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Abstract—Extreme weather events, like extreme rainfalls, are
severe weather hazards and also the triggers for other natural
disasters like floods and tornadoes. Accurate forecasting of such
events relies on the understanding of the spatiotemporal evolution
processes in climate system. Learning from climate science data
has been a challenging task, because the variations among spatial,
temporal and multivariate spaces have created a huge amount
of features and complex regularities within the data. In this
study we developed a framework for learning patterns from the
spatiotemporal system and forecasting extreme weather events. In
this framework, we learned patterns in a hierarchical manner:
in each level, new features were learned from data and used
as the input for the next level. Firstly, we summarized the
temporal evolution process of individual variables by learning the
location-based patterns. Secondly, we developed an optimization
algorithm for summarizing the spatial regularities, SCOT, by
growing spatial clusters from the location-based patterns. Finally,
we developed an instance-based algorithm, SPC, to forecast the
extreme events through classification. We applied this framework
to forecasting extreme rainfall events in the eastern Central Andes
area. Our experiments show that this method was able to find
climatic process patterns similar to those found in domain studies,
and our forecasting results outperformed state-of-art models.

I. INTRODUCTION

Climate dynamics have a wide range of impacts across
every region on many sectors of our society. Reliable knowl-
edge about current and future changes in the climate system,
in both the short and long term, is of vital importance for
the economy and for our society. With the advance of data
collecting techniques (model simulation, remote sensing, and
in situ observations), climate science has become one of
the most data-rich fields with regard to data volume [1].
However, comparing with other domains like electronic ad-
vertising, the success of big data-induced process in studying
climate system is limited [2]. Among all reasons behind
the slow progress, for methods trying to model the climate
dynamics, the main difficulty lies in addressing several key
challenges:

• The extremely large feature spaces. Climate science
data typically have a spatiotemporal structure. From
the perspective of data science, every variable con-
taining certain spatiotemporal information can be
considered as an individual attribute, or a feature of
the data set. The number of features in a climate
science data set can easily reach tens of thousands,
or even millions.
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• The complex regularities (or patterns) within the sys-
tem. The structures and functions in the climate sys-
tem have a hierarchical modularity [3]: the temporal
evolution of variables spreads across regions and
falls into spatially local subsystems (spatial clusters),
and the whole system is a composition of crosstalks
among the subsystems. The data representation for
studying such dynamics needs to be able to abstract
all the temporal, spatial and among-variable relation-
ships (feature interactions).

• The requirement on model interpretablity, because
of the greater interest in the climate science field
to understand rather than to simply predict.

Frequent pattern-based data representations have been
used in various studies for abstracting climatic phenomena
[4], [3]. The descriptive nature of such pattern provides a
very intuitive interpretation for the physical process. For ex-
ample, the atmospheric phenomenon, “the transport of moist
air by low-level trade winds from the tropical Atlantic Ocean
to the Amazon Basin along the Intertropical Convergence
Zone” [5], plays a key role in controlling the rainfalls in
the eastern Central Andes (ECA) area of South America
during monsoon season. This atmospheric phenomenon may
be described as a data pattern: {at time 0, atmospheric
pressure is high at location l1 and low at location l2,
relative humidity is high at location l1; at time 1, zonal
wind is high at location l3;...}.

In this paper, we developed a novel hierarchical frame-
work for learning patterns with a level-wise manner from
spatiotemporal data (Fig. 1). Specifically,

• First, we summarized the temporal evolutions of in-
dividual variables. For every location,each variable’s
temporal changing process is generalized into one
single feature transformed from the learned patterns.

• Second, to summarize the spatial relationships, we
developed an optimization algorithm, SPC (Spatial
Cluster Optimization Tool), to grow the single loca-
tion features learned from the first level into spatial
clusters.

• Finally, we summarized the inter-variable relation-
ships through developing an instance-based classi-
fier, SPC (Spatial cluster Pattern-based Classifier),for
forecasting the target extreme events.
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Fig. 1. Flow chart of the proposed learning framework, in which patterns
are summarized in a hierarchical manner.

By partitioning the climate science data set and learn-
ing/generalizing the discovered patterns according to the data
set’s inherent infrastructure in a level-wise manner, we made
it possible to learn patterns with global coverage from the
extremely large feature space. The patterns we found were
highly interpretable and from empirical studies we showed
that our model outperformed the state-of-art method [6] for
forecasting extreme rainfall events.

II. RELATED WORK

The climate system is dynamic and its components are
very different in their composition, physical and chemical
properties, structure and behavior. Different data representa-
tions have been implemented for studying the spatiotemporal
interactions. In Lozano et al. [7] a graph model was built for
causal inference of extreme climate events. The authors used
location and scale parameters in their model to incorporate
spatial and temporal correlations, and only local neighbors
(3*3 grids) were considered for the model. In Chen et
al. [8], the same data set was used, while graph models
were constructed without assuming parametric underlying
distributions, which was important for studying climate data.
But the graphs were only built on individual locations. The
above two studies investigated the climate data set from
spatially sliced pieces instead of an entirety. Ensemble phase
detection and Least Absolute Deviation (LAD) regression
techniques were combined in Gonzalez et al. [9] for climate
system response prediction, and the climate system phases
were modeled based on temporal intervals. In Wang et al.

[10] a Bayesian network-based streaming feature selection
algorithm was implemented to deal with the high dimen-
sional climate data set.

Frequent pattern based-methods have been a focused
theme in data science research [11]. Co-location patterns
[12] for investigating the spatial relations of objects, spatial
emerging patterns for extracting discriminative information
from spatial data [13], and sequential pattern for studying
time series data [14]. There are two major challenges that
need to be addressed in frequent pattern applications. The
first challenge lies in the fact that frequent pattern mining is
an NP-complete problem. The computational cost increases
exponentially with the number of features contained in a
pattern [15].Most applications on climate data either sliced
the data set into temporal/spatial profiles [16], or set con-
strains on the number of features contained in a pattern [3],
to alleviate the computational demand. The approach named
“Progressive Refinement”, which performs rough computa-
tion at a smaller (coarser) resolution for candidate iden-
tification and refines the results at larger resolutions, was
firstly proposed in [17] to tackle the challenge of mining
patterns from spatial data sets. The second is that the mining
process usually results in a huge number of patterns which
hinders a method’s interpretability and application. Pattern
summarization techniques aiming at reducing the number of
resulting patterns by building smaller representative pattern
sets have been proposed in Liu et al. [18] and Wang et al.
[19].

III. FORMAL DEFINITIONS

Definition 1 Feature and Feature Set: A feature in a
climate science data set D is a tuple of the form: {L, T, V },
where V is a domain variable, while L and T indicate the
location (including the vertical level) and time where and
when the variable was sampled, respectively. For example,
a variable sampled from time stamps 1 to 4 can be consid-
ered as a feature set, which is written as {V 1, V 2, V 3, V 4}
without specifying the spatial information.

Definition 2 Pattern and Location Based Pattern: A
pattern is a set of feature-value pairs corresponding to a
feature set. X = {< V 1, 1 >,< V 2, 0 to 4 >,< V 3, 1 or
2 >,< V 1, 3 >} is a pattern of the example feature set
in Definition 1. It is a rule of possible feature values in
a feature set. Notice that in our definition a feature may
have different values (< V2, 0 to 4 >,< V3, 1 or 2 >) in
the pattern. The tuple of the form: {X,L}, which contains
a pattern (X) and its spatial information (L), is called a
location-based pattern.

Definition 3 Support and Growth Ratio: A pattern is
said to be supported by an instance I from data set D if
the values of features in the instance conform to the rule
specified by the pattern. The support of a pattern X is the
number of instances supporting X in a data set D divided
by the total number of instances in D. If we divide D into
two partitions, {Dp and Dn}, the growth ratio δ of a pattern
X is the ratio of X ′s support in one partition Dp to its
support in the other partition Dn.

Definition 4 Feature of Pattern: The feature of a pattern
X is a binary variable (0 or 1) indicating whether the



Pattern X: {<V1,1>, <V2,0 to 4>,<V3,1 or 2>,<V4,3>,}

P-support=2/3=0.67

N-support=1/2=0.5

Growth Ratio = 0.67/0.5=1.34

Fig. 2. Examples of pattern, pattern’s support and growth ratio, and the
pattern’s representing feature.

regularity is present or not in an instance. A pattern’s feature
also has the same support (sum of 1s) and growth ratio
(ratio of the sum of 1s on different partitions of the data
set) values as the pattern.

Fig.2 gives examples of pattern, pattern’s support and
growth ratio, and the pattern’s representing feature from an
example data set with 5 instance and 4 features. The growth
ratios were calculated based on the partitions using class
labels (CL).

IV. METHOD

Our framework was built based on the hierarchical mod-
ularity of the climate system: the temporal evolution of
individual variables in a location (level 1, location-based
patterns) spreads across the spatial space (level 2, spatial
clusters) and consists of spatiotemporal subsystems; these
subsystems interact with each other and fall into a global
system which determines the weather conditions (level 3,
multiple spatial cluster patterns).

A. Learning Location-Based Patterns

We firstly developed a contrast pattern-mining algorithm
(Algorithm 1) for learning the location-based patterns. In
detail, by partitioning the climate science data set into m
subsets, each of which contains one individual variable (line
3), we learned the location-based patterns from the subsets.
Specifically, for each subset, we learned the sets of frequent
contrast patterns on every location separately (lines 4-8).
Here the extents of “frequent” and “contrast” were defined
through two thresholds for patterns’ support (ρ) and growth
ratio (δ), relatively. For every location, we generalized the
learned set of patterns into one single representative pattern
and transformed it into a new feature (line 9).

In our framework, the location-based patterns learned
from climate science data were temporal processes of cli-
mate variables. For example, for the same location the set
of patterns {p1, p2, ...} of a variable V was the set of
indicative temporal changes of V that happened much more
often in one partition (according to CL) of the data. The
generalized pattern should include all such processes of V
for distinguishing purpose. Thus here we summarized the
patterns learned from one location using alternation: for an
instance the generalized binary pattern was 1 if any of the
location patterns existed, and 0 otherwise.

B. Growing Spatial Clusters

In the second step we summarized spatial regularities
in the system by growing the single location-based patterns
learned from step 1 into spatial clusters.

Algorithm 1: Learning Location-Based Patterns
Data:
ρ : the support threshold
δ : the growth ratio threshold
D : the climate science data set with:
m variables; s sampling locations;
t sampling time stamps; class labels CL.
Result:
LPF : the set of features from location-based
patterns

1 LPF = ∅;
2 for i = 1 to m do
3 DVi ← D;
4 for j = 1 to s do
5 f set = Temoral Feature Set(j, Vi);
6 (Retrieve the temoral feature set of Vi in

location j);
7 (t features in f set);
8 lp = Learn Pattern(f set, CL, ρ, δ);
9 (Learn location-based patterns using the class

label and thresholds);
10 X = Generalize(lp);
11 (Generalize the lp set into one single pattern);
12 LPF = LPF ∪ ToFeature(X);
13 end
14 end

Here we developed an optimization algorithm, SCOT
(the Spatial Cluster Optimization Tool, Algorithm 2). In
SCOT we treated each variable separately (lines 2-3). For a
variable Vi, we first retrieved a feature F from its location-
based pattern feature set (line 5), and constructed the set
N containing all the spatial neighbors of F (line 6). For
every feature f in N , we tested two conditions on the joined
pattern f ∩ F : (1) if the support of f ∩ F is larger than
α× the support of F , where α is a user specified parameter
with 0 < α < 1; (2) if the growth ratio of f ∩F is greater
than or equal to the growth ratio of F (lien 9). If f ∩ F
satisfied both conditions, we would combine them into one
new pattern feature and update the neighbor set by adding
the neighbors of f into N (lines 10-12). We repeated the
above process until all features in LPFi were checked (line
4), and this was done for all variables (line 2).

The key idea of SCOT was to check the two conditions
(line 9) based on location adjacency. The first condition
helped to ensure that the grown out clusters are meaningful,
because infrequent patterns may just happen by chance. The
second condition helped to make sure the spatial clusters
were as discriminative as the single location-based patterns.
In practice the clusters were usually much more informa-
tive than the single location-based patterns with respect to
classification tasks (see the Experiment section for details).
The output from SCOT wouldl be a set of binary features
indicating the existence (with the value of 1s) of all the
spatial clusters.

C. Forecasting through Classification

Finally, we investigated the interactions among differ-
ent variables by developing a Spatial cluster Pattern-based



Algorithm 2: SCOT: The Spatial Cluster Optimization
Tool

Data:
α : the support threshold parameter
LPF : the set of LP features for variables
V1, V2, ..., Vm
Result:
SCF : the set of spatial cluster features

1 SCF = ∅;
2 for i = 1 to m do
3 LPFi ← LPF (Retrieve the LP features of Vi);
4 while LPFi 6= ∅ do
5 F ← LPFi (Retrieve a feature from LPFi);
6 N = get neighbors(F,LPFi);
7 while N 6= ∅ do
8 f ← N ;
9 if support(f ∩ F )≥ α× support(F ) and

growthratio(f ∩ F )≥ growthratio(F ) then
10 F = f ∩ F ;
11 N = N ∪ get neighbors(f, LPFi);
12 Delete f from LPFi;
13 end
14 end
15 SCF = SCF ∪ F ;
16 end
17 end

Classifier (SPC, Algorithm 3). SPC is an instance-based
learning algorithm. We classified an instance by querying its
spatial cluster patterns. For example, if we found 5 spatial
clusters ({C1, C2, C3, C4, C5}) using SCOT and an testing
instance only containing the first and the second clusters
({< C1, 1 >,< C2, 1 >,< C3, 0 >,< C4, 0 >,< C5, 0 >},
line 3 and line 4 in Algorithm 3) we would calculate the
growth ratio of this pattern in the training data set and make
predictions based on this information (lines 5-9). The clas-
sification process in SPC is also a pattern learning process,
which summerized the interactions of spatial clusters.

As an instance-based learning algorithm, the main advan-
tage of SPC is that it can be approximated locally, which
is very important for studying weather events from climate
science data. Because same weather events (for example,
extreme cold weather studied in [20]) may have different
predecessors.

V. EXPERIMENT

We applied our framework in a real world data set to
study an extreme weather event, i.e., extreme rainfalls, which
were usually trigger events of natural hazards like floods.
In the work of Boers et al. [6] the authors have shown
that such extreme rainfall events in the eastern Central An-
des (ECA, Fig. 3) were associated with certain propagation
patterns. In the present paper we applied our framework
to learning such atmospheric patterns and to forecasting
the upcoming extreme precipitation events in ECA. The
results show that the patterns captured through our data-
based process matched well with domain knowledge-based
studies and that our forecasting results outperformed the
state-of-art models.

Algorithm 3: SPCL The Spatial Cluster Pattern-based
Classifier

Data:
Train : the training data set with spatial cluster
features
Test : the testing data set with spatial cluster features
δ : the growth ratio threshold
Result:
Y : the predicted labels

1 Y = {0}
2 for i = 1 to size(N ) do
3 I ← Test (Retrieve an instance from Test);
4 P = get Pattern(I);
5 GR = pos growthratio(P, Train);
6 (calculate the positive growth ratio of P in

Train)
7 if GR ≥ δs then
8 Yi = 1 ;
9 end

10 end

TABLE I. THE STUDIED EASTERN CENTRAL ANDES (ECA) AREA

Name Spatial Extension
Box 1 26◦S to 29◦S, 63◦W to 66◦W
Box 2 23◦S to 26◦S, 63◦W to 66◦W
Box 3 20◦S to 23◦S, 63◦W to 66◦W
Box 3 17◦S to 20◦S, 66◦W to 69◦W

A. Experimental Setup

1) Problem Definition: With the purpose of comparison,
we adopted the same experimental settings as in [6] on tar-
get area locations and extreme event definitions. The studied
area (ECA) was defined by 4 rectangular boxes (Table I,
Fig. 3). The rainfall data within ECA was retrieved from
TRMM 3B42V7 [21], at a spatial resolution of 0.25◦×0.25◦,
and temporal resolution of every three hours for all core
monsoon seasons (December through February) from 1998
to 2013. The TRMM 3B42V7 rainfall data were remote
sensing-derived and gauge-calibrated, while the spatial sam-
pling locations were distributed evenly with 144 grids within
each box in ECA .

The extreme rainfalls were defined as time stamps when
the rainfall values were above the 99th percentile of all
historical records (1998-2013) at a location. If more than
100 extreme rainfalls happened within a 48 hours interval
(16 time stamps) in any of the 4 boxes, we defined it as an
extreme rainfall event. If there was going to be an extreme
event in the next 48 hours, the class label was 1, otherwise
the label was 0. With this setting, for the 16-year period
the ratio of positive and negative events was 797 : 10355.

2) The Predictor Variables: We chose 5 fields of meteo-
rological predictor variables with certain spatial and temporal
information at constant pressure surfaces (3 vertical levels)
from the Modern-Era Retrospective Analysis for Research
and Applications (MERRA) dataset [22] (Table II). We
also used precipitation data from TRMM 3B42V7 [21]. All
predictor variable data were retrieved for the same time pe-
riod of monsoon seasons (December through February) from
1998 to 2013 and were employed at a spatial resolution of



TABLE II. METEOROLOGICAL PREDICTOR VARIABLES

Name Level(hPa)
Temperature 300,500,850
Geopotential Height 300,500,850
Meridional Wind 300,500,850
Zonal Wind 300,500,850
Specific Humidity 300,500,850
Precipitation –

1.25◦× 1.25◦ and a temporal resolution of 3-hour intervals.
To remove the seasonal effect, we subtracted the monthly
means from the data. Then We discretized the features by
categorizing the normalized data into 3 intervals, abnormally
high (above 90th percentile), abnormally low (below 10th
percentile), and normal (between 10th and 90th percentiles).

3) Parameters: In the experiments we used data from
past 8 time stamps (24 hours) to forecast the extreme rainfall
events for the upcoming 16 time stamps and divided the
whole data set into a training (1998-2009,12 years) set and
a testing (2010-2013, 4 years) set. We ran SCOT with a
support threshold parameter α = 0.9. We chose a growth ra-
tio threshold of 10 for classification using SPC. We also ran
SPC using LPF from algorithm 1 directly for comparison.
Due to the unbalanced setting we evaluated our forecasting
results using the F1 Score ( F1 = 2TP/2TP +FP +FN ,
where TP is the number of true positives, FP is the number
of false positives, TN is the number of true negatives, and
FN is the number of false negatives).

B. Results and Discussion

In the study of [6] the authors used overlapped time pe-
riods (but different precipitation data sets) for training(1998-
2013) and testing (2001-2013), and their complex network
model achieved an F1 of 0.50. Our model outperformed it
with an F1 of 0.745 by using exactly the same setting. We
achieved a best prediction result of F1=0.47 when using non-
overlapped periods as training and testing (Table III).

The numbers of location-based patterns and spatial clus-
ters were very sensitive to the initial parameters. The F1 val-
ues increased with the increase of initial support and growth
ratio thresholds. This is reasonable because the higher the
thresholds, the better quality the learned patterns/spatial clus-
ters should have. Low thresholds resulted in more noisy
patterns which hurt the classifier’s performance. But on the
other hand, when the thresholds were too high, the learned
patterns/spatial clusters became too few for representing the
distributions in the data, and the F1 value dropped (last row
in Table III).

Forecasts using spatial cluster features (SCF) achieved
better results on testing set for all parameter settings than
forecasts using location-based pattern features (LPF). Also,
SCF had a much higher growth ratio than LPF, with the
sacrifice of support. Single LPF represents a variable’s tem-
poral evolution in single location, which may have very little
effect on the target events. Therefore, SCF will be more
informative in distinguishing extreme weather events due to
its larger size. The final inter-cluster pattern (or inter-variable
pattern) learned from individual testing instance’s SCF by
SPC usually has an infinit growth ratio.

a. Positive Location Based Patterns of 

H850

b. Positive Spatial Cluster 1 to 6 of H850

(left->right, top->bottom) 

c. Positive Location Based Patterns 

of QV850

d. Positive Spatial Cluster 1 to 4 of QV850

(left->right, top->bottom) 

Fig. 3. Experimental results using ρ=0.10 and δ=5: (1)location based
patterns for Geopotential Height at 850hpa (H850, a) and Specific Humidity
at 850hpa (QV850, c); (2) spatial clusters learned from the patterns (b,d).
The hatched regions are the studied eastern Central Andes (ECA) area.

Another positive effect for learning SCF is to reduce the
risk of over-fitting. Variables’ behaviors in single location
(LPF) may only happen by chance, but such similar behav-
iors observed in a large area (SCF) is rarely a random event.
Classification using LPF achieved a near perfect F1 (0.981)
on training data but a lower F1 in testing data.

The location-based patterns and spatial clusters for the
variables of H850 (Geopotential Height at 850hpa) and
QV850 (Specific Humidity at 850hpa) (Fig.4) we found
conformed with domain study findings [6], [5]. For example,
the H850 sensitive areas found in [6] were included in the
H850 cluster 3 (Fig.4b) of our results. In Fig.4, we also
demonstrated the H850 and QV850 maps for an example
positive event (December 5 to 7, 2010) to show how the
learned patterns captured the system dynamics.

VI. CONCLUSION AND FEATURE WORK

Extreme weather events such as extreme rainfalls have
a wide negative impact on our society and economy, and
there is room for improvements on forecasting such events
in current weather models [1]. In this study we presented
a framework for learning patterns from climate science data
and forecasting extreme weather events. We adopted our
framework for real wold studies on forecasting extreme rain-
fall events. Our model outperformed the state-of-art methods.
The patterns we found using data-based approach matched



TABLE III. PATTERN STATISTICS

Sup. GR No.LPF(Pos/Neg) Ave.Sup.of LPF Ave. GR of LPF F1 (LPF) No.SCF (Pos/Neg) Ave. Sup.of SCF GR of SCF F1(SCF)
0.05 3 1801/4303 0.04 3.06 0.26 334/338 0.03 5.41 0.31

4 1322/3252 0.04 3.81 0.29 287/226 0.03 7.58 0.34
5 784/2383 0.04 5.14 0.31 194/76 0.03 11.46 0.39

0.10 3 1238/2305 0.08 3.11 0.27 292/101 0.06 5.61 0.37
4 935/1800 0.09 3.91 0.34 203/81 0.06 10.03 0.42
5 436/1122 0.09 5.07 0.37 112/61 0.07 15.32 0.47

0.15 3 725/1351 0.11 2.88 0.31 199/72 0.11 7.13 0.40
4 475/780 0.14 4.13 0.36 94/54 0.14 10.44 0.43
5 113/477 0.13 5.13 0.29 37/24 0.13 13.46 0.32

a. Average H850 values (m) for the period of 

12:00am, 04/12/2010 to 12:00am, 05/12/2010.

b. Sum of QV850 values (kg kg-1) for the period of 

12:00am, 04/12/2010 to 12:00am, 05/12/2010.

c. Sum of rainfall values (mm/h) for the period of 

12:00am, 05/12/2010 to 12:00am, 07/12/2010.

Fig. 4. An example extreme rainfall event (c) happens in ECA in the
48 hours period from 12:00am Dec.5, 2010 to 12:00am Dec.7, 2010. It
also demonstrates that the spatial clusters shown in Fig. 3 captured the
dynamics in the fields of Geopotential Height at 850hpa (H850, a) and
Specific Humidity at 850hpa (QV850, b).

well with domain studies. In our future work, we want to
explore the possibility of using different data representations
in our framework and extend our analyses to other fields.
The framework is potentially applicable to other geographic
areas and other spatiotemporal events like tornadoes.
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