Problem Session 5

Prof. Dan A. Simovici

UMB

Prove that the language $L = \{a^p \mid p \text{ is a prime }\}$ is not context-free.

Assume that L is context free and let n_L be the number defined in the Pumping Lemma. If p is a prime number such that $p \geqslant n_L$ and $w = a^p = xyzut \in L$ we have $|y| = a^k$, $|u| = a^\ell$ with $k + \ell \geqslant 1$, and $xy^{1+p}zu^{1+p}t \in L$, that is, $a^{p+kp+\ell p} \in L$, that is, $a^{p(1+k+\ell)} \in L$. Since $p(1+k+\ell)$ is not a prime, this leads to a contradiction.

Prove that the language $L = \{a^n b^m \mid n \leqslant m^2\}$ is not context-free.

Assume that L is context-free and let $w=a^{m^2}b^m\in L$. If $m^2+m\geqslant n_L$, where n_L is defined by the Pumping Lemma, we can pump the word $a^{m^2}b^m=xyzut$ with $|yzu|\leqslant n_L$ and $|yu|\geqslant 1$. Note that neither y nor u can straddle across the a-part and the b-part of w because pumping with create more than one alternance of a and b thus violating the definition of L. Therefore, it is the case that y is either in a^{m^2} or in b^m and the same is true for u.

Solution 2 (cont'd)

We need to distinguish three cases:

Case I: y occurs in a^{m^2} and u occurs in b^m , so $y=a^k$ and $u=b^\ell$ with $1\leqslant k+\ell\leqslant m$ (because $|yzu|=k+|z|+\ell\leqslant n_L$ and $|yu|\geqslant 1$).

Suppose that $\ell \geqslant 1$. The Pumping Lemma implies $xy^0zu^0t \in L$. Therefore, $a^{m^2-k}b^{m-\ell} \in L$ and this implies $m^2-k \leqslant (m-\ell)^2$. This leads to a contradiction because

$$(m-\ell)^2 \leqslant (m-1)^2$$

(because $\ell \geqslant 1$)
 $= m^2 - 2m + 1$
 $< m^2 - k$
(since $k \leqslant m$).

Suppose now that $\ell=0$. Since $k+\ell\geqslant 1$, we have $k\geqslant 1$. The pumping Lemma implies $xy^2zu^2t\in L$. Therefore, $a^{m^2+k}b^m\in L$, which is impossible because $m^2+k>m^2$.

Solution 2(cont'd)

Case II: If both y and u occur within a^{m^2} then pumping both y and u results in a word of the form $a^{m^2+k}b^m$ that is not in L.

Case III: If both y and u occur within b^m by pumping down both y and u results in a word of the form $a^{m^2}b^m - k$ with $k \geqslant 2$ that is not in L.

Prove that the language $L = \{a^n b^m c^{mn} \mid n, m \in \mathbb{N}\}$ is not context-free.

Suppose that L is context-free. By applying the Pumping Lemma to the string $a^mb^mc^{m^2}\in L$, where $m=n_L$ we can factor $a^mb^mc^{m^2}=xyzut$ with $|yzu|\leqslant n_L$ and $|yu|\leqslant 1$.

Note that y cannot span simultaneously both a^m and b^m because, if this would be the case, by pumping y we would obtain a string in which bs precede as. Similarly, u cannot span both b^m and c^{m^2} . Therefore, y is contained in one of the regions a^m , b^m , or c^{m^2} and the same holds for u.

If y occurs in b^m and u occurs in c^{m^2} we have $y = b^k$ and $u = c^\ell$ with $1 \le k + \ell \le m$ because $|yzu| \le m$ and $|yu| \ge 1$.

Solution 3(cont'd)

Suppose now that $k \ge 1$. Since $k + \ell \le m$, it follows that $\ell < m$. The Pumping Lemma implies $xy^0zu^0t \in K$, hence $a^m b^{m-k} c^{m^2-\ell} \in L$, which implies $m(m-k) = m^2 - \ell$. This is impossible because $m(m-k) = m^2 - mk \le m^2 - m < m^2 - \ell$ since k > q and $\ell < m$.

Consider now the case when k = 0. Since $k + \ell \leq 1$, we have $\ell \geqslant 1$. From the Pumping Lemma we have $xy^0zu^0t \in L$, hence $a^m b^m c^{m^2 - \ell} \in L$, which is impossible because $m \cdot m \neq m^2 - \ell$. The remaining case can be dealt with using the pumping down.

Prove that the language

$$H = \{a^i b^j c^k \mid i, j, k \in \mathbb{N} \text{ and } k = \max\{i, j\}\}\$$
 is not context-free.

Suppose that H were context-free. Then, by the Pumping Lemma there is $n_H \in \mathbb{N}$ such that if $w = a^i b^j c^k \in H$ and $|w| \ge n_H$, then w = xyzut such that $|y| \ge 1$ or $|u| \ge 1$, $|yzu| \le n_H$ and $xy^nzu^nt \in H$ for $n \in \mathbb{N}$.

Choose $i = j = n_H$. If c does not occur in yu pumping will increase the number of as or bs without affecting the number of cs and we would obtain a contradiction. Therefore, c must occur in yzu. Since $|yzu| \le n_H$, it follows that the word yzu cannot contain an a. By the Pumping Lemma the word xzt contains a number of n_H as and there are fewer than n_H symbols b or c in xzt. Thus, $xzt \notin H$.

Prove that the language $L = \{a^nba^nba^n \mid n \geqslant 1\}$ is not context-free.

Suppose that L were context-free and let n_L the constant defined by the Pumping Lemma. If $w=a^{n_L}ba^{n_L}ba^{n_L}$ we can factor w as w=xyzut such that $|yzu|\leqslant n_L$ and $|yu|\geqslant 1$.

Note that yzu can be an infix of a^{n_L} or may contain one single b because the two bs are separated by n_L symbols.

In the first case, by pumping the as we break the balance between the three subwords that contain as. In the second case, if b occurs in y or u, then the number of bs will increase and this would violate the definition of L.

Note that we cannot have one single b symbol in yzu because this would imply that the as preceding this b occur in the first a region and the as that follow this b will occur in the second a region. By pumping y and u we would grow the first two a regions which will become larger that the third a region.