
Mining for High Complexity Regions Using Entropy and Box Counting Dimension
Quad-Trees

Rosanne Vetro, Wei Ding, Dan A. Simovici
Univ. of Massachusetts Boston, Dept. of Comp. Science, 100 Morrissey Blvd., Boston, Massachusetts 02125 USA

{rvetro,ding,dsim} at cs.umb.edu

Abstract—This paper introduces an algorithm for capturing
high complexity regions of a data domain. In this work,
we focus on domains in R2. In particular, we analyze 2-
dimensional image domains. Two different methods for mining
are considered. The first method performs an information-
theoretic analysis based on entropy to find diverse areas. The
second method applies the concept of box-counting dimension
related to fractal geometry. We propose the use of a quad-tree
as main search structure where complex areas are represented
by leaves with high feature1 values at the highest level on the
tree. Nodes that refer to specific sub-domains are split when
the level of the analyzed feature exceeds a chosen threshold.
The relationship between the threshold and the number of
pixels located in high value feature sub-domains at the highest
level on the resultant quad-tree is demonstrated on test images
for both methods. Experimental results also show the relation
between the former measurements and characteristics of the
images. Finally, we identify a correlation between the methods
presented.

Keywords-Entropy, Box Counting Dimension, Quad-Trees

I. INTRODUCTION

The concept of complexity relates to the presence of vari-
ation. In science there are many approaches that characterize
complexity. A variety of scientific fields have dealt with
complex mechanisms, simulations, systems, behavior and
data complexity as those have always been a part of our
environment. In this work, we focus on the topic of data
complexity which is studied in information theory.

While randomness is not considered complexity in certain
areas such as those related to the study of complex systems,
information theory tends to assign high values of complexity
to random noise. Many fields benefit from the identification
of content or noise related complex areas. In data hiding,
adaptive steganography takes advantage of high concentra-
tion of self-information on high complexity areas originated
from both content and noise to embed data. The authors
of [1] describe the benefits of selective embedding related
to the reduction of perceptual degradation for transform
domain steganographic techniques. Bio diversity is another
area where complexity can be used for identification and
localization of different species. In this case, the complexity
originated from content is more important than the one
originated from noise.

1Entropy or box-counting dimension

Our goal in this paper is to provide an algorithm that
captures high complexity sub domains of a data domain and
introduce two distinct methods to achieve that goal. The first
method has its base in information theory where information
entropy is also used as indicative of complexity. The second
has its roots in fractal geometry where the so called box-
counting dimension (BCD) is used to determine the fractal
dimension of a set S in a Euclidean space Rn. We focus
our work on 2-dimensional image domains and observe that
high complexity areas originated from both data content and
noise are mined by the methods proposed.

In the next section we introduce the proposed algorithm
and explain the searching process. In section III we describe
the information-theoretic method used for mining complex
sub-domains. The second method uses the concept of box-
counting dimension and is introduced in section IV. We
provide a brief description about implementation details in
section V. In section VI we discuss the experiments and
compare the results generated by both methods. The paper
is concluded in section VII.

II. ALGORITHM DESCRIPTION

The algorithm proposed constructs a full quad-tree related
to the image entropy or box-counting dimension concentra-
tion to find high complexity areas.

Definition A quad-tree Y is a structure defined on a finite
set of nodes that either contains no nodes or is comprised
of a root node and 4 quad-subtrees. In a full quad-tree, each
node is either a leaf or has degree exactly 4.

The construction of the quad-tree is based on the mea-
surements of the feature in image sub-areas, which can
also be regarded as tree nodes. The algorithm receives
as input the gray scale version of an image, a minimum
area size for analysis and arguments relevant to the node
splitting condition. For the entropy based method described
in section III, we use a predetermined threshold for the
entropy in order to decide wether or not to split a node. For
the box-counting dimension method, two distinct arguments
are used in the splitting condition: a predefined threshold for
the fraction of intercepting boxes or rectangles at any image
sub-area and a predefined threshold for the number of gray
shades to be considered at the intercepting analysis. The

entire image area corresponds to the root of the quad-tree.
The expansion of each node is based on its feature value
and the predetermined threshold(s) used for the splitting
condition, as well as the size of the corresponding sub-
area. Only nodes with area greater or equal to the defined
minimum area size are expanded.

The algorithm, introduced in Algorithm 1, outputs a quad-
tree showing the feature concentration along the whole
image area. In this representation, leaves are assigned with a
shade of gray, depending on their location on the tree level.
Leaves located closer to the root correspond to areas of the
image assigned with darker shades of gray whereas leaves
located further from the root correspond to areas of the
image assigned with lighter shades of gray. The algorithm
also highlights the leaves at the highest tree level with
highest feature value. In most cases, those leaves correspond
to high complexity regions of the image.

Algorithm 1 ComputeHCRegions(image,minArea,thr1,thr2)
Input: Gray scale image, minimum area size for the anal-

ysis, feature threshold, threshold corresponding to the
number of shades of gray (used only by the BCD method)

Output: Quad-tree showing the feature concentration along
the whole image area
nId←− ROOT
nLevel←− 0
root ←− newNode(nId, nLevel, image.width,
image.height)
ComputeFeature(root)
Split(root)
HighlightHighFeatureLeaves()

The function ComputeFeature evaluates the feature asso-
ciated with the histogram of the pixels in the node’s area.
We present two version for this function in section III and
section IV as it differs according to the method used. The
recursive method Split introduced in Algorithm 2 expands a
node if its feature satisfies the method related splitting condi-
tion and if its area is greater or equal to the defined minimum
area size. A gray shade corresponding to a level in the final
tree, is assigned to every leaf node by the method Draw.
Information about each leaf such as its id, feature value and
level is saved in a text file by the method SaveNodeInfo. The
method Release frees the memory space previously allocated
to a node. Finally, the method HighlightHighFeatureLeaves
highlights in pink or white the leaves at the highest tree level
with highest feature values, corresponding in most cases to
high complexity regions. The white color leaves are the ones
with the highest feature value among all pink leaves.

III. INFORMATION-THEORETICAL METHOD

Information theory involves the quantification of informa-
tion and was created with the purpose of finding fundamental

Algorithm 2 Split(n)
Input: A node n from a quad-tree
Output: Expands the node creating four children, if node

satisfies the necessary requirements
if (n.feature > method lower bound) and (n.area >
minArea) then
nLevel←− n.level + 1
nId←− n.id+A
topLeft←− newNode(nId, nLevel, n.rect.x, n.rect.y,
n.rect.width/2, n.rect.height/2)
ComputeFeature(topLeft)
nId←− n.id+B
topRight ←− newNode(nId, nLevel, n.rect.x+
n.rect.width/2, n.rect.y, n.rect.width/2,
n.rect.height/2)
ComputeFeature(topRight)
nId←− n.id+ C
bottonLeft ←− newNode(nId, nLevel, n.rect.x,
n.rect.y+n.rect.height/2, n.rect.width/2, n.rect.height/2)
ComputeFeature(bottonLeft)
nId←− n.id+D
bottonRight ←− newNode(nId, nLevel, n.rect.x+
n.rect.width/2, n.rect.y + n.rect.height/2,
n.rect.width/2, n.rect.height/2)
ComputeFeature(bottonRight)
Release(n)
Split(topLeft)
Split(topRight)
Split(bottonLeft)
Split(bottonRight)

else
SaveNodeInfo(n)
Draw(n)
Release(n)

end if

limits on compressing, reliably storing and communicating
data. Entropy is a important measure of information in the
theory that quantifies the uncertainty associated with the
value of a discrete random variable X . Equal values taken
by X can be separated into disjoint sets or block to form
a partition. Simovici and Djeraba [2] present a generalized
notion of entropy of a partition, with Shannon entropy as a
special case:

Definition Let S be a finite set containing the possible
values for the random variable X and let π = B1, ..., Bn be
a partition of S. The Shannon Entropy of π is the number:

H = −
n∑

i=1

|Bi|
|S|

log2
|Bi|
|S|

The Shannon Entropy can be used to evaluate the unifor-
mity of the elements of S in the blocks π since the entropy

value increases with the uniformity of the distribution of the
elements of S. Note that as the uniformity increases, so does
the uncertainty associated.

Our method evaluates the Shannon Entropy of the local
histograms of image sub-areas to find high complexity
regions. The partition blocks of a node, used for the entropy
analysis, consist of pixels with the same shade of gray.

Algorithm 3 ComputeFeature(n)
Input: A node n from a quad-tree
Output: The node entropy related to the histogram of the

pixels in the area.
entropy ←− 0
for all pixel ∈ n.area do

InsertGrayShade(histogram,pixel.shade)
end for
for all shade ∈ histogram do
p←− number of pixels with shade
s←− total number of pixels in the node
g ←− (p÷ s)
entropy− = (g)× (lg2(g))

end for
return entropy

The first version of ComputeFeature, presented in Algo-
rithm 3, corresponds to the information-theoretic method
proposed. It computes the Shannon entropy associated with
the histogram of the pixels in a node’s area. This his-
togram is created by the method InsertGrayShade. The result
generated by ComputeFeature is successively used by the
recursive method Split shown in Algorithm 2. Only the
nodes corresponding to sub-areas of the image where the
Shannon entropy is above the predefined entropy threshold
and have area greater or equal to the pre-defined minimum
area size are expanded. We observed that leaves at the
highest level in the resultant quad-tree may naturally have
different associated Shannon entropy values. As we show in
section VI, the leaves with highest entropy among the ones
at highest level can better represent high complexity areas
of the image.

IV. BOX-COUNTING DIMENSION METHOD

The box-counting dimension is a measure used to deter-
mine the fractal dimension of a set S in a metric space.
It reflects the variation of the results of measuring a set
at a diminishing scale, which allows the observation of
progressively smaller details.

Let (S,Od) be a topological metric space and let T be a
precompact set. For every positive r, there exists a r-net for
T; that is a finite subset Nr of S such that T ⊆

⋃
{C(x, r|x ∈

Nr} for every r > 0. Denote by nT(r) the smallest size of
an r-net of T. It is clear that r < r’ implies nT(r) ≥ nT(r’).
The box-counting dimension is introduced next (see [2]).

Definition Let (S,Od) be a topological metric space and let
T be a precompact set. The upper box-counting dimension
of T is the number

ubd(T) = lim sup
r→0

nT(r)
log 1

r

.

The lower box-counting dimension of T is the number

lbd(T) = lim inf
r→0

nT(r)
log 1

r

.

If ubd(T) = lbd(T), we refer to their common values as the
box-counting dimension of T, denoted by bd(T).

We use the box-counting dimension of the local his-
tograms of image sub-areas to find high complexity regions.
The box-counting dimension of a sub-area is based on to
the number of intercepting boxes in the sub-area.

Definition A box is a sub-area of the image with size equal
to the predefined minimum area size. An intercepting box
corresponds to a box where the number of different shades
of gray is greater or equal to the a predefined threshold.

Algorithm 4 ComputeFeature(n)
Input: A node n from a quad-tree
Output: Box-counting dimension associated to the node’s

area.
boxesIntercepting ←− 0
bcd←− 0
for all box ∈ n.area do

for all pixel ∈ box do
InsertGrayShade(box.histogram,pixel.shade)

end for
if n.area = box.area then
boxesIntercepting ←− box.histogram.size

else if box.histogram.size ≥ threshold then
boxesIntercepting ←− boxesIntercepting + 1

end if
Release(box.histogram)

end for
if boxesIntercepting > 0 then
bcd− = boxesIntercepting ÷ lg10(1÷ (n.area))

end if
return bcd

The version of the function ComputeFeature presented
in Algorithm 4 corresponds to the box-counting dimension
method. It computes the box-counting dimension associated
with the histogram of the boxes in a node’s area. As in the
Information-theoretic version, the method InsertGrayShade
constructs a histogram of each box in the node or image
sub-area. If the area corresponding to the node is equal to
a box area, the number of intercepting boxes is the same
as the number of different shades of gray in its histogram.

Otherwise, the number of intercepting boxes is equal to the
number of boxes with histogram containing a number of
shades of gray greater or equal to a predefined threshold.
When the box-counting dimension method is used, the
recursive method Split shown in Algorithm 2 expands a node
according to a threshold related to the fraction of intercept-
ing boxes found. For instance, a fraction thereshold = 0.1
represents a node having 10% of intercepting boxes among
all its boxes. So in this case, the algorithm expands a node if
its box-counting dimension corresponds to a fraction greater
than 10% of intercepting boxes. The area corresponding to
the node should also be greater or equal to the predefined
minimum area size in order to promote expansion. As in the
Information-theoretic method, we also observed that leaves
at the highest level in the resultant quad-tree may naturally
have different BCD values associated. We show in section VI
that the leaves with highest BCD value among the ones at
highest level can better represent high complexity areas of
the image.

V. SYSTEM DESCRIPTION

The algorithm was implemented in Java (JDK 6 Up-
date 7) and the program is composed by 8 classes:
Main, Image, Tree, EntropyTree, BoxCountingTree,
Node, EntropyNode and BoxCountingNode. The class
Tree is a super class for the classes EntropyTree and
BoxCountingTree and the class Node is a super class
for the classes EntropyNode and BoxCountingNode.The
class Main instantiates an Image object.The class Image
implements the methods for encoding and decoding images,
as well as for treating the image prior to the generation
of the quad-tree. Image treatment may involve resizing and
conversion to gray scale. The class Tree is a super class with
attributes and methods shared by both classes EntropyTree
and BoxCountingTree. Those two classes, together with
the classes EntropyNode and BoxCountingNode contain
the implementation of the methods presented in III and
in IV. The class Node is a super class with attributes
and methods shared by both classes EntropyNode and
BoxCountingNode.

VI. EXPERIMENTAL RESULTS

Experiments were performed over decompressed gray
scale version of Jpeg images. The use of gray scale images
allowed the methods to be applied over a reduced color
space. The resultant image files were again compressed
and presented as Jpeg files. The values chosen for all the
thresholds promote a good capture of the complexity. The
resultant images and statistics show that the quad-trees
generated by both methods are quite similar. Fig. 1(a) and
Fig. 1(b) present the relation between the values chosen
as threshold for both methods and the percentage of the
number of pixels located in high complexity areas relative
to the total number of pixels in each sample image. One

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3

Fr
ac

ti
o

n
 o

f
p

ix
e

ls
 in

 h
ig

h
 c

o
m

p
le

xi
ty

 a
re

as
(%

)

Entropy Threshold

Entropy Method

img1

img2

img3

img4

img5

img6

img7

img8

img9

(a)

0

10

20

30

40

50

60

70

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Fr
ac

ti
o

n
 o

f
p

ix
e

ls
 in

 h
ig

h
 c

o
m

p
le

xi
ty

 a
re

as
(%

)

BCD Threshold

BCD Method

img1

img2

img3

img4

img5

img6

img7

img8

img9

(b)

Figure 1. Fraction of pixels in high complexity areas of the image given
the corresponding (a) lower bound used for the entropy, (b) BCD threshold.

can notice that the percentages of pixels in high complexity
areas generated for each image file are very close in value
for both methods. The files corresponding to the quad-trees
generated for the sample images are presented in Fig. 2. As
mentioned in section II, a gray shade corresponding to a
level in the final tree, is assigned to every leaf node. The
leaves at the highest tree level with highest feature values,
corresponding in most cases to high complexity regions, are
highlights in pink or white. The white color leaves are the
ones with the highest feature value among all pink leaves.
Results for both methods also show the relation between
the characteristics of the images and the values used for the
node splitting condition. Images corresponding to natural
scenes or objects and faces with a textured background
require a higher value for the entropy threshold, as well
as for the threshold used for the box-counting dimension
evaluation in order to capture well the complex regions.
Those images present a higher number of pixels located
in high complexity areas. Images with objects and faces

exposed over a more uniform background require lower
values for those parameters. Those images present a lower
number of pixels located in high complexity areas.

Although only Jpeg files were used in the experiments
here presented, the algorithm and methods described in
this paper are independent of image type. So in order
to compare the results between different formats, we also
performed experiments with Bmp image files. In this case,
each Jpeg file was created from an original Bmp image.
Results for both formats regarding both methods were also
quite similar and demonstrate that our algorithm can capture
high complexity domains independent of a image format. We
also observed that as we lowered the compression quality of
Jpeg images, there was a decrease on the number of pixels
located in high complexity sub-domains. Jpeg compression
removes high frequency details from images as considered
by Pevny and Fridrich [3]. Furthermore, the number of im-
age artifacts increases as we lower the compression quality.
Uncompressed formats(Bmp,Pcx) or lossless compression
formats (Pgm,Tiff) usually carry a higher degree of noise
and less artifacts. As a consequence of the high frequency
removal and addition of more artifacts, Jpeg files with low
quality usually have less high complexity areas when com-
pared to the correspondent Jpeg image files compressed with
higher quality and Bmp images. The results regarding the
comparison between image files in Bmp and Jpeg formats
are available at http://www.cs.umb.edu/∼rvetro/index.htm.

VII. CONCLUSION

Both methods used by the proposed algorithm
(information-theoretic and box-counting dimension)
successfully capture high complexity sub domains of a
domain. The analysis of 2-dimensional image domains
generated similar results for both methods, and images
with different formats(medium/high quality Jpeg and Bmp).
We also observed that besides capturing image regions
corresponding to content related complex areas, both
methods also capture other regions with high variance of
shades among pixels caused by external factors such as light
reflection originated from a camera flash. Nevertheless, the
identification of any kind of high complexity region plays
an important role for a variety of applications such as data
hiding and bio-diversity systems.

REFERENCES

[1] Solanki, K., Dabeer, O., Madhow, U., Manjunath, B.S., Chan-
drasekaran, S.: Robust image-adaptive data hiding: Modeling,
source coding, and channel coding. In: 41st Allerton Confer-
ence on Communications, Control, and Computing. (2003)

[2] Simovici, D.A., Djeraba, C.: Mathematical Tools for Data
Mining – Set Theory, Partial Orders, Combinatorics. Springer-
Verlag, London (2008)

[3] Pevny, T., Fridrich, J.: Benchmarking for steganography. In:
Information Hiding: 10th International Workshop, IH 2008,
Sana Barbara, CA, USA. Volume 5284., (Springer)

(a) img1

(b) img2

(c) img3

Figure 2. Sample simulation results for several original images comparing
the corresponding Entropy Quad-Tree (top right in each subfigure) and the
corresponding BCD Quad-Tree (bottom right in each subfigure).

(d) img4 (e) img5

(f) img6 (g) img7

(h) img8 (i) img9

Figure 2. (cont.) Sample simulation results for several original images comparing the corresponding Entropy Tree (top right in each subfigure) and the
corresponding BCD Tree (bottom right in each subfigure).

