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Abstract. Criminal activities are unevenly distributed over space. The
concept of hotspots is widely used to analyze the spatial characters of
crimes. But existing methods usually identify hotspots based on an ar-
bitrary user-defined threshold with respect to the number of a target
crime without considering underlying controlling factors. In this study
we introduce a new data mining model – Hotspots Optimization Tool
(HOT) – to identify and optimize crime hotspots. The key component of
HOT, Geospatial Discriminative Patterns (GDPatterns), which capture
the difference between two classes in spatial dataset, is used in crime
hotspot analysis. Using a real world dataset of a northeastern city in the
United States, we demonstrate that the HOT model is a useful tool in
optimizing crime hotspots,and it is also capable of visualizing criminal
controlling factors which will help domain scientists further understand-
ing the underlying reasons of criminal activities.

Keywords: Crime Hotspot, Hotspots Optimization Tool, Geospatial
Discriminative Pattern, Footprint.

1 Introduction

The use of crime hotspots—spatial locations of high crime concentration [3]—is
a key component in the study of criminal related problems. The existence of
hotspots is due to the nature that criminal activities are unevenly distribution
over space. The reasons driving the distribution of crime incidents have been
explained in relation to the interaction of target and offender and the strength
of guardianship [5]. An accurately identified crime hotspot map will significantly
benefit police practise such as threat visualization, police resources allocation,
and crime prediction, etc. [4].

However, commonly used hotspots identification methods such as point
mapping, thematic mapping, and kernel density estimation (KDE) rely on a
user-defined threshold and none of them have taken the underlying controlling
factors of crimes into account. There is a potential error when using user-specified
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thresholds because the contrast between hotspots and normal areas may be ill-
defined. For example, if a block with more than ten crime incidents a year is
identified as a hotspot, then is there a large difference between this hotspot and
the blocks that have nine crime incidents a year? A better way to accurately
locate hotspots is to identify them not only by the criminal density, but also
considering the underlying controlling factors.

In this paper, we introduce a new data mining model, Hotspots Optimization
Tool (HOT)(Fig. 1), to improve the identification of hotspot by optimizing its
boundary through the spatial footprints of patterns of crime driving factors.
In the proposed method, a pattern means a combination of values of relevant
variables. And patterns capable of identifying hotspots out of non-hot (nor-
mal) areas from the spatial perspective are called Geospatial Discriminative
Patterns (GDPatterns) [7]. The HOT method adaptively optimizes the crime
hotspots while searching for GDPatterns between crime hotspots and normal
areas. Using a real world six-year dataset of a northeastern city in the United
States, we demonstrate that the HOT model is a useful tool in optimizing
crime hotspots, and it is also capable of visualizing criminal controlling factors
which will help domain scientists further understanding the underlying reasons of
criminal activities.

Fig. 1. The framework of Hotspots Optimization Tool (HOT). The boundaries of
hotspots are updated using GDPatterns according to the optimization rules.

The rest of the paper is organized as follows. In Section 2 related works are
discussed. Section 3 introduces the data representation and formal definition
of the research problems. The Hotspots Optimization Tool is also presented in
section 3. Our experimental results are discussed in Section 4. And in Section 5
we conclude the paper and discuss future research directions.

2 Related Work

Classic criminal theories, such as the Routine Activities Theory [5], conclude
that three concepts contribute to crime: accessible and attractive targets, a
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pool of motivated offenders, and lack of guardianship. The concepts of “tip-
ping point”[10] and “disorder”[17] explain why adjacent areas of crime hotspots
are at higher risk. A recent work done by [16] also discusses how an area is
affected by the activity scope of offenders.

The Spatial and Temporal Analysis of Crime (STAC) program [2] is one of
the earliest and widely used hotspot mapping applications. STAC uses “standard
deviational ellipses” to display crime hotspots on a map and does not pre-define
spatial boundaries. But some studies [9] show that STAC may be misleading
because hotspots do not naturally follow the shape of ellipses. Another popular
hotspot representation method is thematic mapping, in which boundary areas
(geographic boundaries like census blocks or uniform grids) are used as the ba-
sic mapping elements [12]. Compared to point mapping, thematic mapping uses
aggregate data, and spatial details within the thematic areas are lost. Also, the
identified hotspots are restricted to the shape of thematic units. Kernel density
estimation (KDE) [18] aggregates point data inside a user-specified search ra-
dius and generates a continuous surface representing the density of points. It
overcomes the limitation of geometric shapes but still lacks statistical robust-
ness that can be validated in the produced map [4]. All the above methods focus
only on the target crime data and none of them consider underlying controlling
factors of crime incidents.

Geospatial Discriminative Pattern applies emerging patterns to the spatial
content. Emerging patterns are firstly introduced in [8] and further systemati-
cally studied in [14]. In the work of [7] they adopted the relative risk ratio as the
measure of pattern emergence and use the method in vegetation remote sensing
datasets. In our work GDPatterns are used as a tool to spatially mine the stati-
cally significant difference between target crime hotspots and normal areas with
respect to its underlying related factors. It is the first time that GDPatterns
have been used in the field of crime hotspot study.

3 Methodology

In this section, we will formally define the research problem and then present
the HOT algorithm. To find GDPatterns of a target crime and its associated
variables, a transaction-based geospatial database needs to be built. A widely
used method for representing spatial distribution of entities is grid thematic
mapping [11]. In this work we firstly generate a grid mask to cover the studied
area. Variable data (both target crime and explanatory variables that contain
information about underlying controlling factors of target crime) in the original
spatial dataset is plotted onto a grid map with the same dimension as the mask.
The cell in the grid is assigned as the count of incidents falling into it.

Since the explanatory variables come from very different sources, the range
of their values varies. As with most criminal activities, the counts of cells with
same values in each grid map follow a power-law distribution [6]. A better way to
fairly represent all the variables in one pattern is to categorize them and change
the original values into categorized numbers. Jenks Optimization for Natural
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Breaks Classification [13], a method that is based on natural groupings inherited
in data is used to divide every variable into categories. Using the Nature Break
method the categories’ breaks are identified that best group similar values, and
the differences between categories are maximized.

Finally, with a user-specified threshold, the cells of the target crime grid can
be classified into two classes: hotspots and normal area and a transaction-based
geospatial dataset D is built.

Definition 1. Geospatial database object : A geospatial database object is a
tuple of the form: {x, y, V1, V2, ..., Vn, C}, where x, y indicate the object’s spatial
coordinates, V1, V2, ..., Vn are the categorized values of the explanatory variables,
and C is the class label of target crime. C is 0 if the area is not a hotspot (or
normal area) and 1 if the area is a hotspot. Using C, objects in D are labelled
into the class of Dh (hotspots) if C = 1, or Dn (normal area) if C = 0.

3.1 Geospatial Discriminative Patterns

Here we give a brief introduction of Closed Frequent Patterns [15], GDPatterns
and related definitions.

Definition 2. Transaction and pattern: In a geospatial database, a transaction
T is the group of explanatory variables (V1, V2, ..., Vn) in an object. An pattern
X is a set of values of explanatory variables (e.g. V1 = 1, V3 = 4). For example,
disregarding the class label C, in dataset D each object can be viewed as a
transaction in location (x, y) with a fixed-number of variables.

Definition 3. Support : A pattern is said to be supported by a transaction when
it is a subset of the transaction. For example, given a transaction T { V1=1,
V2=1, V3=2, V4=2, V5=3, V6=5 }, patterns X1 {V1=1, V2=1, V5=3} and X2

{V1=1, V3=2, V4=2 } are supported by T , though X3 {V1 = 1, V5=5, V6=3} is
not because it is not a subset of T . The number of transactions that support an
pattern X is called the support count (suppcount) of X . The support of X is
the ratio of X ′s suppcount and the total number of transactions in a geospatial
database (Formula 1).

sup(X) =
suppcount(X)

τ
(1)

where sup(X) is the support of pattern X and τ is the number of transactions.

Definition 4. Closed frequent patterns : An pattern X is said to be a closed
pattern when none of its immediate super-sets has exactly the same support as
X . A closed pattern can represent a set of non-closed patterns without losing
any support information, because the support of non-closed patterns can be
calculated directly from the closed pattern. Using closed patterns will effectively
reduce the total number of patterns. Furthermore, X is a closed frequent pattern
if the support ofX is greater than a user-defined minimum support threshold (ρ).
We are only interested in closed frequent patterns because infrequent patterns
are likely to be insignificant and may happen by chance.



Optimization of Criminal HotSpots 557

The patterns we are looking for should meet two requirements: (1) to signif-
icantly represent the situation or conditions of explanatory variables in objects
in D; (2) to significantly distinguish classes (Dh, Dn) from dataset D. A closed
frequent pattern can satisfy the first requirement. To capture the difference of
classes, the patterns should be more frequent in one class than in another.

Definition 5. Geospatial Discriminating Patterns (GDPattern): In a geospatial
database, a closed frequent pattern X is also a GDPattern if the growth ratio(δ)
of X is larger than a user defined threshold. Here, growth ratio of a pattern is
defined as the ratio of its supports in different classes.

δ =
sup(X,Dh)

sup(X,Dn)
(2)

where δ is the growth ratio; sup(X,Dh) is the supports of closed frequent pattern
X in classDh and sup(X,Dn) is supports of closed frequent pattern X in classDn.

Definition 5. Footprint of a GDPattern: The footprint of a GDPattern X is
the objects that support X in geospatial dataset D (Fig. 2). It is the set of
cells whose correspondent objects support X in the grid map of study area.
Footprints of GDPatterns provide a way to measure the spatial distribution of
those patterns in studied area.

Fig. 2. A example map of GDPatterns Footprints. By selecting Residential Bur-
glary(RB) data as the target crime, nine other variables are used as explanatory vari-
ables from the experiment dataset and 1,500 GDPatterns are mined with a growth
ratio larger than twenty. The red area are RB hotspots with a user defined threshold
and hallow squares with slash lines are footprints of the 1,500 GDPatterns.

Hence, with a rational threshold of growth ratio the GDPatterns mined fromD
are significantly different between classes and are capable of digging out the mean-
ingful information underlying the spatial distribution of target crime hotspots.
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Algorithm 1. The Hotspot Optimization Tool takes as input a geospatial
dataset D, a hotspot threshold h, a hotspot candidate threshold h′, a closed
frequent pattern threshold ρ, a growth ratio threshold δ, and returns a new
set of hotspots Dh, a set of GDPatterns G, and their footprints ψ.

Data: D,h, h′, ρ, δ
Result: Dh, G, ψ
count = 1;1

Generate Dh, Dh′ and Dn;2

while count �= 0 do3

count = 0;4

μ = ∅;5

G = Mine GDPatterns using Dh, ρ and δ;6

ψ = footprints(G);7

for cell c ∈ Dh′ do8

if c adjacent to some cell in Dh and c ∈ D′
h then9

μ = μ ∪ c;10

end11

end12

for cell c ∈ μ do13

if c ∈ ψ then14

Dh = Dh ∪ c;15

count++;16

end17

end18

end19

3.2 Hotspot Optimization Tool

As mentioned above, locating hotspots with a user defined threshold is not
sufficient. Here we introduce a model, Hotspot Optimization Tool (HOT), to
emphasize the identification of hotspots by optimizing user-specified hotspot
boundaries. The practicality of HOT is based on two concepts: firstly, a hotspot
can be considered as a “tipping point”[10] or the source of “disorder”[17] of its
adjacent blocks, which means the adjacent areas have the possibility of being
affected by crimes happening in hotspots. Also, from the point of view of spa-
tial correlations [1], adjacent areas (cells) of a hotspot cell are more likely to
fall into the active range of the same criminals. Therefore these areas (adja-
cent cells) are potential hotspots, especially those with a relatively high crime
density. Secondly, according to the definition, GDPatterns are much more fre-
quent in hotspots than in normal area. Normal areas located in the footprints
of GDPatterns are more likely to be hotspots because in these areas the values
of explanatory variables are the same.

With a target crime being selected, to find hotspots (Dh) we firstly initialize a
threshold of target crime rates. Then we optimize the boundaries of hotspot using
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HOT (Algorithm 1) with the intrinsic discriminative information embedded in
the GDPatterns:

This algorithm does the following:

– Identify areas with a relatively high crime density (Dh′ , areas with high
target crime density that are close to the density in hotspots, line 2);

– Mine GDPatterns based on current hotspot boundaries and draw the foot-
prints of GDPatterns (lines 6 and 7);

– Generate candidate cells(lines 8-12): cells located in Dh′ and adjacent to
some cell in Dh.

– Test the hypothesis for candidate cells (line 14): a candidate cell is inside
the footprints of GDPatterns (ψ);

– If the hypothesis is true, the boundaries of the hotspot are modified by
changing the current cell into a hotspot cell (from Dh′ to Dh) (line 15);

– Iterate until all hypothesis tests are fault (line 3 and line 19).

When the boundaries of a hotspot are changed, a new set of GDPatterns will be
generated based on the modified hotspots, followed by the change of footprints. If
in the current loop the set of GDPatterns is the same as the former loop, it means
there are no new footprints and there will be no “true” from the hypothesis test
(lines 4-10 in Algorithm 1). The HOT will stop and a new optimized hotspot
map is generated.

4 Experiment Results

4.1 Data Preprocessing

The experiments are done using historical data with a time span of six years
(2004-2009) from a northeastern city in the United States. The size of study
area is 130.1 km2 and the approximate population is 600,000. As one of the most
frequently reported and resource-demanding crimes in the studied city (accord-
ing to the city police department report), Residential Burglary (RB, burglaries
target at residential houses) is selected as the target crime. In addition to RB,
total of eight social/criminal features are selected in this study as explanatory
variables with the help of a domain expert. Among those are:

– Commercial Burglary (CB, burglaries that target at commercial sites), Street
Robbery (SR), Motor Vehicle Larceny (MV, crimes against possession inside
vehicles ) and Arrest data (AR) are related criminal data that pictured the
level of activity of crimes. The rates of CB, MV, and ST reflect the strength
of guardianship in the area. Arrest rate is a good indicator for the pool of
offenders.

– Foreclosed Houses (FC, houses that are redeemed by mortgage lender) reflect
the house vacancy conditions and a vacant house has a higher risk of being
broken into than an inhabited one. It is also an indicator of guardianship.
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– The spatial density of RB is affected by the density of population (POP) and
number of houses units (HU). A hotspot map of RB may simply be displaying
locations of high housing density because such areas have a potential higher
RB rate than areas with fewer houses.

– The studied city is a hub of higher education and a significant amount of
houses near universities or colleges are usually rented by students or schol-
ars, which make them easy targets of burglars during semester breaks. The
variable of Distance to Colleges (DC) is used to address this concern.

The original criminal dataset comes as vector maps (points and polygon). A grid
map is made as a mask to cover the whole study area and acts as the background
map for data preprocessing. The cell size selected is 100m× 100m, which results
in a number of 12,984 cells in the study area. There are two concepts to consider
when choosing an appropriate cell size. Firstly, the cell is approximately half
the size of average city block size (19, 873m2) in the studied city, which will
be a good representative of reality. Secondly, with this cell size the number of
cells which fall into the study area is at the same order of magnitude with the
number of RB incidents, which minimizes the loss of spatial information during
aggregation.

4.2 Hotspots Optimization

An initial threshold of RB hotspots is needed to set the initial classes before the
HOT algorithm is used. From the study of [16], a house is under a relatively
higher risk if a burglary happened in the nearby area in the past four months.
Relatively, if three or more burglary incidents happened in the block in one year,
the area is likely a hotspot of burglary. Because the time span of our RB data
is six years, we set an area (cell) to be a hotspot if there are eighteen or more
burglary incidents (h ≥ 18).

Using a support threshold of 0.001, 6,327 patterns are mined out of which top
1,500 are selected with a growth ratio more than twenty (δ > 20), which indicate
with an at least 95% confidence level (1:20) that these GDPatterns will reveal
the difference between hot spots and normal area. We use the threshold of 9 RB
incidents(18 > h′ ≥ 9), half of the initial value used for hotspots, to define the
“potential hot” area (Dh′). In the 6th loop OHS reaches the final condition and
stops (Fig. 3). A final version of the set of patterns is extracted and the growth
ratios of top 1,500 GDPatterns are all greater than 50, which is at least twice
the initial version.

The new hotspot grid map is projected with satellite images of the studied city
and a figure of sample site is extracted and shown in Fig. 4. Using an arbitrary
threshold (h) the red cells are classified into hotspots and cells in same blocks (in
the colour of blue) have been left out. It is reasonable that houses located in the
same block have a similar risk of being broken into. Our optimization method
successfully captures these cells and modifies the hotspot boundaries rationally.
Also, cells which are mostly covered by natural land, parking lots, roads and
highways identified and are not classified into hotspots using our methods.
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Fig. 3. Optimized hotspots map of the studied city. The purple cells are hotspots
initially defined by the user-defined threshold and the blue cells represent hotspots
that are added from candidate areas using HOT.

Fig. 4. A re-projection example of hotspots with satellite images. The purple cells are
hotspots defined by the original threshold and the red cells are hotspots identified using
our optimization method.

5 Conclusion and Future Work

In this paper we present a data mining model –Hotspots Optimization Tool
– to optimize crime hotspots using GDPatterns. It is a first time attempt of
using GDPatterns in crime hotspots analysis. Using a real world dataset we have
proved that our model is capable of identifying crime hotspots by considering the
controlling factors of criminal activities. This is important in criminal analysis
because we can visualize areas that are in danger of becoming unstable and
changing into a pool of criminal activity.

The GDPatterns mined in the process is an information-rich dataset and from
which more details of crime driving factors can be extracted. The optimization
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process is not only a visualizing of crime itself but also an visualization of con-
trolling factors and will help our understanding of the underlying reasons of
criminal activities. In our future work, we will focus on rational structured and
re-organized GDPatterns.

Acknowledgement. The work was partially funded by the National Institute
of Justice (No.2009-DE-BX-K219).

References

1. Bailey, T.C., Gatrell, A.C.: Interactive spatial data analysis. Longman Scientific &
Technical Essex (1995)

2. Bates, S.: Spatial and temporal analysis of crime. Research Bulletin (April 1987)
3. Chainey, S., Ratcliffe, J.: GIS and crime mapping, vol. 6. John Wiley & Sons Inc.

(2005)
4. Chainey, S., Tompson, L., Uhlig, S.: The utility of hotspot mapping for predicting

spatial patterns of crime. Security Journal 21(1), 4–28 (2008)
5. Cohen, L.E., Felson, M.: Social change and crime rate trends: A routine activity

approach. American Sociological Review, 588–608 (1979)
6. Cook, W., Ormerod, P., Cooper, E.: Scaling behaviour in the number of crimi-

nal acts committed by individuals. Journal of Statistical Mechanics: Theory and
Experiment 2004, 07003 (2004)

7. Ding, W., Stepinski, T.F., Salazar, J.: Discovery of geospatial discriminating pat-
terns from remote sensing datasets. In: Proceedings of SIAM (2009)

8. Dong, G., Li, J.: Efficient mining of emerging patterns: Discovering trends and
differences. In: Proceedings of the 5th ACM SIGKDD, pp. 43–52. ACM (1999)

9. Eck, J.E., Chainey, S., Cameron, J.G., Leitner, M., Wilson, R.E.: Mapping crime:
Understanding hot spots (2005)

10. Gladwell, M.: The tipping point: How little things can make a big difference. Little,
Brown and Company (2000)

11. Harries, K.D.: Mapping crime: Principle and practice. US Dept. of Justice, Office
of Justice Programs, Crime Mapping Research Center (1999)

12. Hirschfield, A.: Mapping and Analysing Crime Data: Lessons from research and
practice. CRC (2001)

13. Jenks, G.F.: The data model concept in statistical mapping. International Year-
book of Cartography 7, 186–190 (1967)

14. Li, J., Liu, G., Wong, L.: Mining statistically important equivalence classes and
delta-discriminative emerging patterns. In: Proceedings of the 13th ACM SIGKDD,
pp. 430–439. ACM (2007)

15. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed Item-
sets for Association Rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS,
vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

16. Short, M.B., Bertozzi, A.L., Brantingham, P.J.: Nonlinear patterns in urban crime:
Hotspots, bifurcations, and suppression. Journal on Applied Dynamical Systems 9,
462 (2010)

17. Skogan, W.G.: Disorder and decline: Crime and the spiral of decay in American
neighborhoods. Univ. of California Pr. (1992)

18. Wand, M.P., Jones, M.C.: Kernel smoothing, vol. 60. Chapman & Hall/CRC (1995)


	Optimization of Criminal HotSpots Based on Underlying Crime Controlling Factors Using Geospatial Discriminative Pattern
	Introduction
	Related Work
	Methodology
	Geospatial Discriminative Patterns
	Hotspot Optimization Tool

	Experiment Results
	Data Preprocessing
	Hotspots Optimization

	Conclusion and Future Work 


