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Counting craters in remotely sensed images is the only tool that provides relative dating of

remote planetary surfaces. Surveying craters requires counting a large amount of small sub-
kilometer craters, which calls for highly efficient automatic crater detection. In this paper, we

present an integrated framework on auto-detection of sub-kilometer craters with boosting and

transfer learning. The framework contains three key components. First, we utilize mathematical
morphology to efficiently identify crater candidates, the regions of an image that can potentially

contain craters. Only those regions, occupying relatively small portions of the original image,

are the subjects of further processing. Second, we extract and select image texture features, in
combination with supervised boosting ensemble learning algorithms, to accurately classify crater

candidates into craters and non-craters. Third, we integrate transfer learning into boosting, to

enhance detection performance in the regions where surface morphology differs from what is
characterized by the training set. Our framework is evaluated on a large test image of 37, 500 ×
56, 250 m2 on Mars, which exhibits a heavily cratered Martian terrain characterized by nonuniform

surface morphology. Empirical studies demonstrate that the proposed crater detection framework
can achieve an F1 score above 0.85, a significant improvement over the other crater detection

algorithms.
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Categories and Subject Descriptors: I.5.2 [Design Methodology]: Classifier design and evalua-

tion; Feature evaluation and selection; Pattern analysis; I.5.4 [Pattern Recognition]: Applica-
tions—Astronomy

General Terms: Algorithms

Additional Key Words and Phrases: classification, feature selection, transfer learning, spatial data
mining, planetary and space science

1. INTRODUCTION

Impact craters, the structures formed by collisions of meteoroids with planetary sur-
faces, are among the most studied geomorphic features in the solar system because
they yield information about the past and present geological processes and provide
the only tool for measuring relative ages of observed geologic formations [Crater
Analysis Techniques Working Group 1979; Tanaka 1986]. However, advances in
surveying craters present in images gathered by planetary probes have not kept up
with the advances in collection of images at ever-higher spatial resolutions. Today,
as in the past, efficient crater detection in planetary images remains as a daunting
task due to the following challenges [Kim et al. 2005]:

(1) Challenge 1: Lack of distinguishing features. Craters, as a landform for-
mation, lack strong common features distinguishing them from other landform
formations. Their sizes differ by orders of magnitude. Their rims have often
been eroded since their formation millions of years ago, resulting in shapes
that depart significantly from circles. They frequently overlap, complicating
the task of their separation from background.

(2) Challenge 2: Heterogeneous morphology in images. Planetary surfaces
are not homogeneous where nonuniform surface morphology frequently exhibits.
Furthermore, planetary images may be taken at different lighting conditions,
at different resolutions, and their quality varies so that even morphologically
identical craters may have different appearances in different images.

(3) Challenge 3: Huge amount of sub-kilometer craters in high resolution
planetary images. The size distribution of craters follows power-law [Tanaka
1986]; large craters that can be easily identified manually are rare and small
sub-kilometer craters are abundant.

As a result, comprehensive catalogs of craters are restricted to only large craters
using manual inspection of images, for example, 42, 283 Martian craters with diam-
eters larger than 5 km [Barlow 1988], and 8, 497 named lunar craters with diameters
larger than a few kilometers [Andersson and Whitaker 1982]. There are millions
of smaller craters waiting to be identified in a deluge of high resolution planetary
images but no means for their efficient identification and comprehensive analysis.
If left to manual surveys, the fraction of cataloged craters to the craters actually
present in the available and forthcoming imagery data will continue to drop pre-
cipitously. Crater auto-detection techniques are needed, especially to catalog small
sub-kilometer craters that are most abundant. Surveying such craters is ill-suited
for visual detection, due to their shear numbers, but well-suited for an automated

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



title: Sub-Kilometer Crater Discovery with Boosting and Transfer Learning · 3

technique. In summary, automating the process of small crater detection is the
only practical solution to a comprehensive surveying of such craters.

This paper partially addresses Challenges 1-3 by designing an innovative frame-
work that uses feature extraction, feature selection and supervised boosting ensem-
ble learning. The three key components of proposed method are as follows:

• Utilizing mathematical morphology on shape detection for efficient
identification of regions indicative for craters. Due to the shear number
of small sub-km craters discussed in Challenge 3, a practical crater detection tool
must use computational time wisely. We adapt the concept of crater candidates
introduced by Urbach and Stepinski in [Urbach and Stepinski 2009]. Crater candi-
dates are the regions of an image that can potentially contain craters. The benefits
of identifying crater candidates at an early stage are two-fold: (i) Significant com-
putational time is reduced at later stages of complicated calculations on feature
extraction and classification, where crater candidates are used instead of pixel-
based image blocks that are calculated from exhaustive search of the entire image.
(ii) The number of false positive detections is reduced at the stage of classification,
because a large portion of the image, including background, is removed from being
classified.

• Using a combination of image texture features and a family of super-
vised boosting ensemble learning algorithms to yield a highly accurate
classifier. Targeting at Challenge 1, we are the first research team that contruct
image gradient texture features from crater candidates for rapid feature extraction.
Those gradient texture features can efficiently capture the underlying image gra-
dient structure without requiring prior domain knowledge. A set of base learners
are built from those texture features and combined to build a strong classifier using
boosting ensemble learning.

• Applying transfer learning to feature selection and classifier induction,
in order to minimize training for the application of a crater detection
tool to a heterogeneous planetary surface. As discussed in Challenge 2, an
unseen test site may contain craters that are different from those in the training
site. A set of transfer learning algorithms are newly designed to transfer knowledge
from an old training site to a new unseen test site. We propose TL-Random, TL-
Max, TL-Min, and TL-MaxMin algorithms to sample new test instances and add
them into the existing training set, using random sampling, sampling of maximum,
minimum, and combined maximum and minimum distributions, respectively.

The entire framework is evaluated on a large, high resolution image of Martian
surface (37, 500 × 56, 250 m2), featuring high density of small sub-km craters and
spatial variability of crater morphology. The proposed boosting ensemble learning
algorithms with transfer learning achieve an F1 score above 0.85 on crater detection,
a significant improvement over the other crater detection algorithms. The transfer
learning algorithms have proved to be powerful on regions where surface morphology
differs as characterized by the training set. The experimental results demonstrate
robustness and good accuracy that validate our approach and make it feasible to
construct a robust and reliable crater auto-detection framework that can be widely
adopted for planetary research.
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Fig. 1. Diagram illustrating the crater-detection framework. (1) Crescent-like shadow and high-

light regions are identified using shape filters. (2) Shadow and highlight regions that can be
matched are used to construct crater candidates. (3) Image texture features are extracted from

crater candidates using square kernels. (4) Craters are identified using supervised learning algo-

rithms.

The rest of the paper is organized as follows. Section 2 discusses the proposed
crater detection framework: Sections 2.1 and 2.2 explain how to construct crater
candidates and image texture features from those candidates. Section 2.3 provides
a brief review on unsupervised vs supervised crater-detection methods. Section 3
introduces our ensemble boosting algorithms used for crater detection with and
without using transfer learning. Section 4 presents our empirical study on finding
craters in a large high resolution planetary image. Section 5 summarizes our work
and discusses future directions.

2. A FRAMEWORK FOR AUTOMATIC CRATER DETECTION

The flow chart indicating components of our method is shown in Figure 1. A key
insight behind our method is that a crater can be recognized as a pair of crescent-
like highlight and shadow regions in an image (see Figure 2). Pairwise crescent-
like shapes are identified from images using a shape detection method based on
mathematical morphology [Urbach et al. 2007], and those that can be matched
are used to construct crater candidates [Urbach and Stepinski 2009], the locations
where craters likely reside. The input objects of supervised learning are derived
from image blocks containing crater candidates and the classification is performed
on feature vectors based on image texture features.
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Fig. 2. (A) Diagram explaining why an image of a crater consists of crescent-like highlight and

shadow regions. (B) An image of an actual 1 km crater showing the highlight and shadow regions.

Fig. 3. Diagram illustrating individual steps in constructing crater candidates

2.1 Finding Regions That Are Indicative For Craters

In order to reduce the load on the classification module, we first identify crater
candidates—parts of an image that contain crescent-like pairs of shadows and high-
lights. Identification of crater candidates is achieved using an image processing
method based on mathematical morphology proposed by Urbach et al. on object
detection in [Urbach and Stepinski 2009; Urbach et al. 2007]. Figure 3 shows a flow
diagram of the method used for identification of crater candidates. The highlight
and shadow shapes are processed in parallel using inverted image to process the
shadow shapes. The goal is to eliminate all the shapes that are not indicative of
craters while keeping the highlight and shadow shapes. The step of Background
Removal deletes shapes, such as mountains, that are too large to be part of the
craters; the Power Filter removes shapes that lack sufficient contrast; the Area
Filter removes shapes that are too small for reliable crater detection; the Shape
Filter uses shape attributes that are invariant to translation, rotation, and scaling
to preserve or remove regions of an image exclusively on the basis of their shapes.
Utilization of the Shape Filter, that requires only a single parsing of an image, im-
proves performance by a factor of 5 to 9 in comparison with other shape detection
methods [Urbach et al. 2007]. In the final step, highlight and shadow regions are
matched so that each pair corresponds to a single crater candidate. This method
does not have high enough accuracy to constitute a stand-alone crater detection
technique, but is ideal for identification of crater candidates. More calculations
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Fig. 4. 9 types of square masks: (A) 2 two-rectangle masks to capture horizontal and vertical

gradient texture, (B) 2 three-rectangle masks to capture horizontal and vertical edge gradient

texture, (C) 5 four-rectangle masks to capture diagonal gradient texture. Far-right: An example
of a two-rectangle mask overlay on a crater. A crater is a depression in the surface and appears

in the image as a pair of shadow and highlight semi-circular shapes. The illumination is from
north-east.

must be performed to discriminate craters from non-craters in those crater candi-
dates. Compared to the shape features used in [Urbach and Stepinski 2009] that
results less satisifying results on crater detection (experimental results will be given
in Section 4.6), in this paper, we construct image texture features from the crater
candidates to be used by the classification algorithms.

2.2 Image Texture Feature Construction

We use image texture features reminiscent of Haar basis functions which were first
proposed in [Papageorgiou et al. 1998] for detection of objects and later popularized
by [Viola and Jones 2004] in the context of face detection. These features can
be thought of as image masks consisting of black and white sectors. Different
from vertical and horizontal rectangle features used in face detection [Viola and
Jones 2004], we specially design nine square mask-features shown in Figure 4. A
symmetric square mask is used because a crater to be identified is in a symmetric
shape. A mask in different scales is scanned through the region of a crater candidate.
Each position of the mask produces a single feature value. The value of a feature
is the difference between the sum of gray scale values in pixels located within the
white sectors and the black sectors. The number of features is equal to the number
of masks used multiplied by the number of positions overlaid by those masks. All
features can be calculated very efficiently in one image scan, using an integral image
data structure [Viola and Jones 2004].

To represent a crater candidate in terms of Haar-like features, we first extract
square image blocks around each crater candidate. In our experiments, we use the
size twice that of the candidate in order to include regions surrounding crater rims.
The underlying texture information of each crater candidate is encoded in the set of
nine mask-features in different scales, having various granularities and positioned
at finely sampled locations. Thus an image containing a crater candidate and
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its immediate surroundings is described by thousands of texture features. Those
features are not independent from each other and those over-complete features com-
pensate the limited texture information a single square mask-feature can capture.
Underlying gradient texture information is encoded by those features without the
requirement of prior domain knowledge. If a single simple feature can be viewed
as a weak learner, that is, only using this feature to classify crater candidates by
constructing a single-node decision tree, it is a natural choice to build a strong
ensemble classifier out of thousands of weak learners, using the boosting approach.

2.3 Unsupervised vs Supervised Crater Detection

[Salamuniccar and Loncaric 2007] provided an extensive review of all previous re-
search on crater detection algorithms. Existing efforts on detecting craters in plan-
etary images can be divided into two general categories: unsupervised approaches
and supervised approaches.

The unsupervised methods identify crater rims in an image as circular or elliptical
features [Leroy et al. 2001; Honda et al. 2002; Cheng et al. 2002; Bandeira et al.
2007; Kim et al. 2005]. In particular, the original image is preprocessed [Leroy et al.
2001; Bandeira et al. 2007; Kim et al. 2005] to enhance the edges of rims, and the
actual detection is achieved by means of the Hough Transform [Hough V 1962] or
genetic algorithms [Honda et al. 2002]. Unsupervised methods have the advantage
of being fully autonomous but the performance is usually at least one magnitude
less accurate than supervised methods.

The supervised methods [Burl et al. 2001; Vinogradova et al. 2002; Wetzler et al.
2005] take advantage of domain knowledge in the form of labeled training sets that
guide classification algorithms. In [Burl et al. 2001; Vinogradova et al. 2002], a
continuously scalable template-model technique was used to achieve detection. In
[Wetzler et al. 2005], a number of algorithms were tested and the Support Vector
Machine algorithm was shown to achieve the best rate of crater detection. More
recent methods [Kim et al. 2005; Martins et al. 2009] incorporated techniques orig-
inally developed [Viola and Jones 2004] for the purpose of face detection. These
methods concentrated on the classification component of crater detection and did
not incorporate identification of crater candidates or transfer learning, as what has
been extensively studied in this paper.

Notice that previous research on crater detection algorithms—supervised and
unsupervised methods—focused predominantly on partially addressing Challenge
2, in which morphologically identical craters exhibiting different appearances in
different images [Leroy et al. 2001; Honda et al. 2002; Cheng et al. 2002; Bandeira
et al. 2007; Kim et al. 2005; Vinogradova et al. 2002; Wetzler et al. 2005; Burl et al.
2001; Martins et al. 2009]. In addition, the bulk of previous work relies on inefficient
exhaustive search of the entire image using pixel-based approaches. This may work
for finding a small number of large craters in low resolution images, but not for
finding a very large number of small craters in high resolution images. Billions
of pixels in a high resolution planetary image inevitably become a bottleneck of
scalability of those crater detection methods.

The problem of finding crater candidates has only recently been raised in [Urbach
and Stepinski 2009], but the relatively low crater detection rates using a decision
tree J48 are reported due to the use of less discriminative geometric shape features.
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Table I. Summary of the Three Learning Algorithms
Algorithm Sampling in Difference

Test Set

Boost No Iterative Weight Updating

Naive No Greedy Weight Updating

TL

TL-MinMax

Iterative Weight Updating in Same & Different Distributions
TL-Min

TL-Max
TL-Random

Urbach and Stepinski’s method uses a small set of features (16 features used in
their experiments) to describe the shapes of the shadow and high regions of crater
candidates. However, other non-crater landforms in similar shapes makes using
shape features an unideal choice on crater detection. It is well known that the
classification performance is primarily controlled by the quality of features. In this
paper, we use a large set of texture features (1089 features used in our experiments)
in combination of boosting ensemble learning algorithms to achieve better accuracy
on crater detection. Detailed comparison will be presented in Section 4.6.

To the best of our knowledge, the problem of transfer learning in the context of
auto-detection of craters has not been previously addressed. This omission renders
most existing approaches impractical for planetary research as the benefit of au-
tomation decreases significantly if new training sets need to be established for every
new image or even for various segments of the same image. In the next section, we
will design several supervised algorithms, some of which integrate transfer learning.

3. BOOSTING WITH AND WITHOUT TRANSFER LEARNING

To classify crater candidates into craters and non-craters on the basis of texture
features, we have designed and implemented three supervised learning algorithms.
These algorithms simultaneously select sub-set features necessarily for accurate
classification and train the final ensemble classifier based on the supplied training
set. The first is the Boost algorithm, a variant of the AdaBoost algorithm inspired
by the methodology of face detection [Viola and Jones 2004]. The second is the
Naive algorithm—a drastic simplification of the Boost algorithm using a greedy
approach instead of the boosting method. The third is the TL algoritm, a transfer
learning algorithm using four different sampling methods. Table I gives a brief
summary of the three algorithms.

3.1 Boosting Without Transfer Learning

A crater candidate at this stage is represented as a feature vector x̂ =< f1, . . . , fN >.
Each feature fi, i = 1 . . . N , is produced by a square mask-feature in a particular
position overlaying the cater candidate.

The Boost algorithm (see Algorithm 1) generates a sequence of weak classifiers
ht(f) and combines them through a weighted boosting approach to build a strong
ensemble classifier H(x̂):

H(x̂) =

T∑
t=1

αtht(f), (1)

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Algorithm 1 Boost: A boosting algorithm for feature selection and classification

Require: .

(1) Given crater candidates (x̂1, y1), . . . , (x̂n, yn) where yi = 0, 1, i = 1, . . . , n
for non-crater and crater examples respectively.
(2) Initialize weights wi = 1

2m if yi = 0, wi = 1
2l if yi = 1, where m and l are

the number of non-crater and crater examples respectively.
1: for t = 1 . . . T do
2: Normalize the weight, wt,i =

wt,i∑n
j=1 wt,j

, i = 1, . . . , n

so that wt is a probability distribution.
3: Select the best weak classifier with respect to the weighted error

εt = argminf,p,θ
∑
i wi|h(x̂i, f, p, θ)− yi|,

For each feature, f , train a classifier h, which is restricted to using a single
feature.

4: Define ht(x̂) = h(x̂, ft, pt, θt), where x̂, ft, pt, θt are the minimizers of εt.
5: Update the weights:

wt+1,i = wt,iβ
1−ei
t , i = 1, . . . , n

where ei = 0 if a crater candidate xi is classified correctly, ei = 1 otherwise,
and βt = εt

1−εt .
6: end for
7: The final strong classifier is:

h(x̂) =

{
1
∑T
t=1 αtht(x̂) ≥ µ

∑T
t=1 αt

0 otherwise

where αt = ln 1
βt

and µ is a user-defined threshold.

where T is the number of iterations, t = 1, . . . , T ; f , f ∈ {f1, . . . , fN}, is the single
feature selected at each boosting iteration to construct a weak classifier ht(f) ,
and αt is the learned weight of hypothesis ht(f) when adding the newly selected
weak classifier into the ensemble. The Boost algorithm (Algorithm 1) iteratively
selects one feature at a time and stops when reaching T iterations; note that T <<
N . Different from the traditional AdaBoost algorithm that usually uses the entire
feature set, Boost at each iteration selects only one best feature at one time. Thus
feature selection is integrated into the boosting iteration. Three core steps are
required to complete one boosting iteration:

(1) Weak Classifier Learning: The construction of a weak classifier ht(f) on a
single feature f at iteration t is straightforward. Given n crater candidates,
(x̂1, y1), . . . , (x̂n, yn) where class label yi = 0, 1 (i = 1, . . . , n) is for non-crater
and crater examples respectively, a weak classifier ht(f), consists of a feature
f , a threshold θ, and a polarity p indicating the direction of the inequality:

ht(f) =

{
1 if f(x̂) < pθ
0 otherwise

(2)

A weak leaner ht(f) can be essentially viewed as a decision stump, a single-
node decision tree. Exhaustive search is conducted in order to find best values
of p and θ. For a feature f , f ∈ {f1, . . . , fN}, 2 × n single-node decision tress
are built, where 2 represents positive and negative signs of p, and the value of
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every candidate x̂i, i = 1 . . . n, on feature f is used as possible values for θ.

(2) Feature Selection: Calculate the weighted error sum of each weak classifier and
select the best learner (a.k.a. the best feature) that produces the minimum
error.

(3) Weight Updating: Update weights using the same method proposed in Ad-
aBoost [Freund and Schapire 1995]—increase the weights of incorrectly classi-
fied examples and decrease the weights of correctly classified examples. The
incorrectly classified examples will have more chances of being chosen in the
next iteration when calculating the weighted error sum in step 2. Hence, the
next selected feature concentrates more on the mistakes made by the earlier
features. The key advantage of the Boost algorithm is that the weights encode
the classification results of the previous features and this information is used
to select the next best feature.

Algorithm 2 Naive: A naive greedy algorithm for feature selection and classifica-
tion
Require: .

(1) Given crater candidates (x̂1, y1), . . . , (x̂n, yn) where yi = 0, 1, i = 1, . . . , n
for non-crater and crater examples respectively.
(2) Initialize weights wi = 1

2m if yi = 0, wi = 1
2l if yi = 1, where m and l are

the number of non-crater and crater examples respectively.
1: Normalize the weight, wt,i =

wt,i∑n
j=1 wt,j

, i = 1, . . . , n

so that wt is a probability distribution.
2: Select the best t (t = 1, . . . , T ) weak classifiers with respect to the weighted

error
εt =

∑
i wi|h(x̂i, f, p, θ)− yi|,

For each feature, f , train a classifier h, which is restricted to using a single
feature.

3: Define ht(x̂) = h(x̂, ft, pt, θt) where x̂, ft, pt, θt are the minimizers of εt, and
t = 1, . . . , T.

4: βt = εt
1−εt .

5: The final strong classifier is:

h(x̂) =

{
1
∑T
t=1 αtht(x̂) ≥ µ

∑T
t=1 αt

0 otherwise

where αt = ln 1
βt

and µ is a user-defined threshold.

As depicted in Algorithm 1, steps 2-4 are used for Weak Classifier Learning and
Feature Selection, and step 5 is for Weight Update. The number of craters is usually
less than the number of non-craters. The initial weight of each training instances
is designed to cope with imbalance data by using different group average weights
in the positive and negative classes, respectively. The weights of positive examples
are not necessarily the same as those of negative examples, whereas every positive
example (a true crater) in the training set has the same weight and every negative
example (a non-crater) shares the same weight.
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In order to reduce the computational cost of the Boost algorithm, we design
a simplified greedy version of the algorithm and call it the Naive algorithm (see
Algorithm 2). The Naive classifier uses the same Weak Classifier Learning step
and selects the top T best features using the weighted error sum in the step of
Feature Selection as a criterion without any further iterations on the step of Weight
Updating.

Time Complexity Analysis. The time complexity of the Boost algorithm isO(TNn),
where n is the number of training examples, N is the number of total features, and
T is the number of boosting iterations. In particular, each feature produces n weak
classifiers, based on each feature value for every training example according to the
threshold θ; N features produce Nn classifiers; it takes O(Nn) time to find the weak
classifier that produces the minimum error; and it takes O(TNn) time to select the
top T features after T boosting iterations.

The time complexity of the Naive algorithm is O(Nn) as no boosting iterations
are performed. Interestingly, the Naive classifier performs decently well in some
circumstances during our real-world case study (see Section 4).

3.2 Boosting with Transfer Learning

Boost and Naive assume that both training and testing instances are drawn inde-
pendently and identically from the same underlying distribution. What if training
and test instances are from different distributions? We have designed a transfer
learning based algorithm, inspired by the TrAdaBoost algorithm [Dai et al. 2007],
which is capable of transferring knowledge from the old training data to the new test
data. We refer to it as the TL algorithm. In principle, transfer learning algorithms
are often used when the training set and test set are not in the same feature space
or have the same distribution [Pan and Yang 2010]. The TL algorithm (Algorithm
3) has the same three steps as the Boost algorithm, but the Weight Updating step
is different as it attempts to transfer knowledge from the original training set to the
new test data. As the Boost algorithm is not expected to perform well if the test
data has a different distribution from the training data, because the critical set of
features that best serves to distinguish craters in the training set may not be the
same as that in the test set.

We denote the previous original training data as the diff-distribution training
data; and here we are uncertain about the similarity and usefulness of this data for
the new task. We denote the additional small portion of labeled test data, which is a
representative of the new set of crater candidates, as the same-distribution training
data. During the training process, we apply the Boost algorithm to the same-
distribution training data to build a model; the weights of misclassified examples
are increased during the next iteration while the weights of correctly classified
examples are decreased. The key component is that we transfer knowledge from
the old training data to the new test data by modifying the weights of misclassified
examples from the diff-distribution training data. Those misclassified examples are
considered as the ones that are dissimilar to the same-distribution examples and
should be de-emphasized. Accordingly, we decrease (not increase) the weights of
those examples in order to weaken their impact. The weight-changing mechanism
selects good examples (similar to the labeled test data) from the old training data
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Algorithm 3 TL: A boosting algorithm using transfer learning for feature selection
and classification
Require: .

(1) Given a training set that includes crater candidates
(x̂1, y1), . . . , (x̂nd

, ynd
), (x̂nd+1, ynd+1), . . . , (x̂nd+ns

, ynd+ns
), where

yi = 0, 1, i = 1, . . . , nd, nd + 1, . . . , nd + ns for non-crater and crater
examples respectively.
This training set has nd diff-distribution examples (1, . . . , nd) and ns same-
distribution examples (nd + 1, . . . , nd + ns), and n = nd + ns.
(2) Initialize weights wi = 1

2m if yi = 0, wi = 1
2l if yi = 1, where m and l are

the number of non-crater and crater examples respectively.
1: for t = 1 . . . T do
2: Normalize the weight, wt,i =

wt,i∑n
j=1 wt,j

, i = 1, . . . , n

so that wt is a probability distribution.
3: Select the best weak classifier with respect to the weighted error

εt = argminf,p,θ
∑
i wi|h(x̂i, f, p, θ)− yi|, i = nd + 1, . . . , nd + ns

For each feature, f , train a classifier h in same-distribution data, which is
restricted to using a single feature.

4: Define ht(x̂) = h(x̂, ft, pt, θt) where x̂, ft, pt, θt are the minimizers of εt.
5: Update the weights:

wt+1,i = wt,iβ
−ei
t , if nd + 1 ≤ i ≤ nd + ns (increase the weights for the

same-distribution)
wt+1,i = wt,iβ

ei , if 1 ≤ i ≤ nd (decrease the weights for the diff-distribution)
where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and
βt = εt

1−εt , β = 1

1+
√

2ln n
T

6: end for
7: The final strong classifier is:

h(x̂) =

{
1
∑T
t=dT2 e

αtht(x̂) ≥ µ
∑T
t=dT2 e

αt
0 otherwise

where αt = ln 1
βt

and µ is a user-

defined threshold.

to compensate the insufficient training examples in the same-distribution data.
The change of weight factor β = 1

1+
√

2ln n
T

for misclassified examples from diff-

distribution and the threshold voting
∑T
t=dT2 e

αtht(x̂) ≥ µ
∑T
t=dT2 e

αt in the final

strong classifier are to assure that the average training loss on the diff-distribution
converges to zero [Dai et al. 2007; Freund and Schapire 1995].

There are two major differences between the TL algorithm and the existing al-
gorithm TrAdaBoost [Dai et al. 2007]:

(1) Feature Selection. We use an embedded approach in feature selection (Steps
3-4 in Figure 3). In our method, we select the best feature in each iteration
while constructing a strong classifier sequentially. The key contribution of
the algorithm is that some features contribute more in the new test data and
should be transferred and emphasized, while some features provide less or no
contributions at all and thus should be de-emphasized. The sub-set features
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Algorithm 4 Sampling methods to construct the same-distribution set from a test
set
Require: .

(1) Given a training set as diff-distribution set which includes exam-
ples (x̂1, y1), . . . , (x̂nd

, ynd), where yi = 0, 1, i = 1, . . . , nd for non-crater
and crater examples respectively and a test set which include examples
(x̂1, y1), . . . , (x̂m, ym), where yi, i = 1, . . . ,m are unknown.
(2) The number ns indicates how many examples in a test set will be regarded
as same-distribution set
(3) Input parameter K for the # of nearest neighbors when sampling a test
instance.

1: Quantize the input space range into bins and re-represent the training samples
and test samples in a probability mode.

2: Caculate the Kullback-Leibler divergence between the test set and the training
set. A distance matrix is D ∈ Rm×nd . Each row in matrix D corresponds to
the distances between one testing example to nd training examples.

3: Construct the Min-distribution divergence vector Dmin:
for each sample x̂i, i = 1, . . . ,m, in the test set, K nearest neighbors in training
samples can be found according to the distance matrix D, then Dmin(i) =
1
K

∑K
j=1 D(i, j).

4: Construct the Max-distribution divergence vector Dmax:
for each sample x̂i, i = 1, . . . ,m, in the test set, K training samples with farthest
distances can be found according to the distance matrix D, then Dmax(i) =
1
K

∑K
j=1 D(i, j).

5: Construct the filtered same-distribution set:
TL-Min: The same-distribution set Smin under the min filter is composed of
ns examples in the test set which have the smallest Dmin.
TL-Max: The same-distribution set Smax under the max filter is composed of
ns examples in the test set which have the largest Dmax.
TL-MinMax: The same-distribution set Sminmax under the min-max filter is
composed of

⌊
ns

2

⌋
examples which have the smallest Dmin and

⌈
ns

2

⌉
examples

which have the largest Dmax in the test set.

that best discriminate craters and non-craters in the old training set are not
necessarily the same sub-set features in a new unseen test set.

(2) Sampling method from the test set. TrAdaBoost uses random sampling to
choose new test instances and added them into the training set. In addition to
the random sampling, which we denoted as TL-Random in this paper, we in-
troduce three new methods TL-Max, TL-Min, and TL-MaxMin (see Algorithm
4) to construct the same-distribution set in order to transfer knowledge more
efficiently.

For the TL algorithm, we extracted some samples from a test set to compose
the same-distribution set. When a training set and a test set are in different
distributions, the quantity of the diff-distribution set, a.k.a. the original train-
ing set, is inadequate to train a transferable classifier. After combining the diff-
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distribution set with the same-distribution set, the quality of newly selected samples
may have a great influence on classifier training. Apparently, randomly selecting
samples to construct the same-distribution set cannot guarantee the quality of the
same-distribution. We take into consideration of the distribution divergence when
constructing the same-distribution set. Normally, the samples that distribute sig-
nificantly differently with the training samples should have more contribution for
classifier induction. However, the samples which are greatly different from the
main trend distribution could be outliers thus lead to wrong training results. Fur-
thermore, the test samples which have very similar distribution with the training
samples may also be useful, as those samples may not be in the same class with
those in the training set. For example, the sample in the test set is a crater but the
samples in the original training set which share a similar distribution may not be
craters. Therefore, the testing samples in large and small distribution differences
to the training samples have their own benefits and deficiencies.

In order to make the training process geared to the new knowledge gained in the
same-distribution, we propose to use three new methods, TL-Min, TL-Max, and
TL-MinMax, to build a same-distribution set, considering the closest distribution,
farthest distribution, and combined cases, respectively. The detailed construction
method is in Algorithm 4. To calculate the divergence of the samples, we firstly
quantize all the training samples and testing samples with a certain bin num-
ber and re-represent all the samples by a probability distribution (step 1). The
quantization range is determined by the minimum and maximum value of input
samples. Kullback-Leibler(KL) divergence [Kullback and Leibler 1951] 1 is applied
for the probability distribution divergence calculation (step 2). We use Min(Max)-
distribution divergence vectors to find the test instances closest (farthest) to the
instances in the diff-distribution set (steps 3-4). A TL-Min filter is constructed
to select same-distribution samples with the minimum distribution difference, a
TL-Max filter for the maximum distribution difference, and a TL-MinMax fileter
for the combination of these two filters to form a same-distribution set. After the
same-distribution set is constructed, feature selection and classifier induction are
conducted using the TL algorithm described in Algorithm 3.

Time Complexity Analysis. The time complexity of the TL algorithm is the com-
bination of the same-distribution construction and the boosting calculation. Same
as the Boost algorithm, the boosting step takes O(TNn), where n is the number
of training examples, N is the number of total features, and T is the number of
boosting iterations. It takes O(mn) on the construction of the same-distribution,
where m is the number of testing examples, because each test instance needs com-
pare to each training instance. Thus the TL algorithm has a time complexity of
O(TNn+mn).

1In principle, given two discrete random variables P and Q, KL-divergence calculates information
gain achieved if P can be used instead of Q. It is also called the relative entropy, for using Q

instead of P. It is essentially the difference between two probability distributions P and Q.
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4. EXPERIMENTAL RESULTS

4.1 Test image

We have selected a portion of the High Resolution Stereo Camera (HRSC) nadir
panchromatic image h0905 [HRSC Data Browser 2009], taken by the Mars Express
spacecraft, to serve as the test set. As illustrated in Figure 15, the selected image has
a resolution of 12.5 meters/pixel and a size of 3, 000 by 4, 500 pixels (37, 500×56, 250
m2). A domain expert manually marked ∼ 3, 500 craters in this image to be used
as the ground truth to which the results of auto-detection are compared. The
image represents a significant challenge to automatic crater detection algorithms
because it covers a terrain that has spatially variable morphology and because its
contrast is rather poor (which is most noticeable when the image is inspected at a
small spatial scale). We divide the image into three sections denoted as the west
region, the central region, and the east region (see Figure 15). The central region
is characterized by surface morphology that is distinct from the rest of the image.
The west and east regions have similar morphology but the west region is much
more heavily cratered than the east region.

4.2 Training Set Construction

In the first stage of our method, we identify 13,075 crater candidates in the image
using the pipeline depicted in Figure 3. The data set is imbalanced as the majority
objects are non-crater candidates. 1,089 image texture features are constructed us-
ing the 9 square-mask features described in Figure 4. The training set for the Boost
and Naive algorithms consists of 204 true craters and 292 non-crater examples se-
lected randomly from amongst crater candidates located in the northern half of the
east region. Thus, the training set uses only 3.75% of the total data set. Note that
we have purposely restricted the locations of examples in a training set to a specific
sector of the image in order to mimic actual planetary research; it is likely that
in current studies such craters are identified in a specific region and are in need of
identification by a supervised learning algorithm in the rest of the image. For the
TL algorithm results shown in Figure 5, we have constructed an additional train-
ing set (same-distribution set), using random sampling(TL-Random), consisting of
253 crater candidates (102 true craters and 153 non-craters) selected from random
locations throughout the entire image. The ratio between the false and true ex-
amples in the same-distribution data is proportional to that in the diff-distribution
data ( 153

102 >= 292
204 ). The original training set consisting of 496 examples from the

northeastern section of the image serves as the diff-distribution set.

4.3 Comparative Performance of Boost, Naive and TL

The table in Figure 5 summarizes the performance results of crater detection by the
three algorithms: Boost, Naive, and TL. The ground truth of the entire image serves
as an external criterion to evaluate the performance of the three algorithms on the
unseen test set. Of the three algorithms, the number of features used to construct
a strong classifier and the values of the threshold µ are selected to maximize the
performance of each classifier.

The candidate data has an imbalanced class distribution and the successful de-
tection of true craters is more significant than the detection of non-craters. Hence
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Fig. 5. Performance results of the Boost, Naive, and TL algorithms; parameter values: Boost–150

features selected and µ = 0.525; Naive–150 features selected and µ = 0.675; TL–150 features

selected, µ = 0.500, TL-Random select 253 new test instances into the same-distribution set.

we use recall (r = TP
TP+FN ) and precision (p = TP

TP+FP ) and F1 as the evalua-
tion metrics, where TP stands for the number of true positive detections (detected
craters that are actual craters), FP stands for the number of false positive detec-
tions (detected craters that are actually not), and FN stands for the number of
false negative “detections” (non-detection of real craters). F1 measures the har-
monic mean between precision and recall 2

1
r+

1
p

. The values of precision, recall, and

F1 are listed, and the best performance of each measure is highlighted in bold. A
precision score of 1.0 means that every object classified as a crater is indeed a crater
but says nothing about the number of craters that are not recognized by classifiers
as such. A recall score of 1.0 means that every true crater is classified as such but
says nothing about how many other landforms were incorrectly classified as craters.
An F1 score of 1.0 means that all the existing craters are correctly identified and
all the objects classified as craters are true craters.

Of the three algorithms compared, the TL classifier using random sampling (TL-
Random) yields the best precision in all regions and the Naive classifier yields the
worst precision in all regions. On the other hand, the Naive classifier has the highest
recall in all regions whereas the TL classifier has the lowest value of recall, except
in the east region, where the Boost classier has the lowest value of recall. Overall,
the TL classifier has the highest value of F1 in all regions except the west region
where the Naive classifier has the highest value of F1.

The Naive classifier performs surprisingly well considering its simple nature and
low computational cost. We take an in-depth look into the performance of the
Boost and Naive classifiers on the northeastern section of the image containing
1406 crater candidates of which 496 constitute a training set for both algorithms.
Figure 6 shows the precision, recall, and F1 for these classifiers as a function of the
number of features selected to construct a strong classifier. The Boost classifier
clearly outperforms the Naive classifier on F1 and precision measures if more than
100 features are selected. However, the recall measures of the two classifiers remain
comparable regardless of the number of selected features. Thus, the Boost classifier
is superior to the Naive classifier on crater candidates that closely resemble those in
the training set, but that disadvantage decreases and/or disappears when classifying
crater candidates that are less similar to those in the training set. We link the
relatively small advantage (or lack of advantage) of the Boost classifier over the
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Fig. 6. Boost versus Naive. X-axis: number of features selected; Y-axis: Performance scores.

naive classifier to the peculiarity of image texture features in the context of crater
detection. Top features (weak classifiers) are actually quite strong performers by
themselves capable of achieving an F1 score as high as 0.81. These features limit
the advantage of the boosting algorithm that works best with an ensemble of weak
classifiers.

4.4 Distribution Divergence Filters with Transfer Learning

In order to better understand the results of the three proposed algorithms Boost,
Naive, and TL, it is useful to assess dissimilarity between the set of feature vectors
in the original training set and those in the west, central, and east regions. Figure
7(A) shows such dissimilarity as measured by the KL-divergence; Figure 7(B) plots
the F1 scores graphically of the three regions. Clearly, the central region is most
dissimilar to the training set, whereas the east region is the most similar (since the
training set was selected from the northeastern portion of the image). This is why
the TL classifier performs best (relatively to the other classifiers) in the central
region. It is expected that the TL classifier would have the least advantage in the
east region, as it is the region best characterized by the training set, but the results
shows that the TL classifier has the smallest gain (if any) in the west region. This
can be explained by the fact that the west region has a similar character to the east
region, but is much more heavily cratered, so in fact, relatively fewer additional
training samples come from these regions resulting in no sufficient information gain
to be exploited by the TL classifier.

Randomly selecting samples from the test set cannot always guarantee the quality
of the selected samples. Thus, we apply the distribution divergence analysis filters
to select the co-training samples. We test the TL-Min, TL-Max, TL-MinMax filters
and TL-Random on the north half the west region (denoted as Region 1) and the
north half of the central region (denoted as Region 2). Region 1 is selected as a site
that closely resembles the training set, and the region is also featured with high-
density sub-kilometer craters. Region 2 is used as a site that has a heterogeneous
surface with different morphology from the training set.

The distributions of these two test sets Regions 1 and 2, and the training set
are reported in Figures 8 and 9. In each figure, all the samples from the test
set and training set are quantized into 1 to 50 bins. The bin sizes of different
figures may be different due to different distributions of the two test sets, thus the
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Fig. 7. (A) KL-divergence measures between the set of feature vectors in the original training set
and the sets of feature vectors in the west, central, and east regions. (B) Graphical illustration of

F1 scores of the three algorithms. (Best viewed in color.)

training set curves may vary in those two figures. In Figures 8 (a) and 9 (a), we
can find that the blue curve is very similar to the red curve, where the blue/red
curve denotes positive test/training examples (craters). However, In Figures 8 (b)
and 9 (b), the blue curve always has big differences with the red curve, where
in those figures the blue/red curve denotes negative test/training examples (non-
craters). This illustrates that the craters (positive samples) are always similar and
the non-craters (negative samples) are different with each other in their own ways.
Furthermore, the test samples in Figure 8 distribute significantly differently from
the training set than those test samples in Figure 9, which means the model trained
from the training set may be more suitable in Region 1 than Region 2 because the
significantly different surface morphology in Region 2. Figure 10 shows that the KL-
divergence and probability distributions, between positive and negative examples in
the training set and Regions 1 and 2, respectively. The divergence between Region
2 and the training set is almost 3 times larger than the divergence between Region
1 and the training set.

The experimental results of the 4 algorithms, TL-Random, TL-Min, TL-Max,
and TL-MinMax, are reported in Figure 11 for Region 1 and Figure 12 for Region
2. Figure 11 indicates that when the samples are not sufficient, TL-MinMax slightly
outperforms the TL-Random and achieves its peak F1 score 0.8532 with 90 same-
distribution samples. Because Region 1 is similar to the training set, the TL-
Min has less contribution to improve classification performance. And TL-Max
achieves better results when there are sufficient samples to select. In Figure 12,
TL-MinMax and TL-Random are comparable and TL-MinMax slightly better than
TL-Random most of the time. Because of the difference between the training set
and the test set, TL-Max can select the samples which have significant difference to
help reconstruct the model and capture the main trend of the sample distribution.
But the performance of TL-Max is limited if there is no sufficient test samples to
select.
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Fig. 8. Distribution comparison between Region 1 and the training set. (a) Distribution of positive

samples. (b) Distribution of negative samples.

Fig. 9. Distribution comparison between Region 2 and the training set.(a) Distribution of positive
samples. (b) Distribution of negative samples.

4.5 Feature Selection by Naive, Boost and TL

It is instructive to compare top features (weak classifiers) selected by each of the
three classification algorithms (Naive, Boost, and TL). Fig. 13 shows six top fea-
tures selected by each algorithm. The top two features selected by the three algo-
rithms concentrate on the transition between the shadow and the highlight which
best define the characteristics of a cater, but there are significant differences be-
tween other selected top features. Features selected by the Naive algorithm are
relatively strong by themselves. Most of them utilize the transition between the
shadow and the highlight to distinguish craters from no craters. While the next
best feature selected by the Boost algorithm always attempts to correct mistakes
done by the previous feature. Fig. 14 illustrates how the second best feature se-
lected by the Boost algorithm corrects the mistakes by the first best feature, and
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Fig. 10. Distribution comparison between Region 1, Region 2, and the training set. The smaller

the KL distribution divergence, the similar the two sets.

Fig. 11. F1 score versus the size of same distribution samples in Region 1. A comparison of

TL-MinMax, TL-Min, TL-Max, and TL-Random algorithms.

we can observe that this feature performs well on candidates with shifted shadow
regions. Not all top features selected by the TL algorithm utilize the transition
between shadows and highlights, but rather crater rims. This indicates the new
test data has different characteristics on crater edges.

Fig. 15 displays the results of the TL algorithm, using top 150 features and the
threshold µ = 0.500. Notice that the large craters ≥ 5000−meter in diameter are
intentionally not detected as we set the parameters of our algorithm to target small
sub-kilometer craters (large craters on Mars have already been identified manually
[Barlow 1988]).
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Fig. 12. F1 score versus the size of same distribution samples in Region 2. A comparison of
TL-MinMax, TL-Min, TL-Max, and TL-Random algorithms

Fig. 13. Top 6 features selected by Naive, Boost, and TL with random sampling (TL-Random),
respectively.
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Fig. 14. The second best feature selected by the Boost algorithm successfully classified 6 misclas-

sified examples using the first best feature.

Fig. 15. Craters (<= 5000-meter in diameter) detected in a 37, 500×56, 250 m2 test image. (Best

viewed in color.) Green: True detections, Red: False detections.

4.6 Comparative Performance with Existing Algorithms

Table II provides a in-depth evaluation of the TL method with the crater detection
method proposed by Urbach and Stepinski in [Urbach and Stepinski 2009]. Our
method outpeforms their method on precision, recall, F1 measure on all regions
and each individual region.

We have also tested three representative algorithms for the purpose of a thor-
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Table II. Performance of our TL method (Ours) vs. the performance of Urbach and Stepinski’s

method (Theirs). Parameter values: Ours–TL with 150 features selected, µ = 0.500, TL-Random
select 253 new test instances into the same-distribution set; Theirs–same parameter values pro-

posed in Urbach and Stepinski’s paper.

Evaluation Metrics

Type All Regions West Region Central Region East Region

Ours Theirs Ours Theirs Ours Theirs Ours Theirs

Precision 0.919 0.801 0.911 0.794 0.902 0.802 0.954 0.813

Recall 0.791 0.635 0.779 0.593 0.769 0.615 0.843 0.755

F1 0.851 0.709 0.840 0.680 0.830 0.696 0.895 0.783

Improvement in Classification Performance

Improvement All Regions West Region Central Region East Region

on Precision (%) 14.7 10.0 12.0 20.0
on Recall (%) 24.6 30.0 25.0 10.0

on F1 (%) 20.0 20.0 19.0 10.0

ough comparative performance study: AdaBoost [Freund and Schapire 1995] with
C4.5 as the base leaner for an example of boosting algorithms, SVM [Boser et al.
1992; Joachims 2002] with a linear kernel as an example of kernel-based learning
algorithms, and TrAdaBoost [Dai et al. 2007] with C4.5 as the base leaner for an
example of transfer learning algorithms. Using all the 1089 features, the F1 score
of SVM on all regions is 0.202, AdaBoost is 0.302, TrAdaBoost is slightly better
than 0.4. As we can see from Figure 9, the three algorithms designed in this paper
can achieve an F1 score above 0.85.

The huge performance gain by the three algorithms (Boost, Naive, and TL) is
because the proposed algorithms intelligently select and integrate subset of best fea-
tures out of all 1089 features to build a strong ensembled classifiers using boosting.
The 1089 features are overcompleted by contructing 9 maskes in different scales,
stepwise, and positions. Without a build-in mechanism on feature selection to
remove irrelevant and redunt features, the AdaBoost, SVM, and TrAdaBoost clas-
sifiers cannot perform well. Comparable results would be obtained on the crater
detection, if similar feature set is used on those classifiers. However, this approach
is less desirable as feature selection and classifier induction have already been si-
multaneously integrated into the learning process of the three proposed algorithms.

5. CONCLUSIONS

The aim of this paper is to present a robust and reliable framework for auto-
detection of small craters in high resolution images of planetary surfaces. This is
one of the most challenging problems in planetary science—effective and automatic
crater detection from extremely large orbiter images. The framework uses an inno-
vative method that integrates improved techniques on embedding feature selection
with supervised classification, and transfer learning. First, we have demonstrated
that our method identifies craters with high accuracy. The test site is an HRSC
image of Martian scene that presents a heterogeneous region of 37, 500×56, 250 m2,
and detecting craters in various forms is challenging using regular algorithms. Our
approach can achieve an F1 score above 0.85, and provides a reliable mechanism
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for planetary research. Second, we have demonstrated that a consistently accurate
detection can be achieved through transfer learning. Without transfer learning the
performance of our algorithms (Boost and Naive) decreases in the central region
of the image where surface morphology differs as characterized by the training set.
However, using the TL algorithm partially restores the level of performance. Third,
we noticed that the Naive algorithm can perform well in the context of crater de-
tection for a fraction of the computational cost of the Boost algorithm.

We contend that the robustness and reliability of our methodology make it an
effective tool for planetary research. If adopted, our approach has great potential
to produce surveys of small craters over entire surfaces of planets, thus revolution-
izing certain aspects of planetary science. Our future research will address means
of efficient selection of additional training samples for construction of the same-
distribution for transfer learning. The goal is to intelligently select samples that
exemplify differences between the existing training sets and new candidate sets.
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