Outline 000000000000000

Problem Session 1

Prof. Dan A. Simovici

UMB

Outline •00000000000000

Let x, y, u, v be words in A^+ such that xy = uv and $|x| \leq |u|$. Show that there exists $z \in A^*$ such that u = xz and y = zv.

Note that none of the words x, y, u, v is null because they belong to A^+ . Since $|x| \leq |u|$, x is a prefix of u and we can write u = xz. Substituting u in the equality u = xz we obtain xy = xzv, which implies y = zv.

$$\leftarrow z \longrightarrow$$

x		У
и		V

Let u, v be two words from A^* . Prove that if uv = vu, then there exists a word $z \in A^*$ and two numbers $p, q \in \mathbb{N}$ such that $u = z^p$ and $v = z^q$.

The argument is by induction on n = |u| + |v|.

Basis step: For n = 0 we have $u = v = \lambda$ and the statement holds. Inductive step: Suppose that the statement holds for words whose total length is less than n and let u, v be words whose total length is n.

If |u| = |v|, then uv = vu implies u = v and, thus, $u = u^1$ and $v = u^1$.

If $|u| \neq |v|$ suppose that |u| > |v|. Then uv = vu implies that u = vt for some $t \in A^*$. Therefore, vtv = vvt, hence tv = vt. Since |tv| < |uv|, by the inductive hypothesis, there is a word w such that $t = w^r$ and $v = w^s$. This implies $u = vt = w^{r+s}$ which shows that u and v are both powers of w. The case when |u| < |v| is similar.

Let x, y, z be three words from A^* such that xy = yz and $x \neq \lambda$. Prove that there exist $u, v \in A^*$ such that x = uv, $y = (uv)^n u$ and z = vu for some $n \in \mathbb{N}$.

Note that if xy = yz, then |x| = |z|. If $|y| \le |x|$, then y is a prefix of x, hence x = yt. This implies yty = yz, which in turn, yields z = ty. This allows us to write:

$$x = yt, y = (yt)^0 y, z = ty$$

and the claim is proven with u = y and v = t. If |y| > |x|, then y = xw and we have xxw = xwz, which implies xw = wz. If $|w| \le |x|$, by the previous case we have x = uv, $w = (uv)^n u$ and z = vu for some $n \in \mathbb{N}$, hence $y = xw = uvw = (uv)^{n+1}u$ and z = vu. If |w| < |x| we are again in the first case.

Let x, y be two words in A^* . Prove that the following statements are equivalent:

1. there exist $m, n \in \mathbb{N}$ such that the words x^m and y^n have a common prefix of length |x| + |y|.

2. xy = yx;

3. there exist $z \in A^*$ and $p, q \in \mathbb{N}$ such that $x = z^p$ and $y = z^q$;

(1) implies (2) Suppose that there exist $m, n \in \mathbb{N}$ such that the words x^m and y^n have a common prefix of length |x| + |y|. Then, the words yx^m and y^{n+1} have a common prefix of length |x| + 2|y|. Therefore, yx^m and y^n have a common prefix of length |x| + |y|. In a similar manner, xy^n and x^m have a common prefix of length |x| + |y|. This implies that xy^n and yx^m have a common prefix of length |x| + |y|. This implies that xy^n and yx^m have a common prefix of length |x| + |y|, so xy = yx.

Solution 4 (cont'd)

(2) implies (3) The argument is by induction on k = |x| + |y|. If k = 0, then $x = y = \lambda$ and the conclusion follows immediately. Suppose that the statement holds for k < n and let $x, y \in A^*$ be such that xy = yx. We need to consider three cases: |x| = |y|, |x| < |y|, and |x| > |y|. In the first case, xy = yx implies x = y, so the statement obviously holds. Suppose now that |x| < |y|. Then, there exists $t \in A^*$ such that y = xt, which implies xxt = xtx. This, in turn, implies xt = tx. By the inductive hypothesis, there exists a word $z \in A^*$ such that $x = z^k$ and $t = z^{\ell}$. Consequently, $v = xt = z^{k+\ell}$, which concludes the argument for the second case. The third case is entirely similar to the second. (3) implies (1) This implication is immediate.

Let $A = \{0, 1\}$ be an alphabet and let $L = A^* 1 A^n$. In other words, L consists of strings of bits that begin with an arbitrary sequence of bits, and end with an 1 followed by a sequence of n bits. Compute the collection of languages $\{x^{-1}L \mid x \in A^*\}$.

We have:

$$0^{-1}L = 0^{-1}((A^*)(1A^n)) = (0^{-1}A^*)(1A^n) \cup 0^{-1}(1A^n)$$

= A^*1A^n
$$1^{-1}L = 1^{-1}((A^*)(1A^n)) = (1^{-1}A^*)(1A^n) \cup 1^{-1}(1A^n)$$

= $A^*1A^n \cup A^n$

Set of derivatives: A^*1A^n and $A^*1A^n \cup A^n$.

Outline 000000000000000000

Solution 5 cont'd

$$0^{-1}(A^*1A^n) = A^*1A^n$$

$$1^{-1}(A^*1A^n) = A^*1A^n \cup A^n$$

$$0^{-1}(A^*1A^n \cup A^n) = A^*1A^n \cup A^{n-1}$$

$$1^{-1}(A^*1A^n \cup A^n) = A^*1A^n \cup A^{n-1}$$

Set of derivatives: A^*1A^n , $A^*1A^n \cup A^n$, $A^*1A^n \cup A^{n-1}$.

Outline 00000000000000

Solution 5 cont'd

$$0^{-1}(A^*1A^n) = A^*1A^n0^{-1}(A^*1A^n \cup A^n) = A^*1A^n \cup A^{n-1}0^{-1}(A^*1A_n \cup A^n)$$

Set of derivatives: A^*1A^n , $A^*1A^n \cup A^n$, $A^*1A^n \cup A^{n-1}$, $A^*1A_n \cup A^{n-2}$, $A^*1A^n \cup A^{n-3}$, etc.