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Abstract—The emerging of social tagging and crowdsourcing
systems provides a unique platform where multiple weak
labelers can form a crowd to fulfill a labeling task. Yet crowd
labelers are often noisy, inaccurate, and have limited labeling
knowledge, and worst of all, they act independently without
seeking complementary knowledge from each other to improve
labeling performance. In this paper, we propose a Self-Taught
Active Learning (STAL) paradigm, where imperfect labelers
are able to learn complementary knowledge from one another
to expand their knowledge sets and benefit the underlying
active learner. We employ a probabilistic model to characterize
the knowledge of each labeler through which a weak labeler
can learn complementary knowledge from a stronger peer. As a
result, the Self-Taught active learning process eventually helps
achieve high classification accuracy with minimized labeling
costs and labeling errors.
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I. INTRODUCTION

In a traditional active learning setting, an omniscient ora-
cle is required to provide correct answers to each queries [1],
[2]. This is, unfortunately, hardly the case for many applica-
tions, such as social tagging and crowdsourcing systems,
where plenty of users can form abundant weak labeling
resources [3]. These emerging Web-based applications have
raised a new active learning problem involving multiple
nonexpert labelers with imperfect labels for the same set
of queried instances [4], [5], [6]. Existing omniscient
oracle based active learning cannot take the risk of incorrect
information provided by weak labeler into account [5], [7],
[8]. Researchers have observed this interesting problem and
several works have been reported recently [7], [9], [10],
[11] for extracting useful labeling information from multiple
imperfect labelers. Nevertheless, for all these existing meth-
ods, they assume that imperfect labelers’ knowledge sets
are fixed and labelers are unable to learn complementary
knowledge from one another [6], [11]. This has motivated
us to study a new active learning problem, that is, enabling
imperfect labelers to learn labeling knowledge from one
another to refine their knowledge sets during the active
learning process.

In this paper, we propose a Self-Taught Active Learning
(STAL) paradigm, where a crowd of imperfect labelers
are able to form a self-taught learning system and learn
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Figure 1. A conceptual view of the existing multiple labelers based active
learning (left) vs. the proposed self-taught active learning (right).

complementary knowledge from one another to expand their
knowledge and benefit the underlying active learner. To
implement such a self-taught active learning process, we
have three challenges to address:

• Instance Selection: Identifying the most informative
instance for labeling is difficult, mainly because each
weak labeler may provide incorrect/noisy labels for the
query. We need to identify the mostly needed instance
by taking all labelers as a whole instead of treating
them separately;

• Labeler Selection: Identifying the most reliable labeler
for each selected query instance is difficult. We need
to properly characterize the strength/weakness of each
labeler and select the one with the most reliable knowl-
edge for the queried instance;

• Self-Taught Learning: While existing methods treat
weak labelers as independent individuals, we need
to promote self-taught learning between labelers. For
specified knowledge or concept, we should know which
labeler is good at it and which labeler needs to learn
that knowledge.

A conceptual view between existing multi-labeler based
active learning methods and our new paradigm is shown
in Figure 1. Our framework, STAL, employs a probabilis-
tic knowledge-concept model to explicitly characterize the
knowledge of different labelers. We consider that making
a query is subject to a certain amount of costs in multiple
labelers setting, so each query only involves answers from



one selected labeler (instead of asking all labelers to label the
queried instance). To properly select the instance-labeler pair
in each active learning iteration, we use four random variable
X ,A,Y, and Z to represent instances, the knowledge of
the labelers, the observed labels from the labelers, and the
ground truth labels of the instances. So the probability
value P (Z|x) can capture the global uncertainty of an
unlabeled instance x with respect to all labelers, and P (A|x)
represents a labeler’s knowledge in labeling instance x. As
a result, we can identify the most informative instance for
labeling, and also use the queried instance x and its label
gained from the most reliable labeler to teach the most
unreliable labeler (i.e. self-taught learning). Experiments
from both real-world and benchmark data sets demonstrate
a clear performance gain of STAL, compared to a number
of baselines.

II. PROBLEM DEFINITION

We consider active learning in a multiple labeler scenario
where a total of M labelers/oracles (l1, · · · , lM ) exist to
provide labeling information for some instances selected
from a candidate pool, X = {x1, · · · ,xN}, containing N
instances. For any selected instance xi and a labeler lj , the
label provided by lj is denoted by yi,j whereas the ground
truth label of xi is denoted by zi. To clearly characterize
a labeler’s labeling capability, we assume that each label-
er’s reliability in labeling an instance xi is determined by
whether the labeler has the knowledge set, which covers the
instance xi. More specifically, we define that,
Definition 1 Concept: A concept represents a set of in-
stances sharing the same semantic categorization. For ex-
ample, sports is a concept to represent a number of news
documents (i.e. instances) related to the sports. Given a
data set, a group of concepts, such as {c1 = sports, c2 =
entertainment, c3 = political}, may exist to represent the
whole concept space C of the data set.
Definition 2 Knowledge set: A knowledge set of a labeler
lj , denoted by Kj ∈ C, represents a set of concepts on
which lj has the labeling knowledge. For example Kj =
{c1 = sports, c2 = entertainment} indicates that labeler
lj’s knowledge set Kj includes two concepts.
Definition 3 Label Error: If an instance within a labeler
lj’s knowledge set were submitted to lj , the labeler lj
can provide ground truth label for the instance, otherwise,
lj can only guess the label (according to his/her existing
knowledge) for the queried instance. The guessed label may
be incorrect, which, in turn, introduces label errors.

Given multiple weak labelers and a fixed budget (in
terms of the number of queries to the labelers), the aim of
self-taught active learning is to query the most informative
instances from the candidate pool X such that the classifier
trained from the labeled instances has the highest classifica-
tion accuracy.
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Figure 2. The graphical model for modeling instances X and their ground
truth labels Z , the reliability of the labelers A, and the actual labels Y
provided by labelers. X and Y can be observed whereas A and Z are
unobservable.

III. MODELING MULTIPLE LABELERS WITH
RELIABILITY

Given an instance x submitted for label and a number
of weak labelers, each of which has its own knowledge
set, we assume that the ground truth label z of x can be
estimated and different labelers can estimate the label y by
using their own knowledge (which is subject to different
reliability values with respect to the underlying concepts).
More formally, we define a graphical model, as shown in
Figure 2, with four random variables X , Y , A, Z , where
xi ∈ X represents an instance and Y = {yi,j , j ∈ M}
denotes the labels provided by all labelers. Instance x and
the label y provided by the labeler can be observed, whereas
variables capturing the labelers a and the ground truth
label z are unobservable. Then given a set of training data
X = {x1, · · · ,xN} and a set of labelers {l1, · · · , lM}, our
model should estimate the ground truth label, defined as Z
and the reliability of labelers, defined as A, for each instance
x. This graphical model can be represented by the joint
distribution defined in Eq.(1).

p(X ,Y,Z,A) =
N∏
i

p(zi|xi)
N∏
i

M∏
j

p(ai,j |xi)p(yi,j |zi, ai,j)

(1)
From the above model, we can estimate the ground truth

label z for each instance x (i.e. P (z|x)), we can also
estimate the reliability of each labeler with respect to each
instance (i.e. P (a|x)).

A. Inference

In multiple weak labeler setting, labelers may have differ-
ent reliability for each instance, depending on each labeler’s
knowledge. In our model, we explicitly use a to denote the
uncertainty of a labeler in labeling a queried instance xi

(In the following sections, we use uncertainty and reliability
interchangeably to characterize each labeler with uncertainty
inversely proportional to the reliability of each labeler). The
lower the a value, the more confident the labeler will be in
labeling the instance. Because the actual label y provided by
each labeler is an offset of the instance’s genuine label z,
subject to the labeler’s uncertainty a, we define the following



model to capture the relationship between each instance’s
genuine label and its actual label provided by a labeler.

p(yi,j |ai,j , zi) = N(zi, ai,j) (2)

where label yi,j provided by the labeler lj is subject to a
Gaussian distribution whose mean is the ground truth label
of instance xi and the variance is the labeler’s uncertainty
in labeling xi.

The model in Figure 2 indicates that the ground truth label
of instance xi is solely depend on the instance itself. Simply
we use a logistic regression model to capture the relationship
between x and z as follows:

p(zi|xi) = (1 + exp(−wTxi − λ))−1 (3)

As one of the important aspects of the graphical model in
Figure 2, we need to clearly model the knowledge of differ-
ent labelers and the uncertainty of each labeler with respect
to different concepts and different query instances. Because
knowledge sets of different labelers might be different (or
overlapping), we use a weighted concept representation to
represent the knowledge set of a labeler lj as follows:

Kj = {αj
c1 , · · · , α

j
cT } (4)

where αj
ct indicates the confidence of labeler lj for labeling

concept ct. αj
ct = 0 indicates the labeler does not have

knowledge to label concept ct. Because an instance x
may belong to one or multiple concepts, we use p(ct|x)
to represent x’s membership of belonging to concept ct.
Accordingly, given a total of T concepts in the data set, an
instance’s membership with respect to each concept set is
given as follows:

Mx = {p(c1|x), p(c2|x), . . . , p(cT |x)} (5)

Then for a labeler lj , its uncertainty in labeling an instance
xi is given in Eq.(6).

p(ai,j |x) = (1 + exp(
T∑

t=1

αj
ctp(ct|x) + q))−1 (6)

After deriving the knowledge set model, we consider the
set of concepts C. In our pool-based setting, we can assume
that each instance belongs to one or multiple concepts, where
each concept can be represented by a Gaussian distribution.
As a result, the whole data set X can be represented by
using a mixture gaussian model with T concepts

p(x) =
T∑

t=1

wtg(x|µt,Σt) (7)

where wt, t = 1, . . . , T are the mixture weights, and
g(x|µt,Σt) are the component Gaussian densities. Each
component is a D-variable Gaussian function of the form

g(x|µt,Σt) =
1

(2π)
D/2|Σi|1/2

exp {−1

2
(x− µt)Σ

−1(x− µt)}

(8)

with mean vector µt and covariance matrix Σt. The mixture
weights satisfy the constant that

∑m
i=t wt = 1. Given all

concepts in the data set X , the membership of an instance
x, with respect to concept ct, is given as follows:

p(ct|x) = N(x|µt,Σt) (9)

B. Maximum Likelihood Estimation

Given observed variables, i.e instances and the class labels
provided by labelers, we would like to infer hidden values.
Our training process is to learn two groups of model param-
eters Θ = {Υ,Ψ}, where Υ = {w, λ}, Ψ = {Kj , qj}Mj=1.
This can be solved by using traditional EM process as
follows:

E-step: Compute the expectation of the log data likeli-
hood with respect to the distribution of the latent variables
derived from the current estimation of the model parameters.

Assuming that we have a current estimate of the labeler
parameters. We compute the posterior on the estimated
ground truth:

p̂(zi) = p(zi|xi,A,Y) ∝ p(zi,A,Y|xi) (10)

where

p(zi,A,Y|xi) =
M∏
j

p(ai,j |xi)p(yi,j |zi, ai,j)p(zi|xi) (11)

M-step: To estimate the model parameters, we maximise
the expectation of the logarithm of the posteriori on z with
respect to p̂(zi) from the E-step:

Θ∗ = argmax
Θ

Q(Θ, Θ̂) (12)

where Θ̂ is the estimate from the previous iteration and

Q(Θ, Θ̂) = Ez[log(p(xi,A,Y|zi))]
=

∑
i,j

Ezi [log p(ai,j |xi) + log p(yi,j |zi, ai,j) + log p(zi|xi)]

We can compute the updated parameters by using the L-
BFGS quasi-Newton method [12] to solve the above opti-
mization problem, which does not require second deriva-
tives.

IV. SELF-TAUGHT ACTIVE LEARNING

A. Instance Selection

The goal of active learning is to learn the most accurate
classifier with the least number of labeled instances. We
employ commonly used uncertainty sampling principle, by
using posteriori probability p(z|x) trained from our graphi-
cal model, to select the most informative instance as follows:

x∗ = argmax
xi∈X

H(zi|xi) (13)

where
H(zi|xi) = −

∑
zi

p(zi|xi) log (zi|xi) (14)



In Algorithm 1, Step 5 represents the most informative
instance selection process.

B. Labeler Selection

Given an instance selected from Eq.(13), labeler selection
intends to identify the most reliable labeler who can provide
the most accurate label for the queried instance. Because
mislabeled instances will severely reduce the accuracy of
the classifier trained from labeled set [13]. The reliability of
each labeler, with respect to each instance, can be computed
using Eq.(6), where p(ai,j |xi) represents the uncertainty
of the labeler lj with respect to the queried instance xi.
Accordingly, we can simply rank the conditional probability
values from Eq.(6) in an ascending order and select the
labeler with the lowest uncertainty score to label the queried
instance, as given in Eq.(15).

j∗ = argmin
j∈M

p(ai,j |xi) (15)

It is worth noting that the uncertainty calculated in
Eq.(6) involves two important components: (1) the labeler’s
knowledge set, and (2) the memberships of each instance
belonging to different concepts. As a result, the uncertainty
of a labeler with respect to an input instance xi is determined
by the labeler’s knowledge with respect to each concept in
the data set, as defined in Eq.(4), and by the membership
of each instance belonging to each concept as defined in
Eq.(6).

In Algorithm 1, Steps 6-7 represents the labeler selection
process.

C. Self-Taught Learning between Labelers

The above instance and label pair selection process pro-
vide solutions to identify the most informative instance and
select the most reliable labeler to label the instance. A self-
taught learning process intends to use knowledge gained
from the most reliable labeler to teach the most unreliable
labeler such that a weaker labeler can gain knowledge from
its stronger peer.

In multiple weak labeler setting, we use X lj to denote
instances which can be accurately labeled by labeler lj . The
instances in X lj essentially form the knowledge set which
determines the labeling capability of lj . If we can expand
X lj by using high quality instances labeled by other labelers,
it will eventually enhance the knowledge of lj and improve
its labeling capability. Accordingly, we can include instance
labeled from the most reliable labeler to improve a weak
labeler’s knowledge as given in Eq.(16).

X ljw ← X ljw∪(x∗, yx∗,j∗); where jw = argmax
j∈M

p(ai,j |xi)

(16)
Please note that the self-taught active learning process

between labelers in Eq.(16) only uses knowledge gained

from the most reliable labeler (according to Eq.(15)) to
teach the most unreliable labeler. This is because that even
the most reliable labeler can be incorrectly identified, so
the label provided by the most reliable labeler might be
incorrect. While it is possible to propagate the knowledge to
all weak labelers, the pairwise self-taught learning between
the strongest and the weakest ladlers ensures that error
knowledge does not flood all labelers which eventually
deteriorate active learning process.

In Algorithm 1, Steps 8-9 represents the self-taught learn-
ing process.

Algorithm 1 Self-Taught Active Learning from Crowds
Input: (1) Candidate pool X ; (2) Multiple weak labelers

l1, · · · , lM ; and (3) The number (or the percentage) of queries
allowed by the labelers (reqQueries)

Output: Labeled instance set L
1: Initialize model by randomly labeling a small portion of

instances from X and compute the initial parameters Θ;
2: numQueries← 0;
3: X lj ← initial knowledge of each labeler lj , j ∈M ;
4: while numQueries ≤ reqQueries do
5: x∗ ← most informative instance from candidate pool X

(Eq.(13);
6: j∗ ← most reliable labeler for instance x∗ (Eq.(15));
7: (x∗, yx∗,j∗)← request instance x∗’s label from labeler lj∗ ;
8: jw ← most unreliable labeler (Eq.(16));
9: X ljw ← X ljw ∪ (x∗, yx∗,j∗) (self-taught learning);

10: L ← L ∪ (x∗, yx∗,j∗);
11: Θ ← retrain model using the updated labeled data and its

label (Sec. IV.C);
12: numQueries← numQueries+ 1;
13: end while

V. EXPERIMENTS

We evaluate the performance of the proposed STAL
algorithm based on two data sets and implement following
baselines for experimental comparisons:

• Multi-Labeler active learning: it uses our active
learning model to select most informative instance and
most reliable labeler for the labeling process. There is,
however, no self-taught learning mechanism between
labelers.

• Random sampling self-taught: it does not use active
learning algorithm but randomly chooses an instance
for querying and uses the most reliable labeler to label
this instance. After querying the class label, it will let
the weak labeler learn from the most reliable labeler.

• Multi-Labeler random sampling: it does not use
active learning model but randomly chooses instance
for querying and uses the most reliable labeler based
on our multiple weak labelers probabilistic graph model
to label this instance. There is, however, no self-taught
learning between labelers.

In our experiments, we use 10-fold cross-validation and
report the average results. In each fold, we randomly label



a small subset of instances to initialize the active learning
process and use logistic regression for classification.

A. A Real-World Data Set

Our real-world test-bed includes a publicly available cor-
pus of 1000 sentences from scientific texts annotated by
multiple annotators [14]. We use its Polarity labels in our
experiment. We set the fragments as the instances and their
polarities are treated as labels. We collect the fragments
segmented from sentences on which all five experts break
in the same way. Meanwhile, we also remove fragments
with less than 10 characters. Similar to the tf-idf, we use the
term frequency and its inverse document frequency for those
fragments to extract the most common words. As the result
of the above preprocess process, we construct 504 instances
each containing 153 features. Because we do not know the
actual concepts of the data set, we use k-means clustering
method to generate a number of clusters as concepts (we use
seven clusters in our experiments). Then we can calculate
each instance’s membership with respect to each individual
concepts (i.e. clusters).

To demonstrate that the proposed STAL method is indeed
effective to help each labeler improve its labeling knowl-
edge, we report the knowledge propagation map for different
labelers (with respect to the concepts in the data set) in Fig-
ures 3(b) to 3(d). In each of the propagation map, the x−axis
denotes the concepts and the y−axis represents the labelers.
The intensity in each cell, Iu,v;u = 1, · · · , 7; v = 1, · · · , 5,
represents the average uncertainty of a labeler with respect
to all instances belonging to that specific concept, defined
as

Iu,v = 255×
∑|cu|

i=1;xi∈cu
p(ai,v|xi)

|cu|
(17)

where |cu| represents the number of instances in concept cu
and 255 is used to normalize the intensity into [0,255] range.
The lower the intensity value, the less is the uncertainty of
the labeler on the instances.

B. Benchmark Data Set

We also validate the performance of our algorithm on a
publicly available UCI benchmark data set: Vertebral Col-
umn [15]. Because this data set was not labeled by multiple
labelers, we generate several synthetic labelers each has its
own knowledge set, to simulate multi-labeler scenarios. For
each data set, use k-means clustering to generate 7 clusters
and compute each instance’s membership with respect to
each cluster. We assume that each simulated labeler has
knowledge to accurately label instances in one or two clus-
ters, so different labeler has different labeling knowledge.
Meanwhile we also simulate that labelers have overlapped
knowledge between each other by using following approach.

For the 7 clusters generated from the data set, we ran-
domly select two clusters and remove all instances in the
two clusters, so we have five clusters and five labelers in

total. For each of the five cluster cu, we assign one labeler
lv to the cluster and assume lv is fully capable of labeling
all instances in cu. Meanwhile, for each labeler lv, we also
randomly choose 35% instances from other four clusters
and let lv have those instances’ labeling information. By
doing so, we are allowing lv to have partial knowledge of
labeling concepts outside of lv’s knowledge. We repeat the
same process for all labelers to make sure that each labeler
has partial knowledge to label instances outside of its own
knowledge set. In addition, for the two clusters removed
at the beginning, we choose one labeler and let the labeler
have labeling information for one of the two clusters (so the
selected labeler has knowledge to label two concepts). For
the cluster which was not selected, its labeling information
is evenly divided by five labelers so each labeler knows
20% of instances in the cluster. By using the above process,
we can simulate five labelers with different yet overlapped
labeling knowledge. This simulation of multiple labelers
with complementary knowledge can closely simulate real-
world applications with weak labelers and was also used in
a precious study [6].

In Figures 3(a) and 3(e) we report the learning curves
of the classifiers trained from the instance sets labeled by
different active learning methods, which demonstrate that
STAL results in better performance than all other methods.
Multi-Labeler random sampling has the worst performance
and is followed by multi-labeler active learning and random
sampling self-taught active learning. Clearly, random sam-
pling does not choose informative labeled data set to train
which results in the worst performance. On the other hand,
while multi-labeler active learning does choose informative
instances to label, the inherent limitation of the weak labeler
does not allow active learners improve themselves further.
By properly modeling the knowledge of multiple labelers
and enabling knowledge propagation (self-taught learning)
between labelers, STAL achieves the best performance for
the benchmark data sets.

In Figures 3(b) to 3(d) and 3(f) to 3(h), we also report
each labeler’s knowledge propagation for the two data sets.
Overall, the results clearly show that the knowledge of the
labelers can be significantly improved during the active
learning process. The most interesting results are from the
labeling knowledge propagation for concept 7. At the be-
ginning, each labeler only has very little knowledge to label
instances in this concept. However, as the query process and
the self-taught between labelers continue, all labelers gain
a significant amount of (or very strong) knowledge to label
instances in this concept, as shown in the last column of
each map.

VI. CONCLUSION

In this paper, we formulate a new active learning problem,
called Self-Taught Active Learning (STAL), where multiple
imperfect labelers, each having inadequate knowledge, can
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Figure 3. Performance comparison on the Text:Polarity and Vertebral Column. (a) the accuracies of classifiers w.r.t. different query stages; (b)-(d) the
propagation of knowledge at different query stages. The intensity colormap indicates the reliability of labelers for different concepts.

learn complementary knowledge from one another to refine
their knowledge to benefit active learning. The proposed
STAL framework consists of two alternative steps: First, it
combines instance uncertainty and labeler’s knowledge to
select instance-labeler pair for labeling. Second, it encour-
ages labelers to learn from each other’s labeling information.
Experimental results demonstrate that the proposed STAL
method can accurately capture labelers’ strength/weakness
and select the most reliable labeler for each query. The
results also show that the quality of the labeled instance
set is better than those of the other baseline methods and
validate that self-taught active learning does help improve
the labeling capability of each labeler over time.
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