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ABSTRACT
In addition to providing a sound basis for analysis, formal
methods can support other development activities; in our
case the target is specification-based testing at the system
level. We use the formal method of model checking to either
generate new test sets or analyze existing test sets with re-
spect to safety properties expressed in a temporal logic. We
consider two types of tests: failing tests, in which a system
must reject (fail) a specific dangerous action, and passing
tests, in which a system must accept (pass) a safe action in a
context that also includes a plausible dangerous action. We
formalize our notion of dangerous actions with a mutation
model for model checking specifications, and we develop
coverage criteria to assess test sets. The coverage criteria
are based on the logic operators from the Computation Tree
Logic (CTL) and encompass the idea of scenarios where a
dangerous action is either inevitable ( � ) or possible ( � ) as
of the next state ( � ) or at some point in the future ( � ). We
demonstrate the feasibility of our approach with an example.
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1 INTRODUCTION
It is well understood that software in a safety critical system
should not contribute to hazards[21, page 156]. To realize
this goal, a variety of approaches are possible, and indeed
desirable, since any given approach suffers from some weak-
ness. In this paper, we develop a novel approach to testing
specifically tailored to probing behavior relevant to the re-
quired safety properties of a given system. In this paper we
use the term safety in the sense of Leveson [21], and not
in the ‘computer science’ sense, where safety – nothing bad
happens – is distinguished from liveness – something good
does happen [20]. Our technique gives the test engineer a
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method to either generate or evaluate a test set with respect
to a set of safety-related test coverage criteria.

We strive to exploit a structure built for formal analysis,
namely a state machine description in a model checker, to
drive the test process. In this work, we assume that the sys-
tem under test has a useful, finite state model encoded in
the model checker SMV [9]. We further assume that safety
constraints have been derived separately and are encoded in
the temporal logic CTL. A variety of extant case studies that
use model checkers to analyze realistic systems lend plau-
sibility to these assumptions. One example case study is
TCAS[8], where the ”own-aircraft” logic of a traffic colli-
sion and avoidance system is specified in SMV. Another ex-
ample case study is FGS[22], where the mode logic for a
flight guidance system has been specified and analyzed in a
variety of formal notations, including SMV[28].

Our basic idea is that test engineers should endeavor to place
a safety-critical system in circumstances where it could plau-
sibly violate its safety constraints to see, on the one hand,
that unsafe actions are rejected, and, on the other, that safe
actions are accepted. Our contribution is to provide a new,
systematic approach to testing a system with respect to a
given safety property. Our contribution’s specific attributes
are:

� A development of the notion of a dangerous trace with
respect to a safety property 	 , and the extension of
these traces into passing and failing tests.

� A development of coverage criteria based on dangerous
traces and operators from the temporal logic CTL.

� A method to use a model checker to generate automati-
cally test sets that satisfy a given coverage criterion. We
also explain how to use a model checker to analyze an
existing test set with respect to a given criterion.

� A demonstration of feasibility of our method via appli-
cation to a small example.

To proceed, we must develop a notion of potentially dan-
gerous yet plausible behavior. We have selected syntactic
mutations of the descriptions of state machines for this pur-
pose; related mutation approaches not tailored to safety are



presented in [2, 3]. The basic idea behind mutation analysis
is that if some variation is made to an artifact – traditionally
code, but in this case a specification – then test data should
be comprehensive enough to notice the variation and distin-
guish it from the original. In this case, we use mutations to
model incorrect specifications. There are certainly other ap-
proaches, such as a mutation model for the state machines
themselves or an error seeding approach [23], but syntactic
mutations strike a good balance between generality and for-
mal structure.

The paper is organized as follows. In section 2 we develop
our basic model of dangerous traces and follow it to a defini-
tion of coverage criteria oriented to a given safety property.
In section 3, we present how to use a model checker to gen-
erate a test set that satisfies a given criterion. In section 4,
we show the feasibility of our method on a small example,
namely the cruise control example. In section 5, we discuss
related work and conclude.

2 MODEL
A model checker specification consists of two parts: a (fi-
nite) state machine description and a set of constraints on
that description. The state machine description is a Kripke
structure; that is, it specifies:

� A set of states. Typically, these states are implicitly de-
fined as the cross product of the possible values of a set
of variables. A subset of the states are designated as
initial states.

� A transition relation.

� Atomic propositions to label each state. Typically, these
are implicit in the variables that define the state.

The constraints are expressed in temporal logic over the
atomic propositions. The model checker sees if the finite
state machine is a model of the constraints. If not, the model
checker tries to produce a counterexample. Counterexam-
ples are useful in the context of this paper because they can
be naturally interpreted as test cases [9]. That is, to generate
a test case with a model checker, one simply writes a tempo-
ral logic constraint that is the negation of the desired prop-
erties of the test case. The model checker then obligingly
generates the result as a counterexample.

To generate a set of test cases that satisfies some given test
coverage criterion, one writes a set of temporal logic con-
straints, one for each test requirement needed to satisfy a
given coverage criterion. This possibility is illustrated in fig-
ure 1. Boxes in the figure indicate activities, and arrows in-
dicate the flow of test requirements, SMV machines, and test
cases into, between, and from these activities. On the left of
the figure, the coverage criteria and the (finite) system spec-
ification are jointly used to derive the test requirements. The
test requirements are then evaluated against the system spec-
ification by the model checker. A counterexample from the
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Figure 1: Test Set Generation with a Model Checker

model checker corresponds to a test case that satisfies a given
test requirement. These test cases are collected and reduced
to eliminate various types of redundancy [2, 5]. The result is
a test set that satisfies all feasible test requirements implied
by the selected test criterion with respect to the finite system
specification.

Recognition that a given test set satisfies a particular test cov-
erage criterion is also possible by turning each test case into
a constrained finite state machine and using the same set of
constraints as used for test generation. This possibility is il-
lustrated in figure 2. On the left of the figure are now three
inputs instead of two. Two of these inputs, the SMV sys-
tem specification and the coverage criterion are used as in
figure 1. The new input, the existing test set, is processed
so that each test case is turned into a constrained finite state
machine that is capable of exactly the behavior of the test
case [1, 2]. The model checker is then run to evaluate each
constrained machine against the test requirements, and the
results are collected into a coverage report.

Recognition of test sets is an important aspect for widescale
application of the technique for several reasons. First, most
development organizations have invested heavily in regres-
sion test sets, and so being able to analyze these existing test
sets with respect to a variety of test coverage criteria is a
useful activity. Second, although these test sets include ad-
ditional details not found in the simpler, finite system speci-
fication, it is an easier activity to abstract existing test cases
to the resolution of the finite system model than it is to add
the required details to test cases generated directly from the
finite system model. This latter activity typically requires
human intervention.

We suppose a set of mutation operators,
���

, which take state
machine descriptions in SMV and produce altered state ma-
chine descriptions. For example, one possible operator, the
variable replacement operator (VRO), takes a single occur-
rence of some variable � in an SMV state machine descrip-
tion and replaces it with a different variable 	 of compatible
type. Section 4 shows one possible set of operators,

���
. It

is noteworthy that the mutations we consider in this paper
take place in the state machine description, and not in the
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Figure 2: Test Set Evaluation with a Model Checker

temporal logic constraints, as is the case in [2, 3].
�

The sys-
tematic application of

���
to some SMV description results

in a set � of mutant machines. An example mutant machine
is illustrated in section 4.

The next step is to relate these mutant machines � to the
safety predicate 	 . A trace is a sequence of states. Traces
in a state machine start in some initial state and include sub-
sequent states as allowed by the transition relation. Consider
a trace � allowed by the original State Machine ��� . We
assume that such a trace necessarily satisfies 	 since other-
wise ��� would be known to be unsafe and there would be
no reason to test any implementation that refined ��� . Now
consider a machine ���	� with a transition relation that is
the union of that from ��� with that from some mutant ma-
chine ���	
 . If � , the trace from ��� , has the property that
the last state in � can be extended, first with a transition from
��� 
 but not ��� , and possibly further with transitions from����� in such a way that 	 is violated, then, informally, �
is a dangerous trace. � The precise definition of dangerous
depends on the way in which � is extended to violate 	 .

Traces can be dangerous in a variety of interesting ways. At
one extreme, a trace is said to be � � dangerous, or simply
an � � trace, if in the additional transitions allowed by the
mutant ��� 
 , the extended trace violates 	 in all ( � ) next
( � ) states. In other words, an � � trace takes the system to
a state where the mutant machine is guaranteed to do some-
thing dangerous on the very next transition. A trace is said
to be � � dangerous, or simply an � � trace, if in the addi-
tional transitions allowed by the mutant ��� 
 , the extended
trace violates 	 in some ( � ) next ( � ) state. In other words,
an � � trace takes the system to a state where the mutant
machine might to do something dangerous on the very next
transition.

Similar definitions apply for the future ( � ) operator. An � �
trace can be extended with the next trace from ��� 
 and


Defining the mutations on the state machine description instead of a

temporal logic reflection yields a cleaner model without some awkward as-
pects present in [2, 3].�

An alternate, and more restrictive, formulation requires the trace � to be
in both ��� and ����� [11]. We choose the more general route here.
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Figure 3: Dangerous � � Trace with Passing/Failing Tests

other transitions from ���!� so that in all ( � ) futures ( � ),
there is a violation of 	 . Finally, an � � trace can be ex-
tended with the next trace from ��� 
 and other transitions
from ���	� so that in some ( � ) futures ( � ), there is a viola-
tion of 	 . Precise formulations in CTL for the various types
of dangerous traces are presented later in the paper in the
context of the associated test cases, which we discuss next.

Dangerous traces lead directly to two notions for test cases:
failing and passing tests. In a failing test, the dangerous trace� is extended with the transition relation in ���"� so that 	
is violated. In addition, the first transition beyond � is re-
quired to come from the mutant machine ��� 
 but not the
original ��� , thereby making trace � include as many transi-
tions as possible from ��� . Further, any valid refinement of
��� must reject (fail) the extended trace. In a passing test,
the dangerous trace � is extended with the transition relation
of ��� by one transition. By assumption, this trace cannot
violate 	 , since all of the transitions are from ��� . Further,
any valid refinement of ��� must be able to accept (pass) the
extended trace. The situation for failing and passing tests is
shown in figure 3. The single arcs in figure 3 represent tran-
sitions from ��� (and possibly ��� 
 ), and the double arcs
represent transitions that are in ���!
 but not in ��� . Suppose
that the safety property 	 is violated in state # (indicated by
a double circle). Then the trace � equal to $&%(')%(* is an � �
trace, since there is an extension of � , namely $&%(')%(*+%,# where
property 	 is violated. Moreover, � is not an � � trace, due
to the existence of $&%-')%,*+%-. , which does not violate 	 . A
passing test for � � trace � is $&%-')%,*+%(/ . A failing test for � �
trace � is $0%-')%,*1%,# . Note that passing and failing tests always
come in pairs; a dangerous trace is extended one way to pro-
duce a failing test and another way to produce a passing test.

Coverage criteria derive directly from the definition of dan-
gerous traces: A set of traces 2 is � 	 -adequate, where
�!354 ��% �76 and 	8394 �:% �;6 , if for each mutant ��� 
 in� , there exists a trace � in 2 such that � is has a dangerous
� 	 -trace as a prefix. Further, 2 is passing � 	 -adequate if 2
is � 	 -adequate and for each mutant ���	
 , some dangerous
� 	 -trace is a proper prefix of some trace in 2 . Correspond-
ingly, 2 is failing � 	 -adequate if 2 is � 	 -adequate and for
each mutant ��� 
 , some dangerous � 	 -trace is a prefix of a
trace that leads to a violation of 	 , as determined by 	 - that
is, either in the next state ( � ) or in some future state ( � ).

3 MODEL CHECKER IMPLEMENTATION
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In this section, we discuss how to build the test model for
� � , � � , � � and � � coverage criteria. It includes two
parts: First, we discuss how to build a new state machine
from the original and a mutant. Second, we present how to
write temporal logic formulae that guide SMV to generate
the required traces.

Combining the Original and Mutant State Machine
As noted earlier, a set of mutation operators

���
, generates a

set of mutant machines � . Each mutant ��� 
 must be com-
bined with the original machine ��� into ���"� . In prin-
ciple, this procedure is simple, but some care is required to
implement it correctly in a model checking language such as
SMV. Below, we describe how to do this in SMV for the set
of mutation operators

���
used in the example later in the pa-

per. All of the mutation operators in
���

apply to the next
statements in SMV. The next statement is one useful way
of specifying a transition relation in SMV.

In the SMV syntax, � represents true, and � false. The logical
operators and, or and not are &, � and !, respectively.

Suppose a part of the original state machine ��� is

next (x) := case
p1 : v1;

...
pi : vi;

...
pm : vm;
1 : x; -- default case

esac;

Since case statement has an implicit semantics based on syn-
tactic order, to simplify the problem, we assume, in ��� ,
different order of (

��� %�� � ) pairs does not change the seman-
tics, that is,

� � %��	�
� % ��� are disjoint (if the guard conditions
are not disjoint, it is not difficult to rewrite them to satisfy
the assumption). In the above case statement, � is the default
case.

If a mutation operator is applied to
���

we can get the mutant
state machine ��� 
 :
next (x) := case

p1 : v1;
...
pi’ : vi; -- pi is changed to pi’

...
pm : vm;
1 : x;

esac;

To get the � �� � �� � �� � � traces, we need a state ma-
chine that includes both the traces from the original and mu-
tated state machine. If we just combine the two guard condi-
tions to create state machine ���!� , we may lose some traces,

because
��� 
 in ��� 
 may conceal some traces from ��� , and

	 � may interfere with some traces from ��� 
 :
next (x) := case

p1 : v1;
...
pi | pi’ : vi; -- a new line
...

pj : vj;
...

pm : vm;
1 : x;

esac;

The relationship between
���

and
��� 
 can be:

1)
��� 
 is strictly weaker than

���
;

2)
��� 
 is equal to

���
;

3)
��� 
 is strictly stronger than

���
;

4)
��� 
 is not comparable with

���
;

Case 2 is the easiest; no traces are lost. In case 1, some traces
from ��� are lost. Because the range that

��� 
 constrains is
larger than

���
does, when a

���
from ��� that follows

��� � ��� 

just takes the value of the difference of

���
and

��� 
 , that is, if����� ��� 
 is true, it is impossible for a model checker to check���
in ����� . For example, in figure 4, transition ����� $��
������� , ����� $�� �!�"��� , and �#��� $��$�%�&�'� are
missed in the new state machine.

a = 0 0 1

a = 1

a = 0

a = 1

init(x) := 0;
next(x) = case
    a = 0 : 0;
    a = 1 : 1;
esac;

Original State Machine

0

a >= 0

Mutated State Machine

init(x) := 0;
next(x) := case
    a>=0 : 0;
    a = 1 : 1;
esac;

change a = 0
to a >= 0

a = 0 0 1

a >= 0

init(x) := 0;
next(x) = case
    a=0 | a>=0 : 0;
    a=1            : 1;
esac;

a = 1

a = 1

a = 0

New State Machine
(with lost traces)

Figure 4: A State Machine Example

Similarly, under case 3, some traces from ��� 
 may be lost in
����� . For case 4, ���	� loses some traces from both ��� 

and ��� , because not only

���
interferes with some traces

from ��� 
 but also
��� 
 interferes with some traces from ��� .
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To make up possible lost traces from ��� , for each condition
and value pair

����� � � that follows
��� 
 ,

pj & pi’ : {vj, vi};

is inserted before

pi | pi’ : vi;

Here, SMV treats 4�� � %�� � 6 as a nondeterministic choice.
The reason to use the value set 4�� � % � � 6 is that the we need
two arcs here, assume the current value of � is ���������
	��� ,
����������	��� � ����� ��� 
 � � � is for the possible lost trace from��� , and ����������	��� � � ��� ��� 
 � � � is for keeping the exist-
ing trace from ��� 
 .
To make up possible lost traces from ��� 
 ,
!p1&!p2...&!pi’...&!pm&pi : {vi, x};

is inserted before

pi | pi’ : vi;

� � � � � ��� �
�	� � � ��� 
 �
�	� � � ��� is the default case � in ��� 
 . Be-
cause

� � % �
�	� % ��� are partitioned, the only guard condition
that

���
may cover is the default case � .

Thus, a correct ��� � should be :

next (x) := case
...

-- start: to make up traces
!p1&!p2...&!pi’...&!pm&pi : {vi, x};
pj & pi’ : {vj, vi};
...
pi | pi’ : vi;

-- end
...

pj : vj;
...

esac;

The new state machine includes all the traces. In addition,
we need to know when a trace has all of its transitions from
the original machine and when a trace has included some
trace that only the mutant machine has. A new variable orig-
inal is created to track this behavior. If the trace from the
original state machine is followed, original is true. Once a
transition not from the original is followed, the variable orig-
inal becomes and remains false. Hence, the following part is
added to the new state machine.

VAR
original: boolean;

...
ASSIGN

init (original) := 1;
...
next (original) := case

p1 & next (x) = v1 : original;
...
pi & next (x) = vi : original;
...
pm & next (x) = vm : original;
!p1 & !p2 & ... & !pm & (next(x)=x)

: original;
1 : 0; -- transition is not from SM

esac;

Expressing Test Requirements in Temporal Logic
Our purpose is to let a model checker generate � � , � � , � �
and � � failing and passing tests. If we submit the negation
of our testing requirements, the model checker can find a
trace that meets our requirements, assuming one exists. Note
that due to the finite domain, model checking is complete,
and so determining whether a test requirement is satisfiable
is decidable.

As an example, for a failing testing trace that covers an � �
trace, the variable original holds up to some point in the
computational tree. Then, in some next state, the variable
original becomes false (because a transition only in ��� 

is followed), and 	 also fails to hold. Expressing this directly
in CTL, we get the test requirement:

EF(original & EX (!original & !P))

The negation we hand to SMV as a SPEC clause is simply:

SPEC !EF(original & EX (!original & !P))

If possible, the model checker will produce a trace violating
the SPEC clause, and hence satisfying the original test re-
quirement. If there is no counterexample, this simply means
that the test requirement cannot be satisfied; in other words,
the particular mutant ��� 
 is not � � dangerous.

For a passing testing trace that covers such an � � trace, we
want to extend the � � trace with a (safe) transition from the
original machine. In temporal logic, the test requirement is
(we omit negations from here on):

EF (original & EX (original) &
EX (!original & !P))

There is a subtle point here, in that the model checker has a
choice of counterexamples from which to choose: one coun-
terexample extends the � � trace to be a passing test; the
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other extends the � � trace to be a failing test. The current
version of SMV chooses the proper counterexample with the
formula as written. (The other can be obtained by switching
the order of the two criteria.) Clearly, for robust application
to testing, control over which counterexamples to generate
would be a useful feature of model checkers.

The analysis above for � � traces gives the general idea;
although the other cases are slightly more complex. Formula
for failing and passing testing traces that cover all types of
traces we consider are:

1) To cover an � � trace:

-- Failing
EF(original & EX(!original)

& AX(!original -> !P))
-- Passing
EF(original & EX(original) & EX(!original)

& AX(!original -> !P))

2) To cover an � � trace:

-- Failing
EF(original & EX(!original) &

AX(!original -> (!P | AF(!P))))
-- Passing
EF(original & EX(original) & EX(!original)

& AX(!original -> (!P | AF(!P))))

3) To cover an � � trace:

-- Failing
EF(original & EX(!original & !P))
-- Passing
EF(original & EX(original) &
EX(!original & !P))

4) To cover an � � trace:

-- Failing
EF(original & EX(!original) & EF(!P))
-- Passing
EF(original & EX(original) &
EX(!original) & EF(!P))

It is possible that each mutant may provide more than one
� �� � �� � �� � � failing/passing trace. The method only
generates one of them. One trace is good enough for the
testing selection with respect to each mutant, because it dif-
ferentiates between the original and mutant state machine;
that is, such a trace kills the mutant.

Tools for Automatically Generating Tests for Safety
To check the feasibility of our theory discussed in the previ-
ous sections, we have developed a set of tools to automati-
cally generate and evaluate tests for safety. As we presented,

basically, there are 6 steps to generate and evaluate tests.
(Test recognition was discussed earlier.)

1. Select mutation operators
���

and produce a set of mu-
tant state machines.

2. For each mutant ��� 
 , build the new machine ���	� ,
including the variable original used in the SPEC
clauses.

3. Write test requirements for the chosen test criterion in
CTL.

4. Model check the result of the prior two steps to yield
passing and/or failing test traces.

5. Collect and reduce the counterexamples into test sets
[5].

6. Execute the test sets on an implementation.

There exist various prototype tools for these purposes.
Okun’s mutation engine accomplishes step 1 [6], and mech-
anism tools from Black and Ammann to do part of step 5 and
6 [3]. As part of her thesis [11], Ding implemented prototype
tools for the remaining steps.

4 EXAMPLE
We use the Cruise Control [19] example as our case study.
Many variations on this example exist. Table 1 is the mode
transition table of the Cruise Control SCR [18]. specifica-
tion. It shows the events and conditions which transitions
from one mode to another. The purpose of the example is to
show the feasibility of our method.

The possible states of the cruise control are partitioned into
four modes:

� Off: Ignition is off.

� Inactive: Ignition is on, but cruise control is not on.

� Cruise: Ignition is on and the cruise control system is
on, controlling the automobile’s speed.

� Override: Ignition is on and the cruise control system is
on, but not controlling the automobile’s speed.

Each line of the table 1 is a transition condition. For example,
The trigger event at line 3 can be expressed as

@T(Activate) WHEN [Ignited & EngRun & !Brake]

The third line means, if cruise control is in mode ��� $ * � � � # ,
when Ignited is true, EngRun is true, Brake is false, and if Ac-
tivate changes from false to true, cruise control will change
into mode Cruise.

The cruise control example has the following mode invari-
ants, which, for the purposes of this paper, we treat as safety
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Previous Mode Ignited EngRun Toofast Brake Activate Deactivate Resume New Mode
Off @T - - - - - - Inactive
Inactive @F - - - - - - Off

t t - f @T - - Cruise
Cruise @F - - - - - - Off

t @F - - - - - Inactive
t - @T - - - -
t t f @T - - - Override
t t f - - @T -

Override @F - - - - - - Off
t @F - - - - - Inactive
t t - f @T - - Cruise
t t - f - - @T

Table 1: SCR Specifications for the Cruise Control System

Mode Property
1 Off

�
��� � � � #)/

2 Inactive ��� � � � #)/
3 Cruise ��� � � � #)/ � � ������� � &� 2��	�1. $�
 � � � �� $�� # � � � #)$ * � � � $ � #
4 Override ��� � � � #)/ � � ������� �

Table 2: Mode Invariants for Cruise Control

properties. In the following discussion, we identify each
property with the sequence number identified in the table 2.

The cruise control SMV specification is derived from one
generated by Altee’s tool [4]. We manually rewrote the case
statements to make the guard conditions disjoint.

Using the method presented in in this paper, we automati-
cally generated safety passing tests and safety failing tests
that systematically probe the cruise control system’s mode
invariants. In the following sections, we present the results
of this exercise.

Mutation Generation
We used the mutation operators supported by the mutation
engine [6]. We illustrate each operator below with the mutant
it generates from the following clause, which is the second
line in table 1. Changes are emphasized by underlining.

CruiseControl=Inactive &
Ignited & !next(Ignited)

1. Constant Replacement(CRO): replace one constant by
another syntactically legal one, e.g.,

CruiseControl=Off & Ignited &
!next(Ignited)

2. Variable Replacement(VRO): replace a variable with
another variable of the same type, e.g.,

CruiseControl=Inactive &
EngRun & !next(Ignited)

3. Simple Expression Negation Operator (SNO): replace a
simple expression by its negation, e.g.,

CruiseControl=Inactive &
!Ignited & !next(Ignited)

4. Expression Negation Operator (ENO): replace an ex-
pression by its negation, e.g.,

!(CruiseControl= Off & Ignited
& !next(Ignited))

5. Operator Replacement(LRRO): replace one logi-
cal/relational operator with another, e.g., replace
“and(&)” with “or( � )”, or replace � with � .

CruiseControl=Inactive |
Ignited & !next(Ignited)

6. Stuck-At Operator(STO): replace a simple expression
with True( � ) or False( � ) respectively. e.g.,

1 & Ignited & !next(Ignited)

The above set of mutation operators produced a total of 456
mutant cruise control SMV specifications. Of these, 256 had
dangerous traces with respect to at least one property. Table
3 shows number of mutants that produced dangerous traces
of each possible variety with respect to a given property. As
noted earlier, each dangerous trace can be extended into ei-
ther a passing or a failing test. It is important to note that the
number of tests is much smaller than the number of coun-
terexamples indicated by table 3. The reason is that the same
test may serve to kill many mutants.

Property � � � � � � � �
1 15 16 15 16
2 22 23 22 23
3 182 191 182 191
4 44 46 44 46

Table 3: Mutants with Dangerous � 	 Traces
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As an illustration of how the method works, consider the ap-
plication of the SNO operator to the machine ��� for cruise
control. The mutant state machine that has only � � dan-
gerous traces but no � � dangerous traces. The original ma-
chine include the following next statement:

(CruiseControl = Inactive & Ignited &
next(Ignited) & EngRun & !Toofast &
!Brake & !Enum1=Activate &
next(Enum1)=Activate) : Cruise

In the mutant machine, the SNO operator negates the last
condition, next(Enum1)=Activate:

(CruiseControl = Inactive & Ignited &
next(Ignited) & EngRun & !Toofast &
!Brake & !Enum1 = Activate &
!next(Enum1) = Activate) : Cruise

The mutant can violate property 3, because it is possible
for mode variable Inactive to move to mode Cruise when
next(Enum1) is not Activate. For this particular mutant, an

� � trace starts in the initial state, turns on the ignition, starts
the engine running, and sets cruise control to Inactive. The

� � trace extended with state � � � yields failing � � trace as
shown below in the output of SMV. This failing test differ-
entiates the original from the mutant.

state 1.1:
original = 1
mutant = 1
Ignited = 0
EngRun = 0
Toofast = 0
Brake = 0
Enum1 = Resume
CruiseControl = Off

state 1.2:
Ignited = 1
EngRun = 1
CruiseControl = Inactive

state 1.3:
original = 0
EngRun = 0
CruiseControl = Cruise

Using the method of this paper, we generated both passing
and failing sets of tests that are � 	 adequate for each of the
types of dangerous traces: � � , � � , � � , and � � . The test
sets were reduced with the tools of [3]. The sizes of the re-
sulting test sets are shown in table 4. The first entry in the
table is the number of passing tests; the second is the num-
ber of failing tests. Notice that in some cases the number of

passing and failing tests differs. This is because, on the one
hand, a single passing test may serve as a complement for a
variety of failing tests. On the other hand, the model checker
sometimes chooses from a variety of possible passing tests,
thereby increasing the number of passing tests above the ab-
solute minimum. As mentioned earlier, more control over
counter example generation would be a very desirable fea-
ture in model checkers that are used for test case generation.

Property � � Tests � � Tests � � Tests � � Tests
1 5/5 6/5 5/5 6/7
2 3/4 3/3 3/4 4/4
3 19/21 22/21 19/21 23/33
4 4/5 4/5 4/5 4/7

Table 4: Sizes of Passing/Failing Test Sets

As a check, we implemented the cruise control model in Java
and used a test driver to automatically execute the passing
and failing tests. As expected, the implementation accepts
all the passing tests and refuses all the failing tests.

As a further informal check on the test sets generated by
the method in this paper, we implemented a Java program
of CruiseControl and manually planted 8 different faults in
the Java implementations (one fault in each implementation).
The faults were manufactured by hand by one of the authors
(Xu) before the author started working on the project. Then
we ran the Java programs, following each step of each test
case, to see whether the variable CruiseControl of the Java
program is consistent with the expected values in the test
case. The correct Java implementation should be consistent
with all the passing test sets and conflict with all the failing
test sets. Each incorrect implementation should be exposed
by the test sets, that is it should conflict with some of the
passing test sets or possibly be consistent with some failing
test case.

The result of the correct implementation is as we expected:
it passed all the passing tests and rejected all the failing tests.
7 of the 8 faults were exposed by the test sets. The remaining
fault not exposed was found to be consistent with the require-
ments, and so not properly a ‘fault’. So our test sets exposed
all the non-equivalent faults we planted. Our conclusion is
that the test sets can indeed find faults in implementations.
Of course, more rigorous study is required to determine the
precise effectiveness of test sets that satisfy the new coverage
criteria we developed in this paper.

5 RELATED WORK AND CONCLUSIONS
Testing, particularly system testing, consumes a significant
portion of the budget for software development projects. For-
mal methods, typically used in the specification and analy-
sis phases of software development, offer an opportunity not
only to reduce the cost of testing, but to increase confidence
in the software through formal criteria for test thoroughness.

8



We showed how to apply the powerful computation engine
of model checking to the problem of evaluating and gener-
ating test sets that satisfy novel coverage criteria targeted at
safety predicates.

A broad span of research from early work on algebraic spec-
ifications [16] to more recent work such as [26] addresses the
problem of relating tests to formal specifications. Testing fi-
nite state machines has received considerable attention, e.g.
Fujiwara et al’s work on conformance testing for protocols
[15]. Such work typically addresses states and transitions di-
rectly. Here, we work with a syntactic description of the state
machine rather than explicit states and transitions. The bene-
fit of our approach is the potential to scale to very large state
spaces; the cost is that transitions and states are considered
through the abstraction rather than directly.

Counterexamples from model checkers have been recog-
nized as potentially useful test cases. Callahan and Schnei-
der used a model checker to generate tests that cover each
block in a certain partitioning of the input domain [7]. En-
gels et al used a model checker to generate network tests
[12]. In their work, they used the term ‘negative test’ for
what we call a failing test. Ammann et al defined a muta-
tion analysis approach to generating and recognizing tests
with a model checker [2, 3]. Gargantini and Heitmeyer used
model checkers to generate tests for systems with SCR re-
quirement specifications [17]. Their method yields branch
coverage on the SMV description of the requirements; the
relationship between branch and mutation coverage at the
specification level is essentially the same as it is at the pro-
gram source code level. Ritchey and Ammann used a model
checker to provide comprehensive attack scenarios to test
heterogeneous networks [25]; Ramakrishnan and Sekar used
a model checker to carry out a related analysis in single host
systems [24]. Traditional program mutation analysis [10] is
a code-based method for developing a test set that is sen-
sitive to small syntactic changes to the structure of a pro-
gram. A variety of researchers, including the current au-
thors, have adapted mutation analysis to the specification
level [3, 13, 14, 27]. What is new in the present work is
the targeting of test cases towards specific safety predicates,
with the resulting definition of safety-related coverage met-
rics. Testing is a small, but important, piece of the safety
puzzle. A useful guide to the myriad other techniques neces-
sary is Leveson’s text [21].

To summarize, in this paper we developed a notion of a dan-
gerous trace with respect to a safety property 	 , and ex-
tended these traces into passing and failing tests. We de-
veloped coverage criteria based on dangerous traces and op-
erators from CTL. We showed how to use a model checker
to generate test sets that satisfy a given coverage criterion.
We also explained how to use a model checker to analyze an
existing test set with respect to a given criterion. Finally, we
demonstrated the feasibility of our method via application to
a small example.
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