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Abstract

The immense explosion of geographically referenced data
calls for efficient discovery of spatial knowledge. One of
the special challenges for spatial data mining is that in-
formation is usually not uniformly distributed in spatial
datasets. Consequently, the discovery of regional knowl-
edge is of fundamental importance for spatial data min-
ing. This paper centers on discovering regional associa-
tion rules in spatial datasets. In particular, we introduce a
novel framework to mine regional association rules relying
on a given class structure. A reward-based regional discov-
ery methodology is introduced, and a divisive, grid-based
supervised clustering algorithm is presented that identifies
interesting subregions in spatial datasets. Then, an inte-
grated approach is discussed to systematically mine re-
gional rules. The proposed framework is evaluated in a
real-world case study that identifies spatial risk patterns
from arsenic in the Texas water supply.

1. Introduction

The immense explosion of geographically referenced
data calls for efficient discovery of spatial knowledge.
The goal of spatial data mining is to automate the ex-
traction of interesting, useful but implicit spatial patterns
[10, 16, 18, 6, 1]. One of the special challenges for spa-
tial data mining is that information is usually not uniformly
distributed in spatial datasets. It has been pointed out in
literature [8, 12, 15] that “whole map statistics are seldom
useful”, that “most relationships in spatial data sets are ge-
ographically regional, rather than global” and that, “there
is no average place on the Earth’s surface” – a county is not
a representative of a state, and a state is not a representa-
tive of a country. Therefore, it is not surprising that domain
experts are most interested in discovering hidden patterns
at a regional scale rather than a global scale [8, 12]. Con-
sequently, the discovery of regional knowledge is of funda-
mental importance for spatial data mining.
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However, most of the current data mining techniques are
ill-prepared for discovering regional knowledge. Regional
patterns frequently fail to be discovered due to insufficient
global confidence and/or support. Furthermore, for a given
dataset there is a non-finite number of subregions. This
raises the questions on how to measure the interestingness
of a set of regions and how to identify regions using a given
measure of interestingness.

In this paper, we propose a novel framework to mine
regional association rules based on a given class structure.
A reward-based regional discovery methodology is intro-
duced, and a new divisive, grid-based supervised cluster-
ing algorithm is presented that identifies interesting subre-
gions in spatial datasets. Then, an integrated approach is
presented to systematically mine regional rules. The pro-
posed framework is evaluated in a real-world case study
that identifies spatial risk patterns from arsenic in Texas
water supply. This paper is organized as follows. Section
2 introduces our region discovery framework and Section 3
describes region discovery algorithm and association rule
mining algorithm. Section 4 presents the results of the case
study and Section 5 concludes the paper.

2. An Integrated Framework for Regional As-
sociation Rule Mining

There are two phases in the proposed integrated frame-
work for regional association rule mining:

1. Phase I: Discover and identify interesting subre-
gions. A supervised clustering algorithm using multi-
resolution grids divides the whole dataset into a num-
ber of non-overlapping spatial subregions. In this
phase, there are two challenges: how to measure the
interestingness of a set of regions; then given a mea-
sure of interestingness, how to identify subregions.

2. Phase II: Spatial association rule mining for each iden-
tified subregion. The subregions are considered one at
a time and all frequent itemsets for that region are gen-
erated. Regional association rules are then constructed



from these frequent itemsets. The resulting rules are
examined. In the case that the results are unsatisfac-
tory for a particular region this feedback will be used
to fine tune parameters of the regional discovery algo-
rithm and association rule mining algorithm.

2.1. Problem Formulation

Let D be a spatial dataset, and S = {s1,s2, ...,sl} be a set
of spatial attributes, A = {a1,a2, ...,am} be a set of non-
spatial attributes, and CL = {cl1,cl2, ...,cln} be a set of
class labels. Let

I = S∪A∪CL

= {s1,s2, ...,sl ,a1,a2, ...,am,cl1,cl2, ...,cln}
be the set of all items in D. Continuous attributes are trans-
formed into nominal attributes. Let T = {t1,t2, ...,tN} be
the set of all the transactions. T can be represented as a
relational table, which contains N tuples conforming to the
schema I (I contains l + m + n number of items). Thus an
item i ∈ I is a binary variable whose value is 1 if the item is
present in ti (i = 1, ...,N) and 0 otherwise. Consequently,
the set of transactions T is classified based on the given
class structure CL.

Our framework employs a class-guided generation of as-
sociation rules that sheds more light on the patterns related
to the given class structure. We define such rules as super-
vised association rules. The formal definition is:

Definition 1 A supervised association rule r is of the
form P → Q, where P ⊆ I, Q ⊆ I, and (P∪Q)∩ CL �=
Ø.

The rule r holds in the D with support sup and confidence
con where

sup(P → Q) =
σ(P∪Q)

N
,

con(P → Q) =
σ(P∪Q)

σ(P)
.

The support count is defined as σ(α) = |{ti|α ⊆ ti, ti ∈ T}|,
(i = 1, ...,N), where | . | denotes the number of elements in
a set. A supervised association rule is strong if it satisfies
user-specified minimum support (min_support) and mini-
mum confidence (min_con f idence) thresholds.

Given these definition, the problem of regional associa-
tion rule mining can be defined as:

Find: interesting regions and supervised association rules
from each discovered region.

Given: a set of items I, a classified transaction
set T , a fitness function for the measure of

interestingness (see section 2.2), minimum cell
size threshold min_cell_size for region discover-
ing algorithm (see section 3.1), minimum sup-
port threshold min_support and confidence threshold
min_con f idence.

2.2. Measuring the Interestingness of a Set of Re-
gions

We define a region as a surface that contains a set of
spatial objects. EXT (R), the extension of R, denotes the
objects belonging to a region R. A region should be con-
tiguous, that is, for each pair of objects belonging to the
same region, there always must be a path within this region
that connects them. Consider a global region R, a dataset D,
where D = EXT (R), and an underlying class structure CL,
our region discovery algorithm employs a reward-based
evaluation scheme that evaluates the quality of the gener-
ated subregions. The fitness function, which evaluates the
quality of the generated subregions RX = {R1, ...,Rm}, is
defined as the sum of the rewards obtained from each sub-
region Ri (i = 1..m) (Equation 1).

q(RX) =
m

∑
i=1

reward(Ri) (1)

=
m

∑
i=1

(interestingness(Ri)×|Ri|β ), where β > 1.

We find subregions R1, ...,Rm such that:

1. The subregions are disjoint: EXT (Ri)∩EXT (R j) =
Ø, i �= j.

2. RX = {R1, ...,Rm} maximizes q(RX).

3. The generated subregions are not required to be ex-
haustive with respect to R, that is, EXT (R1)∪ ...∪
EXT (Rm) ⊆ EXT (R).

4. R1, ...,Rm are ranked based on the reward each region
receives. Subregions that receive low rewards or non-
rewards are frequently discarded.

This evaluation scheme encourages combining small re-
gions into larger ones if the rewards of the combined re-
gions do not decrease. Consequently, q(RX) uses |Ri|β , the
region size |Ri| with parameter β > 1, to increase the value
of the fitness nonlinearly and favor a region with more ob-
jects.

In this paper, we adopt a single measure of interesting-
ness to find hotspots and coldspots that were developed and
proved to be effective in our previous work [5]. The mea-
sure is based on a class of interest cl ∈ CL. It rewards re-
gions in which the density of class cl deviates from its prior



Figure 1. Measure of interestingness τ when η = 1

probability: A region is a hotspot (or coldspot) if its den-
sity with respect to class cl is significantly higher (or lower)
than the expected probability.

Let N denotes number of objects in a dataset D, xi the ith
cluster, and X = {x1,x2, ...,xk} a clustering solution con-
sisting of clusters x1 to xk. Each cluster corresponds to a
subregion xi = EXT (Ri), i = 1..k. The fitness function q(X)
(Equation 2) is defined as

q(X) =
k

∑
i=1

τ(P(xi,cl), prior(cl),γ1,γ2,R+,R_,η)× (
|xi|
N

)β (2)

The function of interestingness τ (Equation 3) is calcu-
lated based on P(xi,cl) and prior(cl), with the following
parameters: η , γ1, γ2, R+, R_, where η > 0, γ1 ≤ 1 ≤γ2,
0 ≤ R+, R− ≤ 1. P(xi,cl) is the probability of objects in
cluster xi belonging to the class of interest cl, and prior(cl)
is the probability of objects in datasets D with respect to the
class cl. R+ and R−are the maximum rewards for hotspot
and coldspot respectively.

τ(P(xi,cl), prior(cl),γ1,γ2,R+,R−,η) = (3)


[
prior(cl)×γ1−P(xi,cl)

prior(cl)×γ1
×R−

]η
i f P(xi,cl) < priori(cl)× γ1

[
P(xi,cl)−prior(cl)×γ2

1−prior(cl)×γ2
×R+

]η
i f P(xi,cl) > priori(cl)× γ2

0 otherwise

The parameter η determines how quickly the reward
grows to the maximum reward (either R+ or R−). If η is
set to 1, the reward function changes linearly, as shown in
Figure 1. In general, the larger value for η , the higher re-
wards for purer clusters. prior(cl)× γ1 and prior(cl)× γ2

determines the thresholds based on which a reward is given
to a subregion.

Figure 2. A sample example of running the SCMRG
algorithm.

3. Algorithms

3.1. Region Discovery Algorithm:
Supervised Clustering Using Multi-
Resolution Grids (SCMRG)

We have developed an algorithm called Supervised
Clustering using Multi-Resolution Grids (SCMRG) [17] to
identify promising regions. The SCMRG algorithm is a
hierarchical grid-based method that utilizes a divisive, top-
down search: each cell at a higher level is partitioned fur-
ther into a number of smaller cells, and this process con-
tinues if the sum of the rewards of the lower level cells is
greater than the obtained reward for the cell at the higher
level. The returned cells usually have different sizes, be-
cause they were obtained at different level of resolution. A
queue data structure is used to store all the cells that need
be processed. The example in Figure 2 explains the pro-
cedure of this algorithm using a sample dataset, where are
two regions are identified. The algorithm starts at a user de-
fined level of resolution, and considers the following three
cases when processing a cell c.

1. Case 1. If the cell c receives a reward, and its reward is
greater than the sum of the rewards of its children and
the sum of rewards of its grandchildren respectively,
this cell is returned as a cluster by the algorithm; e.g.,
c11 in Figure 2.

2. Case 2. If the cell c does not receive a reward, nor does
its children and grandchildren, neither the cell nor any
of its decedents will be further process or labeled as a
cluster; e.g., c14 in Figure 2.



3. Case 3. Otherwise, if the cell c does not receive a re-
ward, but its children receive rewards, put all the chil-
dren of the cell c into a queue for further processing.
e.g., c13 in Figure 2.

The algorithm traverses through the hierarchical structure
and examines those cells in the queue. This hierarchical
grid-based approach captures clustering information asso-
ciated with spatial cells without recourse to the individual
objects and it does not drill down a cell if it does not look
so promising (case 2). The advantage is that the compu-
tational complexity is linear with the number of grid cells
processed, which is usually much less than the number of
objects. Thus the algorithm is capable of processing large
datasets efficiently. The employed framework has some
similarity with the framework introduced in the STING al-
gorithm [18]. The difference is that our algorithm focuses
on finding interesting cells (that receive high rewards) in-
stead of cells that contain answers to a given query. More-
over, it only computes cell statistics when needed and not
in advance as STING does.

3.2. Generation of Regional Rules

Once regions are identified, we construct frequent item-
sets for each region. Extending the Apriori algorithm [2]
by utilizing a given class structure, our method enforces
that each candidate k-itemset include at least one class la-
bel. After frequent itemsets are generated, we use the same
approach proposed by the Apriori algorithm to generate
strong rules using the min_con f idence threshold.

4. A Real-World Case Study: Discover Pat-
tern of Rick from Arsenic

4.1. Datasets: Data Collection and Data Prepro-
cessing

The arsenic datasets used in this study are extracted
from the Texas Ground Water Database (GWDB) main-
tained by the Texas Water Development Board [3]. Arsenic
in very high concentrations is poisonous. Low-level, long
term exposure to arsenic can lead to increased risk of can-
cer [7].

Because data collection and maintenance procedures
and standards have been changed over the years in the
GWDB, datasets have to be cleaned to deal with prob-
lems such as missing values, inconsistent data, and dupli-
cate entries. The obtained arsenic spatial dataset includes
spatial attributes (S), non-spatial attributes (A), and class
labels (CL) for each water well. Some of the spatial at-
tributes are directly extracted from the database, such as
river basin, zone, latitude and longitude. Implicit spatial

attributes, such as distance between wells and rivers, are
estimated using the 9-intersection model [4]. Non-spatial
attributes are selected with the assistance of domain ex-
perts [9, 11, 13]; they include well depth, concentration of
fluoride, nitrate, and other chemical metal elements, such
as vanadium, iron, molybdenum, selenium, etc. We clas-
sify water wells into two classes: “safe” and “dangerous”.
Based on the standard for drinking water by Environment
Protection Agency [1]: a well is considered “dangerous” if
its arsenic concentration level is above 10µg/l. To ensure
the quality of our study, we have selected 9,939 records 1

from the original 14,358 samples. Figure 3 illustrates ar-
senic concentration in Texas, where safe wells are in green
(or light grey), dangerous wells in red (or dark grey).

4.2. Experimental Results Evaluation

A region whose arsenic distribution is significantly
higher/lower (high reward value with respect to “danger-
ous”/”safe”) is considered as an arsenic hotspot/coldspot.
In our study, we re-discovered several hotspots and
coldspots, which have been studied by geoscientists before.
We are presenting our results with validation from the pub-
lished results in geoscience for both regional discovery and
association rule mining.

In the region discovery, the SCMRG algorithm is ap-
plied to a dataset that consists of longitude and latitude
of wells along with arsenic class labels (“dangerous” or
“safe”). Figure 4 depicts the result of such a run that iden-
tifies 4 subregions. Specifically, Region 1 and 3 have high
density of dangerous wells, and Region 2 and 4 have high
density of safe wells. Hotspot Region 1 overlaps with the
arsenic risk zone reported in National Water-Quality As-
sessment Program [14], and hotspot Region 3 is confirmed
as an arsenic risk zone by Parker’s work published in the
Natural Arsenic in Groundwater [13].

In the regional association rule mining, we set
min_support to 10% and min_con f idence to 70%. Min-
ing regional rules in arsenic hotspots discovers attributes
that are associated with high arsenic concentrations, and
in coldspots discovers attributes related with low arsenic
concentrations. We present the rules for the 4 highly re-
warded subregions investigated in the following, all mean-
ingful and important according to arsenic study literature.
e.g., in Region 3 of Figure 4, we discover:

is_a(X ,Well)∧nitrate(X ,0−0.085)

1Sampled in accordance with the Texas Water Development Board’s A
Field Manual for Ground-Water Sampling, 1990. “Samples are collected
when temperature, conductivity, and PH have stabilized. The sample is
filtered and field tested for alkalinity. Samples are preserved as applicable,
kept chilled, and delivered to the lab. Holding times are honored. Organic
sub-samples are not filtered” [3].



Figure 3. Map of Texas showing arsenic concentration
level. Legend: green (or light grey) star – safe wells;
red (or dark grey) dot – dangerous wells.

→ aresnic_level(X , dangerous) (100%). (1)

The rule states with 100% confidence that wells in Re-
gion 3 with nitrate concentration lower than 0.085mg/l
have dangerous arsenic concentration level. The strong
association between nitrate and high arsenic concentration
level is verified by Hudak’s work [9] in an environmental
geology study.

Our experiment results also show some novel rules that
have not been analyzed in the literature of arsenic analysis;
e.g., in Region 1 the following rule is discovered:

is_a(X ,Well)∧depth(X ,0−215.5)∧ iron(19.65−20.05)
→ aresnic_level(X , dangerous) (100%). (2)

The rule indicates that a certain range of well depth and
iron concentration level are associated high arsenic concen-
trations. We hope that the results from our study will help
the domain experts in selecting interesting hypothesis for
further scientific exploration, without the need to have to
analyze complex casual relationships initially.

Furthermore, we are interested to know whether the
rules are different in different regions. We compared
the sets of rules generated for Region 1 and Region 3
(hotspots), Region 2 and Region 4 (coldspots). The spa-
tial risk patterns associated with arsenic are very different
in each region. e.g., comparing the rule 1 identified in Re-
gion 3 with the rule 3 extracted from the Region 1:

is_a(X ,Well)∧nitrate(X ,28.085−∞)∧
∧ f luoride(X ,4.605−∞)

→ aresnic_level(X , dangerous) (100%). (3)

Instead of being related with relatively low concentra-
tion of nitrate (< 0.085), the rule says that with 100% confi-

Figure 4. Interesting regions are identified using β =
1.01, η = 1, γ1 = 0.5, γ2 = 1.5, R+ = 1, R− = 1. Aver-
age region purity = 0.85.

dence, wells in Region 3, with nitrate concentration higher
than 28.085 mg/l, and fluoride concentration higher than
4.605 mg/l, have dangerous arsenic concentration level.

Rules in coldspots Region 2 and 4 shed lights on what
may prevent high arsenic concentrations. e.g., we find the
following rule, discovered both in Region 2 and 4, states
what is associated with low arsenic concentrations.

is_a(X ,Well)∧nitrate(X ,0.455−16.1)∧
f luoride(X ,0.095−0.315)∧ vanadium(X ,3.25−5.945)

→ aresnic_level(X , sa f e) (100%) (4)

As comparison, we also mine supervised association
rules in the whole dataset. After some exploratory exper-
iments, we found that by reducing the min_support from
10% to 1%, we are able to identify more interesting rules
globally. However, in this case more than 100,000 rules are
generated. Compared with the 300 rules on average per re-
gion in regional rule mining, it is laborsome to go through
all those rules to find any meaningful ones. However, the
four rules that we discovered in subregions are failed to be
identified in the global level, the state of Texas. Statewide
rule mining finds very general rules, such as:

is_a(X ,Well)∧water_use(X ,”by humam beings”)∧
arsenic_level(X ,sa f e)

→ inside(X ,Basin19) (86%) (5)

It says that wells used by human beings, with safe
arsenic concentration level are very likely (confidence is
86%) located in river basin 19.

In summary, from these experiments we identified
meaningful regions at different granularity and regional



rules based on our proposed framework and algorithms. We
also confirmed what has been observed by researchers in
geoscience, that regional rules are not the representative of
global rules, and vice versa.

5. Conclusions

One critical requirement for spatial data mining is the
capability to analyze datasets at different levels of granu-
larity, in addition to analyze data globally. Furthermore,
it is desirable to have the capability to move between dif-
ferent granularities, particularly if the obtained results are
unsatisfactory. We also provided evidence that discover-
ing regional patterns is very important in spatial data min-
ing. Unfortunately, the currently employed association rule
mining techniques do not offer such capability. We see our
work as a first step toward providing such capabilities.

This paper centers on discovering regional association
rules in spatial datasets. In particular, we introduce a novel
framework to mine regional association rules relying on a
given class structure: transaction are assumed to belong to
a finite set of classes. A reward-based region discovery
method has been proposed that allows identifying interest-
ing subregions in spatial datasets for which regional associ-
ation rules are then generated. In addition, a novel, divisive,
grid-based supervised clustering algorithm named SCMRG
has been discussed that searches for interesting regions in
large spatial datasets, maximizing a reward-based fitness
function that measures the interestingness of a given set of
regions. Then, an integrated approach is presented to sys-
tematically mine regional rules.

We evaluated the proposed framework on a real-world
case study to identify spatial risk patterns from arsenic in
Texas water supply. We identified arsenic hotspots and
coldspots and created regional rules from the obtained re-
gions, rediscovering several relationships that are already
reported in the scientific literature. Moreover, our approach
identified several new relationships between arsenic and
other factors that provide scientists with novel hypotheses
that deserve further exploration in future research.
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