to be subjected to association analysis. We
propose a categorization procedure that can accommodate non-Gaussian dis-
tributions and assures that all variables are categorized in a correspondent
manner. Second, we propose a modification to the standard definition of pat-
tern support in order to alleviate arbitrariness in dividing the class variable
on the basis of discretization.

3 Methodology

Modern geospatial data sets originate from remote sensing and are given in
the form of rasters. In such context, an object in a database is a raster cell or
a pixel. Hereafter, we will use the terms objects and pixels interchangeably.
Older data sets originate from manual measurements and are given in the
form of tables. In such data sets, an object is a table entry. Our method
works equally well with raster or table data sets; if necessary we perform a
table to raster conversion. In most cases the measurements are real numbers
from a continuous domain. Because the emerging-pattern technique requires
categorical data, the first step in our method is to categorize the data.

3.1 Data Preprocessing

The numerical values of explanatory variables come from their respective dis-
tributions that could have quite different functional forms. Therefore, it is
necessary to normalize the values of different variables to the common mean-
ing. The two most important properties of any distribution is its center (µ)
that indicates location of the bulk of the data, and the scale (σ) that indicates
dispersion around the center. For variables having bell-shaped distributions,
µ and σ can be easily estimated using the mean and the standard deviation,
respectively. However, the mean and the standard deviation are biased esti-
mates of µ and σ for variables with skewed distribution of their values. For
µ, a robust estimator is the trimmed mean calculated by discarding a certain
percentage of the lowest and the highest values. Note that the median, x̃, is
a particular example of the trimmed mean. For σ, a robust estimator is a
function Sn introduced by [23]:

Sn = c medi{medj |xi − xj |} (1)
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where c is a constant having the value of 1.1926, and med is the median
operator. Sn, whose numerical complexity is O(n log n) [23], is a measure of
dispersion around the center that works equally well for symmetric as well as
asymmetric distributions.

In order to normalize the values of explanatory variables to a common
meaning, we transform them to their modified z-scores (x− x̃)/Sn. We refer to
this expression as the “modified” z-score because it has the same form as an
ordinary z-score, but with the values of the mean and the standard deviation
replaced by the values of x̃ and Sn. Thus, the modified z-score is the number
of Sn that a given value of a variable is above or below the median calculated
from the global distribution of this variable. The positive values of z-score
indicate upward deviations from the median, whereas the negative values of
z-score indicate downward deviations from the median. Two different variables
with the same z-score are “equal” in the sense that both are deviated by the
same relative amount from the centers of their distributions. The data sets
are categorized by first transforming them to their modified z-scores and then
assigning the z-scores into n bins using n−1 split points. The z-score of a given
variable is converted to an integer number corresponding to the bin to which
it belongs. This transforms all real-valued data sets into categorical data sets
with a common range.

3.2 Problem Definition

The fusion of all data sets relevant to a given task results in a geospatial data
set R—a raster where each pixel is an object having a form of a tuple

r = {x, y; a1, a2, ..., am; cl} (2)

where the first two entries (x, y) are spatial coordinates, the next m entries
a1, a2, ..., am are categorical values of m explanatory variables that can po-
tentially exert control over the class variable, and the last entry cl is a bi-
nary variable that indicates whether the class variable has a value of interest
(cl = 1) or not (cl = 0). Disregarding the location information (x, y), each
object in R can be viewed (from the point of view of association analysis) as a
transaction {a1, a2, ..., am; cl}. All transactions are classified into two mutually
exclusive and exhaustive sets: data set D grouping transactions with cl = 1
(phenomenon) and data set C grouping transactions with cl = 0. A pattern
(itemset) is a set of items contained in a transaction. For example, assum-
ing m = 10, P = {2, , , , 3, , , , , ; 1} is a pattern indicating that a1 = 2,
a5 = 3 , and cl = 1 while the values of all other variables are not specified.
A transaction supports the pattern P if it has specified values of indicated
attributes. The footprint of the pattern P is the set of pixels corresponding
to transactions that support the pattern. For example, Fig. 1b illustrates the
footprint of a pattern { , , , , , , , , , ; 1} where cl = 1 indicates the class
of “high” values of vegetation density.

We defined a controlling pattern as:
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Definition 1 A controlling pattern (CP) P in D is an itemset such that
its growth ratio CPDP fulfills the criterion

CPDP =
sup(P,D)
sup(P, C) ≥ ρ

where ρ is a user-defined minimum growth-ratio threshold, and sup(P,D) and
sup(P, C) are the support of a pattern P in D and C, respectively. Pattern
support is basically a measure of the size of its footprint; we give a formal
definition of sup() in the following subsection. We refer to such itemsets as
controlling patterns, because they correspond to particular values of certain
explanatory variables that happen to be associated in disproportionally large
numbers with cl = 1 objects. It is therefore expected that they constitute
controlling factors for the distribution of cl = 1 objects.

3.3 Calculating Pattern Support

Let’s F be a set of transactions (corresponding to a set of pixels) which sup-
port a given pattern P , and G be a set of transactions (corresponding to the
remaining set of pixels) which do not support P . We define the following sets:

– D+ = D ∩ F , pixels of interest that support P
– D− = D ∩ G, pixels of interest that do not support P
– C+ = C ∩ F pixels of no interest that support P
– C− = C ∩ G pixels of no interest that do not support P

The support of P in data sets D and C is defined as:

sup(P,D) =
|D+|
|D| , sup(P, C) =

|C+|
|C| (3)

Thus,

CPDP =
sup(P,D)
sup(P, C) =

|D+|/|D|
|C+|/|C| (4)

where | | denotes the number of elements in a set. Notice that |D+|+ |D−|+
|C+| + |C−| = |R|. Discovering controlling patterns is a matter of evaluating
CPDP given by Eqn. 4 for a set of viable patterns and selecting those patterns
that have CPDP ≥ ρ.

Without loss of generality our method models one aspect of the class vari-
able at the time. Thus, the set D is defined by an arbitrary threshold (or
thresholds) that identifies this aspect. For example, in the case study of the
vegetation density, D may correspond to pixels having “high” density of vege-
tation. In our application “high” density of vegetation is defined by belonging
to the two highest z-score categories (see Section 4). Fig. 1(a) depicts the distri-
bution of vegetation density in the United States. Fig. 1(b) depicts a footprint
of D corresponding to a high density of vegetation. Note that a smooth tran-
sition from high to low vegetation density is observed in Fig. 1(a), but the
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footprint of D in Fig. 1(b) has artificially sharp and complicated boundary—
an artifact of data discretization.

In order to offset the effects of data discretization, we redesign a definition
of pattern support without changing the footprints of the patterns themselves.
We observe that due to the spatial continuity of class variable data, many pixels
nearby the footprint of D are expected to have values of class variable, that
although lower than a required threshold, are nevertheless quite close to this
threshold. We propose to incorporate this observation into a new definition of
sup(P,D). Specifically, we propose a following modification of |D+| that we
denote by |D+|∗:

|D+|∗ =
∑

o∈F
w(o,D) (5)

where o is a pixel belonging to F and w(o,D) is a weight determined on the
basis of spatial proximity of this pixel to D. The weight is calculated using the
following formula:

w(o,D) =
{

1 o ∈ D
Ψ(h(o,D)) o ∈ C (6)

The influence function Ψ determines the weights for objects outside the foot-
print of D. In the traditional definition of pattern support, Ψ() = 0 and
|D+|∗ = |D+|. However, when working with spatially extended data, an in-
fluence function Ψ() 6= 0 better captures the character of the data; in this
paper, we use a half normal distribution as the influence function:

Ψ(ξ) = exp(
−θ2ξ2

π
) (7)

where θ, θ ∈ [0,∞), is a free parameter. The function Ψ determines the weights
for the objects that are within the footprint of the pattern but outside the
footprint of D; the farther a pixel o is from D, the less it counts toward the
pattern support. The function h(o,D) used by the influence function Ψ is a
special case of Hausdorff distance [17] in the spatial domain. It measures the
distance between a pixel o and the data set D as the distance between o and
the the nearest pixel in D.

Fig. 2 illustrates the concept of weights as applied not to a particular pat-
tern P but rather to the entire data set (F in Eqn. 5 is replaced by R). The
vegetation density data is used. The high vegetation density regions (D) are
surrounded by nearby pixels that have weights decreasing with increasing dis-
tance from the region. The smaller the value of θ, the more surrounding pixels
will be taken into account. Thus, using our measure of support, the support
of the pattern P “in” D is increased (|D+|∗ > |D+|) if a significant number of
pixels close to the footprint of D conform to this pattern. Simultaneously, in
such a situation, the support of P in C must be decreased by the same amount.
This is captured by a modification of |C+| by a measure denoted by |C+|∗

|C+|∗ =
∑

o∈F
[1− w(o,D)] (8)
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Finally, the controlling patterns are mined using the new definition of pat-
tern support,

CPDP
∗

=
|D+|∗/|D|
|C+|∗/|C|

(9)

Note that in Eqn. 9, we do not modify the values of |D| and |C|, and the total
number of pixels is preserved: |D+|∗ + |D−|+ |C+|∗ + |C−| = |R|.

3.4 Measuring Spatial Aggregation of Footprints

Spatial character of controlling-pattern footprints differs from one pattern to
another; patterns with more aggregated footprints are arguably more likely
to reveal important controlling factors than the patterns with more disperse
footprints because a pattern extending over a well-defined region is more likely
to correspond to coordination of factors due to specific regional conditions
whereas a pattern extending over dispersed pixels is more likely to correspond
to coordination due to coincidence. We use Ripley’s K function [6], a statistical
method frequently applied to point pattern analysis, to quantify degree of
footprint aggregation. Without considering edge effects, Ripley’s K function is
estimated as [6]:

K̂(d) =
F

N2

N∑

i=1

N∑

j=1,j 6=i

Id(dij) (10)

where N is the number of pixels in the footprint of the pattern P , dij is
the distance between the ith and jth pixel, Id(dij) is the indicator function
which is 1 if dij ≤ d and 0 otherwise, F is the area of a footprint, and d is a
free parameter corresponding to a distance scale. In order to infer clustering
properties of a footprint, the value of K̂(d) is compared to the value calculated
for a completely random (homogeneous Poisson process) ensemble of points
that is Ko(d) = πd2,

kP =

√
K̂(d)
Ko(d)

=

√
K̂(d)

π

d
(11)

where kP > 1 indicates spatial aggregation, and kP < 1 indicates spatial
segregation. The larger value of kP indicates a more aggregated pattern P .

3.5 Algorithm for Discovering Controlling Patterns

We have designed and implemented an algorithm called mineCP to identify
the controlling patterns. We mine for controlling patterns from amongst all
the patterns that are frequent in D. In the first step, the mineCP algorithm
(see Algorithm 1) finds these frequent patterns using a user-defined support
threshold. We use an efficient depth-first search method introduced by Burdick
et al. in [3] to find the frequent patterns. In the second step, the algorithm
calculates the modified pattern support.
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The most computationally intensive part of our method is to calculate
distance h(o,D) for each pattern Pi. To circumvent this problem, we introduce
a distance matrix M that is spatially co-registered with the raster R. The
distance matrix M is pre-calculated to record the distance values of nearby
pixels to the footprint of D. Specifically, the cells in M that support at least
one pattern (o ∈ ∪Fi) and are also located in D are set to the value of 1. For
the remaining cells we calculate Hausdorff distance h(o,D), using steps 4-7
of the algorithm mineCP. A gain in performance is achieved because pattern
footprints often overlaps, and the distance is only calculated at most once for
each pixel in C. In steps 9-10, we calculate |D+|∗ and |C+|∗ (see Eqn. 5 and Eqn.
8) for each frequent pattern Pi, using the pre-calculated values in the distance
matrix M. In step 11, we calculate kPi to evaluate an aggregation a frequent
pattern Pi. Finally, frequent patterns whose growth ratios are greater than the
minimum growth-ratio threshold ρ are reported as controlling patterns.

Algorithm 1 mineCP: Mining Controlling Patterns
1: Mine frequent patterns in a transaction set D using a support threshold δ; output spatial

footprint Fi of each frequent pattern Pi.
2: Initialize a distance matrix M.
3: Assign every pixel in R to a correspondent cell in M.
4: for each pixel o ∈ (∪Fi) ∩ C do
5: Calculate the distance h(o,D).
6: Record the distance in corresponding cell of the distance matrix M.
7: end for
8: for each frequent pattern Pi do
9: Calculate |D+|∗ and |C+|∗ with respect to Pi using the distance matrix M.

10: Calculate growth ratio CPDP
∗

=
|D+|∗/|D|
|C+|∗/|C| .

11: Calculate kPi
.

12: end for
13: return frequent patterns whose growth ratios ≥ ρ.

4 Controlling Patterns of High Vegetation Density in the United
States

In order to illustrate the working of our method and to demonstrate its utility,
we applied it to a data set pertaining to a density of vegetation cover across the
continental United States. The goal is to survey all combinations of controlling
factors that are associated with high density of vegetation and to map their
footprints. We address this goal by finding controlling patterns of high vegeta-
tion density. The class variable is the Normalized Difference Vegetation Index
(NDVI). The NDVI is an index calculated from visible and near-infrared chan-
nels of satellite observations, and it serves as a standard proxy of vegetation
density. The eleven plausible explanatory variables are summarized in Table 1;
they can be divided into climate-related (average annual precipitation rate, av-
erage minimum annual temperature, average maximum annual temperature,



10

and average dew point temperature), soil-related (available water capacity,
bulk density, permeability, porosity, and soil pH), and topography-related (el-
evation). The available water capacity is the volume of water that soil can
store for plants. The pH measures the degree to which water in soil is acid or
alkaline. Bulk density, porosity, and permeability relate to the physical form of
the soil. The dew temperature is an indicator of relative humidity. We made an
attempt to use data pertaining to measurements performed at approximately
the same time. These data sets are from different sources [19,21,25] and are
available in different spatial resolutions. We have fused all the data sets to
11 co-registered latitude-longitude grids with a resolution of 0.5o × 0.5o. Each
grid has 700 × 1253 pixels, of which 361,882 pixels (41.3%) have values for
all the 11 variables. Note that this is an expository example intended only to
illustrate the working of our method, because a more careful selection of a
larger set of explanatory variables should be performed in ecological domain
for an “industrial-strength” application.

All data sets are subjected to the categorization procedure described in
Section 3.1 with six split points resulting in seven z-score bins (−∞,−2],
(−2,−1.5], (−1.5,−0.5], (−0.5, 0.5], (0.5, 1.5], (1.5, 2], and (2,∞), which are
assigned categorical labels from 1 to 7, respectively. The NDVI data set is di-
vided into two subsets, D with cl = 1, combining categories 6 and 7 of (0.5, 1.5]
and (1.5, 2], and C with cl = 0, combining categories 1 to 5 of (−∞,−2], . . .,
(0.5, 1.5]. Thus, the vegetation density is arbitrarily defined as high when it
is at least 1.5 ×Sn higher than the median value. Fig. 1(b) shows the spatial
distribution of D. Each pixel carries a specific transaction consisting of the
local values of explanatory variables and the class designation of vegetation
density.

4.1 Results

We have conducted two numerical experiments. In the first primary experi-
ment, we have employed the algorithm mineCP to identify controlling patterns
of high vegetation density. In the second control experiment we have calcu-
lated controlling patterns using an algorithm that does not take advantage of
a new definition of sup(P,D). In both experiments we used frequent pattern
threshold δ = 0.2 and the minimum growth-ratio threshold ρ = 10.0. Thus, we
set up experiments to identify patterns whose footprints extend over at least
20% of the vegetation cover across the continental United States and which are
at least 10 times more concentrated in the high vegetation density region. We
also use d = 1 as a value of scale parameter in the footprint aggregation mea-
sure kP (Eqn. 11). In the primary experiment, we use the influence function
Ψ (Eqn. 7) with θ = 0.25,

The primary experiment has identified 893 patterns frequent in D, 780 of
which have been determined to be controlling patterns. Fig. 3 shows the values
of the growth ratio CPDP

∗ for all the 780 controlling patterns plotted against
the values of kP . The patterns are color-coded for the number of items present.
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The blue dots indicate patterns consisting of up to 3 items; the green dots in-
dicate patterns with 4 to 6 items; the red dots indicate patterns with 7 or more
items. In general, the most interesting patterns are those indicated by the red
dots and also located near the upper right corner of the graph. Such patterns
are the most descriptive, highly specific to high vegetation density region, and
they have highly aggregated footprints. Several immediate observations can
be drawn from Fig. 3:

– All the controlling patterns have kP ≥ 1. This means that the complexes
of controlling factors that are common in D are spatially aggregated.

– There appear to be some positive correlations between the values of the
growth ratio CPDP

∗ and kP . This indicates that patterns that are more
indicative of high vegetation density are also more aggregated.

– Patterns with more attributes are more aggregated. More specific sets of
controlling factors are restricted to more specific locations.

Tables 2 and 3 show the lists of the top 20 controlling patterns identified
in the control and primary experiments, respectively. The 1st column gives
a pattern ID number; the 2nd column shows the actual pattern; and the 3rd

column gives the number of features that match the pattern. The patterns
are to be interpreted as described in Section 3.2. For example, pattern #56
(top emergent pattern on both lists) describes environment characterized by
below average values (bin 3) of pH and above average values (bin 6, (1.5, 2]) of
precipitation. Values of the remaining 9 explanatory variables vary from pixel
to pixel within the footprint of this pattern. Thus, pattern #56 is not very
specific as it involves only 2 out of 11 potential explanatory variables, but the
conditions it describes exist in above 20% of the vegetation cover in the conti-
nental United States (frequent pattern) and almost nowhere outside the high
vegetation density region (highly emergent pattern). Other emergent patterns
are more descriptive; the most descriptive pattern in the top 20 controlling
patterns (#832) involves 7 out of 11 explanatory variables.

The lists of controlling patterns stemming from primary and control exper-
iments overlap, but they don’t contain the same patterns; the patterns that
don’t occur in both lists are highlighted in Tables 2 and 3. Moreover, the or-
der of patterns in the two lists is different. Thus, the modification of sup(P,D)
leads to identification of different controlling patterns, or, at least, to different
ordering of controlling patterns. We observe that pattern #12 is absent in the
top 20 patterns identified in the primary experiment, though it is ranked as
the 2nd best in the control experiment. On the other hand, in the primary ex-
periment, pattern #114 has improved its rank significantly ranking 2nd, and
new patterns, such as pattern #162, emerge in the top 20 list.

Does our new definition of sup(P,D) lead to “better” controlling patterns?
In Section 3.3, we presented a heuristic argument for our modification, based
on the notion that it offsets negative effects of data discretization. Do the
results in Tables 2 and 3 support our argument? In order to address this
problem quantitatively, we calculate “similarity” or degree of overlap between
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the footprint of D (region of high vegetation density) and the footprints of the
following patterns respectively,

– #12, 2nd on the top 20 list resulting from the control experiment,
– #114, 2nd on the top 20 list resulting from the primary experiment and

12th on the top 20 list resulting from the control experiment,
– and #162, 8th on the top 20 list resulting from the primary experiment.

The similarity is calculated using a measure based on mutual information be-
tween the two footprints [22]. The more the two footprints overlap the more one
footprint determines the other footprint resulting in the larger value of mutual
information. The mutual information-based similarity between the footprint of
D and footprints of patterns #12, #114, #162 are 0.0188, 0.0214, and 0.0489,
respectively. This shows that the footprints of patterns #114 and #162, whose
ranks are increased while using the new definition of sup(P,D), match better
with the region of high vegetation density than the footprint of pattern #12
whose rank decreases while using the new definition of sup(P,D). Thus, the
new definition seems to promote patterns which offer a better spatial fit to the
region of interest. Figures 4 (a-c) reiterate the same point in a graphical fash-
ion; compared with the footprint of pattern #12, footprints of patterns #114
and #162 align better with the footprint of high vegetation density region.

To further demonstrate the advantage of using a modified definition of
sup(P,D), we compare the unions of footprints of all 20 patterns stemming
from the primary and control experiments, respectively. Figures 5(a-b) show
such comparison; careful examination reveals that the union of footprints
shown in Fig. 5(a) is more “land filling,” exactly the effect we intended to
achieve by our modification. The mutual information-based similarity between
the footprint of D and the unions of footprints of the 20 top pattern calculated
in the primary and control experiments is 0.0649 and 0.0563, respectively.

It is instructive to examine the values of explanatory variables as they ap-
pear as items in the top 20 patterns in Table 3. Interestingly, top controlling
patterns contain only a limited range of values for each variable. For example,
in the patterns that contain average annual maximum temperature (tmax)
only values of tmax=5 (0.5 to 1.5 ×Sn above the median value of tmax) are
present. Similarly, top controlling patterns contain only the values pH=3 (0.5
to 1.5 ×Sn below the median value of pH). In general the range is at most two
consecutive bins. This indicate that environmental conditions that support
high vegetation density are restricted to rather narrow values of explanatory
variables, although, within these limits, the specific conditions may vary be-
tween different geographical locations.

5 Conclusions

In this paper, we have presented a methodology for surveying and mapping
relationship between predictors and response in geospatial data sets. In par-
ticular, our method reveals diversity of predictors associated with the same
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response. In departure from a previous attempt to address this problem [29], we
base our method on the association analysis technique of mining for emerging
patterns which offers a principled approach to the problem and also has sev-
eral potential advantages. First, the model (at its core) is conceptually strong
and transparent—the only numerical operation is pixel counting. This intrinsic
simplicity of association analysis assures that all nonlinearities in the system
are taken fully into account. Second, the method yields itself into modification
that accommodates the spatial character of the data. We show how to modify
the standard association analysis methodology to accommodate spatial data
sets. Evaluation of the vegetation data set confirmed that those modifications
lead to somewhat improved result over an application of unmodified method.

Our approach, in its present form, has some shortcomings that need to be
addressed by further research. One issue is the need for data categorization.
This issue enters only in the context of dividing a response variable into the
two classes. In the present paper we addressed this issue by modifying the
definition of pattern support so it takes into consideration spatial proximity.
Future research would concentrate on further improvement of the definition of
pattern support, so it takes into consideration not only spatial proximity but
also feature similarity. Another issue is the difficulty in interpreting the out-
come of our method. This is a common problem with the association analysis;
it produces thorough but large output that frequently requires a summariza-
tion technique in order to presented the results in a comprehensive fashion. In
our application to the vegetation data set, we have identified 780 controlling
patterns. Each controlling pattern represents a nugget of knowledge about
the local combination of predictors associated with the phenomenon. How-
ever, this association is not exclusive, other patterns may also cover the same
location. In general, footprints associated with controlling patterns are not
mutually exclusive and exhaustive, instead they overlap and their union does
not necessarily cover the entire extent of the phenomena. In Section 4, we have
showed top 20 controlling patterns as well as footprints for few patterns, more
extensive visualization would take significantly more space. In order for the
results of our method to be more effectively presented a companion method
of pattern summarization needs to be developed. We have already taken the
first step into this direction by investigating a possibility to define a similarity
measure between the patterns [8]. Such similarity could be used to cluster the
patterns into a smaller number of “super-patterns”—a sets of patterns having
similar meaning and sharing common spatial extent [8]. Super-patterns would
provide a more concise means to visualize our output and they would make
possible a direct comparison of our results with the results of the method based
on the regression tree [29].
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Fig. 1 (a) Map of vegetation density in the United States. The value of Normalized Differ-
ence Vegetative Index (NDVI) serves as proxy for vegetation density. (b) Footprint of high
vegetation density region D defined by the two highest categorical bins of class variable is
shown in green. A zoomed-in window centered on the states Virginia and Maryland shows
sharp boundaries of high vegetation density footprint in details.
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Fig. 2 Illustrating a new method of calculating pattern support by including fractional
support from nearby pixels. Original footprint of high vegetation density region is shown in
green (weight= 1), pixels contributing weights in the range (1, 0.5) are shown in red, those
contributing weights in the range (0.5, 0.25) are shown in yellow, in the range (0.25, 0.1) are
shown in blue, and those contributing less than 0.1 are shown in gray. The result depends
on the value of θ: 0.25 (left), 0.5(middle), and 0.75 (right).
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Fig. 3 Properties of 780 controlling patterns of high vegetation density in the United States.
Colors: blue - patterns with 1-3 items, green - patterns with 4-6 items, and red - patterns
with ≥ 7 items.
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(a) Pattern # 12 (b) Pattern # 114 (c) Pattern # 162 

Fig. 4 (a-c) Footprints of patterns #12, #114, #162. Colors: green - high vegetation
density region, pink - footprints of patterns, dark brown - overlays between pattern footprint
and high vegetation density region.

(a) primary experiment (b) control experiment
Fig. 5 Union of footprints for the top 20 patterns stemming from the primary experiment
(a) and control experiment (b). Colors: green - high vegetation density region, pink - union
of footprints, dark brown - overlays between the union of footprints and high vegetation
density region.
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Table 1 Data sets of explanatory variables used in the case study

Variable Abbreviation Short Description
1. awc Available water capacity (2000)

ORNL for biogeochemical and ecological data
2. bd Soil bulk density (2000)

ORNL for biogeochemical and ecological data
3. dew Average dew point temperature (annual 2005)

PRISM climate mapping system
4. elev Elevation

USGS National Map Seamless Server
5. perm Soil permeability (2000)

ORNL for biogeochemical and ecological data
6. ph Soil pH (2000)

ORNL for biogeochemical and ecological data
7. poros Soil porosity (2000)

ORNL for biogeochemical and ecological data
8. ppt Average annual precipitation (1971 - 2001)

PRISM climate mapping system
9. tmax Average annual maximum temperature (1971 - 2001)

PRISM climate mapping system
10. tmin Average annual minimum temperature (1971 - 2001)

PRISM climate mapping system
11. aveveg Vegetation growth average (annual 2005)

USGS National Map Seamless Server

Table 2 Top 20 controlling patterns found in the control experiment

Pattern ID Patterns # of Variables
56 ph=3, ppt=6 2

12 ppt=6 1
312 awc=4, perm=4, ph=3, tmax=5 4
586 awc=4, perm=4, ph=3, tmax=5, tmin=5 5
555 awc=4, elev=3, perm=4, ph=3, tmax=5 5
780 awc=4, elev=3, perm=4, ph=3, tmax=5, tmin=5 6
135 perm=4, ph=3, tmax=5 3
337 perm=4, ph=3, tmax=5, tmin=5 4
314 elev=3, perm=4, ph=3, tmax=5 4
588 elev=3, perm=4, ph=3, tmax=5, tmin=5 5
114 dew=6, elev=3, ph=3 3
34 dew=6, ph=3 2
318 awc=4, perm=4, ph=3, tmin=5 4

568 awc=4, elev=3, perm=4, ph=3, tmin=5 5

530 awc=4, bd=4, perm=4, ph=3, tmax=5 5
695 awc=4, dew=5, perm=4, ph=3, tmax=5, tmin=5 6

765 awc=4, bd=4, perm=4, ph=3, tmax=5, tmin=5 6

549 awc=4, perm=4, ph=3, poros=5, tmax=5 5
441 awc=4, dew=5, perm=4, ph=3, tmax=5 5

776 awc=4, perm=4, ph=3, poros=4, tmax=5, tmin=5 6



20

Table 3 Top 20 controlling patterns found in the primary experiment

Pattern ID Patterns # of Variables
56 ph=3, ppt=6 2
114 dew=6, elev=3, ph=3 3
34 dew=6, ph=3 2
312 awc=4, perm=4, ph=3, tmax=5 4
555 awc=4, elev=3, perm=4, ph=3, tmax=5 5
586 awc=4, perm=4, ph=3, tmax=5, tmin=5 5
780 awc=4, elev=3, perm=4, ph=3, tmax=5, tmin=5 6

162 awc=4, ph=3, tmax=5 3
314 elev=3, perm=4, ph=3, tmax=5 4
135 perm=4, ph=3, tmax=5 3

360 awc=4, elev=3, ph=3, tmax=5 4
337 perm=4, ph=3, tmax=5, tmin=5 4
588 elev=3, perm=4, ph=3, tmax=5, tmin=5 5

393 awc=4, ph=3, tmax=5, tmin=5 4
695 awc=4, dew=5, perm=4, ph=3, tmax=5, tmin=5 6

639 awc=4, elev=3, ph=3, tmax=5, tmin=5 5
441 awc=4, dew=5, perm=4, ph=3, tmax=5 5
318 awc=4, perm=4, ph=3, tmin=5 4

832 awc=4, dew=5, elev=3, perm=4, ph=3, tmax=5, tmin=5 7

671 awc=4, dew=5, elev=3, perm=4, ph=3, tmax=5 6


