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Introduction:  Impact craters are among the most 

studied features found in planetary images because 
their counts are used to measure relative surface ages 
[1,2,3]. High resolution images contain very large 
number of craters making, in principle, possible to date 
surfaces with a high spatial and temporal resolution. 
However, this promise remains unfulfilled because of 
lack of effective algorithm for detecting craters in an 
image. A detection algorithm needs to identify craters, 
in broad spectrum of sizes and forms. It needs to do it 
reliably in large number of images showing terrains of 
different character. The challenge is to develop an al-
gorithm that detects craters in all images with consis-
tent accuracy and minimum human involvement.  

In this paper, we report on our investigation of a 
promising strategy to address the aforementioned chal-
lenge. Our strategy consists of employing a cascading 
AdaBoost classifier for identification of craters in im-
ages, and using the Self-Organized-Map (SOM) as an 
active learning tool to minimize the number of image 
examples that need to be labeled by an analyst. The 
cascading AdaBoost classifier is a methodology that 
achieves an efficient and accurate recognition of ob-
jects in an image. An image (or its small portion re-
ferred to as a sub-window) is passed through a cascade 
of simple but progressively more complex classifiers, 
each optimized for rejection of non-crater sub-
windows.  This method has been proved to work very 
well with a problem of face detection and is expected 
to work well with crater detection. However, such 
classifier is only as good as its training set. If we apply 
such classifier to a new image that contains craters 
having features not present in the training set the clas-
sifier will fail. The active learning (through the SOM) 
is designed to point out sub-windows in a new image 
that are not represented in the training set, so an ana-
lyst can label them, add to the training set, and, by 
doing this, maintain accuracy of detection while mini-
mizing a number of sub-windows that need to be 
viewed. 

Methodology:  First, we describe detection of cra-
ters by the cascading AdaBoost classifier. For this ex-
ploratory investigation we employed a following pro-
tocol: we have chosen four images of nearby and simi-
lar terrain and manually marked all craters on them. 
We call one image a “training” image and remaining 
images “test” images. The classifier is constructed us-
ing the training image and tested on both the training 
image and test images. Test images are needed to 

check the generalization power of the classifier – how 
well can it work on an image that was not used for its 
training? 

The two images, each having 1,700 by 1,700 pix-
els, were extracted from the nadir panchromatic, 12.5 
m/pixel image (h0905) of Mars taken by the High Res-
olution Stereo Camera (HRSC) on-board the Mars 
Express spacecraft in the area of Nanedi Valles. The 
strategy is to decompose each image into exhaustive 
set of sub-windows having sizes as small as 24 by 24 
pixels and as large as the entire image; there are over 2 
million such sub-windows in each image. Each sub-
window is by a very large set (45,000) of image texture 
features that encode the content of the surface seen in 
this sub-window. We use the training set (sub-
windows that are labeled to either contain craters or 
not) to train a cascading AdaBoost classifier [4, 5]. The 
cascade (which, in this context means a series of sub-
sequent classifiers) is a way to efficiently handle a 
large number of features; each successive classifier is 
trained only on samples which pass through the pre-
ceding classifiers. The classifiers at the early stage of 
the cascade are designed to discard a large amount of 
non-crater sub-windows, whereas classifiers at the later 
stage of the cascade concentrate on accurate distinction 
between craters and non-craters. 

Second, we describe our approach to maintaining 
accuracy through different images.  The goal here is to 
be able to quickly identify sub-windows in the test 
image that has a character different from anything 
coded in the training set. In order to do it we construct 
a SOM from a combination of training set and sub-
windows in the new image. Each member of the set is 
a multi-dimensional vector representing a sub-window. 
The SOM is a neural-net method for clustering and 
visualization of sets of multi-dimensional vectors. It 
consists of an array of “nodes”. The vectors are placed 
into the nodes on the basis of their similarity, thus a 
single node contains vectors similar to each other. 
Moreover nearby nodes are also similar to each other, 
thus two neighboring nodes contain vectors more simi-
lar to each other than to distant nodes. Overall, the 
SOM provides a visual representation of the topology 
of multi-dimensional space.  In the context of the cra-
ter detection the SOM will provide a visual indication 
of the sub-windows in the test image that are not simi-
lar to either “crater” examples or “non-crater” exam-
ples in the training set. Once identified these sub-
windows needs to be looked at and labeled. 
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Results: We labeled 168 sub-windows from the 

training site as craters and 628 sub-windows from the 
training site as non-craters; some examples of sub-
windows labeled as craters and non-craters are given in 
Fig. 1. The cascading AdaBoost classifier was con-
structed using this training set and applied to all four 
images. 

 
Figure 1. Left: examples of sub-windows containing 
crater; right: examples of sub-windows that do not 
contain craters. 
 

To evaluate the performance of the classifier we 
measured the detection percentage D=100 
(TP/(TP+FN)), the branching factor B=FP/TP, and the 
quality percentage Q=100 (TP/(TP+FP+FN)). Here, 
TP stands for the number of true positive detections 
(detected craters that are actual craters), FP stands for 
the number of false positive detections (detected cra-
ters that are not actual craters), and FN stands for the 
number of false negative “detections” (real craters 
failed to be indentified). D can be treated as a measure 
of crater-detection performance, B as a measure of 
delineation performance, and Q as an overall measure 
of algorithm performance. Fig.2 shows the visual indi-
cations of crater detection, as well as D, B, and Q for 
the four images we considered. 

Conclusions: Automatic detection of small (200 m 
in diameter and larger) craters in images is a challeng-
ing task. As can be seen from Fig. 2 even the sophisti-
cated cascading AdaBoost classifier does not find cra-
ters with great accuracy. This is because distinction 
between small craters and other terrain features are 
often fussy even for an analyst. Future research needs 
to establish a size limit of robust detectability of cra-
ters. The idea of active learning via SOM is promising 
but requires more research. Fig. 3 shows the SOM con-
structed from the training set, sub-windows 
representing craters and non-craters are visually sepa-
rated showing potential for active learning. 
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Figure 2. Crater detection results on 4 images con-
sidered in our evaluation. 

 

 
 
 

RED : 
Correct Detections 
(True Positives)

BLUE :  
Incorrect Detections 
(False Positives)

GREEN : 
Undetected Craters  
(False Negatives)

BROWN :
Non-Crater Examples 
(True Negatives)

Figure 3. SOM showing the structure of the 
multi-dimensional training set. 


