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Set cardinality

Definition

Two sets, A,B have the same cardinality, written A ∼ B, if there exists a
bijection f : A −→ B.

Example

The set of even numbers, E = {n | n = 2k , for some k ∈ N} and the set
N have the same cardinality, because f : N −→ E defined by f (n) = 2n is
a bijection.
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Set cardinality

Theorem

The relation ∼ is an equivalence relation.

Proof.

For every set A, 1A : A −→ A is a bijection. Therefore, A ∼ A for every A,
so ∼ is reflexive. If f : A −→ B is a bijection, then f −1 : A −→ A is a
bijection, so A ∼ B implies B ∼ A, which shows that ∼ is symmetric.
Transitivity follows from the fact that the composition of two bijections is
a bijection.
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Set cardinality

Theorem

If A ∼ B, then P(A) ∼ P(B).

Proof.

Let f : A −→ B be a bijection between A and B. Define the mapping
F : P(A) −→ P(B) by F (L) = {b ∈ B | b = f (a) for some a ∈ L} for
every L ∈ P(A). It is easy to verify that F is a bijection. Thus,
P(A) ∼ P(B).
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Set cardinality

Definition

A set A is countable if it has the same cardinality as a subset of N.
A is finite if there is an integer k ∈ N such that A has the same cardinality
as a subset of {0, 1, . . . , k}.
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Set cardinality

Note that any finite set is countable. The following theorem will help us
enumerate finite sets.

Theorem

If A is finite, then there is a unique k ∈ N for which A ∼ {0, 1, . . . , k − 1}.
In this case, we write |A| = k and say that “A has k elements.”

Proof.

Assume A is finite. Let M = {m ∈ N | A has the same cardinality as some
subset of {0, 1, . . . ,m − 1}}. Since A is finite, M 6= ∅, so M has a least
element, k, which clearly satisfies the requirements of the theorem.
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Set cardinality

If A is finite, with |A| = k, then there is a bijection
f : {0, 1, . . . k − 1} −→ A, and we can enumerate
A = {a0, a1, . . . , ak−1}, where ai = f (i).

If A is infinite but countable, we write |A| = ℵ0 and say “A is
countably infinite.” (The symbol ℵ (pronounced “aleph”) is the first
letter of the Hebrew alphabet).

The existence of the bijection φA : A∗ −→ N shows that A∗ is a
countably infinite set for every alphabet A.
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Set cardinality

Theorem

If |A| = ℵ0, then there is a bijection f : N −→ A.

Proof.

Since A is countable, there is a bijection g : A −→ S ⊆ N. To define
f : N −→ A inductively, we simultaneously define both f and a subset of
S . Let f (0) = g−1(s0), where s0 is the smallest element in S . Assume
{f (0), f (1), . . . f (k − 1)} and {s0, s1, . . . sk−1} have been defined. Then
define f (k) = g−1(sk), where sk is the smallest element in
S − {s0, s1, . . . sk−1}. Since A is infinite, S is also infinite, so
S − {s0, s1, . . . sk−1} 6= ∅, and a smallest element always exists. By
construction, if m0 < m1 then f (m1) 6∈ {f (0), f (1), . . . f (m0)}, since g is a
bijection (and hence g−1 is, too.) So, if f (m0) = f (m1) then clearly
m0 = m1. We have to check that f is also onto. An easy induction shows
that sk ≥ k , for all k ∈ N. Let a ∈ A, with g(a) = m. Then, m = sj for
some j ≤ m, so f (sj) = a.
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Set cardinality

Corollary

If |A| = ℵ0, then there is a bijection g : A −→ N.

Proof.

This follows from the fact that the inverse of a bijection is again a
bijection.
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Set cardinality

Theorem

Let A,B be two countable sets. Then, A ∪ B is countable.

Proof.

Assume A,B are two countable sets, and let f : A −→ N and g : B −→ N
be injections. Define h : A ∪ B −→ N by

h(x) =

{
2f (x) if x ∈ A− B
2g(x) + 1 if x ∈ B.

The function h : A ∪ B −→ N is easily seen to be an injection; hence,
A ∪ B is countable.
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Set cardinality

Corollary

The union of any finite collection of countable sets is countable.
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Set cardinality

Theorem

Let A,B,C be sets, where A is countable.

1 If there is a surjection f : A −→ B, then B is countable.

2 If there is an injection ` : C −→ A, then C is countable.

Proof.

For the first part of the theorem assume A is countable and f : A −→ B is
a surjection. Since A is countable, there is an injection g : A −→ N.
Define h : B −→ N by

h(b) = min{g(a) | f (a) = b}.

We need to verify that h is an injection. Let b0, b1 ∈ B such that
h(b0) = h(b1). Let ai ∈ A be the element such that h(bi ) = g(ai ) for
i = 0, 1. Then, g(a0) = g(a1), and since g is an injection, a0 = a1, so
f (a0) = f (a1), and thus b0 = b1.
For the second part note that the function g` : C −→ N is an injection;
this implies immediately the countability of C .
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Set cardinality

Let A,B be two sets. If f : A −→ B is a bijection, then A is countable if
and only if B is countable.
Let A,B be two sets. If f : A −→ B is an injection and A is not countable,
then B is not countable.
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Set cardinality

Theorem

Any subset of a countable set is countable.

Proof.

Assume B ⊆ A, where A is countable. If B = ∅, then it is clearly
countable. If B 6= ∅, pick b ∈ B, and define f : A −→ B by

f (x) =

{
x if x ∈ B
b if x 6∈ B.

The function f is clearly a surjection, so B is countable.
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Set cardinality

Theorem

Let A0, . . . ,An−1 be n countable sets. The Cartesian product
A0 × · · · × An−1 is countable.

16 / 1



Set cardinality

Proof

Since A0, . . . ,An−1 are countable sets, there exist injections fi : Ai −→ N
for 0 ≤ i ≤ n − 1. For (a0, . . . , an−1) ∈ A0 × · · · × An−1, define

h(a0, . . . , an−1) = 2f0(a0) · 3f1(a1) · · · · · pan−1

n−1 ,

where pi−1 is the ith prime number for 0 ≤ i ≤ n − 1. By the
Fundamental Theorem of Arithmetic h : A0 × · · · × An−1 −→ N is an
injection, so A0 × · · · × An−1 is countable.
(The Fundamental Theorem of Arithmetic states that each natural number
larger than one can be written uniquely as a product powers of primes.)
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Set cardinality

Example

Let D be a countable set. The set Dn of sequences of length n of
elements of D is a countable set for every n ∈ N.
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Set cardinality

Theorem

The union of a countable collection of countable sets that are pairwise
disjoint, is a countable set.
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Set cardinality

Proof

Let K be a countable set, and let each {Ak | k ∈ K} be countable. Then
there are injections f : K −→ N and gk : Ak −→ N for each k ∈ K .
Assume that Ai ∩ Aj = ∅ for i 6= j ∈ K . To show that

A =
⋃
k∈K

Ak is countable,

we define an injection h : A −→ N. Let P = {p0, p1, . . .} be an
enumeration of the prime numbers. Since the sets Ak are pairwise disjoint,
given any a ∈ A, there is a unique k with a ∈ Ak . We use this fact to
define

h(a) = p
gk (a)
f (k) .

It follows from the Fundamental Theorem of Arithmetic that h is an
injection, and thus A is countable.
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Set cardinality

Example

if D is a countable set, the set of sequences of length n, Seqn(D) is
countable. Therefore, the set of all sequences Seq(D) =

⋃
{Dn | n ∈ N}

is countable as a union of a countable collection of sets.
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Pairing Functions

Definition

A pairing function is a bijection ℘ : N× N −→ N.
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Pairing Functions

Example

There are many possible pairing functions, but consider the one suggested
by the following picture:
℘(i , j) j
i 0 1 2 3 4 5 . . .

0 0 1 3 6 10 . . .
1 2 4 7 11 . . .
2 5 8 12 . . .
3 9 13 . . .
4 14 . . .

. . .
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Pairing Functions

The diagonal Dm that contains all pairs (i , j) such that i + j = m contains
m + 1 pairs.
The pair (i , j) is located on the diagonal Di+j and that this diagonal is
preceded by the diagonals D0, . . . ,Di+j−1 that have a total of
1 + 2 + · · ·+ (i + j) = (i + j)(i + j + 1)/2 elements. Thus, the pair (i , j) is
enumerated on the place (i + j)(i + j + 1)/2 + i and this shows that the
mapping ℘ : N× N −→ N given by

℘(i , j) =
1

2
[(i + j)2 + 3i + j ]

is a bijection.
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Pairing Functions

It is important to realize that not all sets are countable. Consider P(N),
the power set of N. This certainly has at least as many elements as N,
since {k} is in P(N) for each k ∈ N. However, it has so many more sets
that it is not possible to count them all.

Theorem

The set P(N) is not countable.
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Pairing Functions

Proof

Assume that P(N) were countable. Then there would be an bijection
f : N −→ P(N); i.e., for each n ∈ N, we would have a distinct subset
f (n) ⊆ N. We show that the existence of this bijection leads to a
contradiction.
Define the D = {n | n 6∈ f (n)}. Clearly, D ⊆ N, so we must have
D = f (k) for some k ∈ N. We must now have one of two situations:
either k ∈ D, or k 6∈ D. First, suppose that k ∈ D. Then, by the definition
of D, k 6∈ f (k), but f (k) = D, so we have that k ∈ D implies that k 6∈ D;
this cannot be. Suppose, on the other hand, that k 6∈ D. Then, by the
definition of D, k ∈ f (k), and since f (k) = D, we have k 6∈ D implies
k ∈ D. Again, this cannot be. Either way, we have a contradiction. From
this, we necessarily conclude that the assumed bijection f cannot exist.
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Pairing Functions

Another Look to the Previous Proof

If there were a bijection f : N −→ P(N), then we could have the following
list:

0 : a00 a01 a02 a03 a04 . . .
1 : a10 a11 a12 a13 a14 . . .
2 : a20 a21 a22 a23 a24 . . .
3 : a30 a31 a32 a33 a34 . . .
4 : a40 a41 a42 a43 a44 . . .
5 : a50 a51 a52 a53 a54 . . .

...
k : ak0 ak1 ak2 ak3 ak4 . . . akk

where

aij =

{
0 if j 6∈ f (i)

1 if j ∈ f (i).
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Pairing Functions

The set D is formed by “going down the diagonal” and spoiling the
possibility that D = f (k), for each k. At row k , we look at akk in column
k . If this is 1, i.e., if k ∈ f (k), then we make sure that the corresponding
position for the set D has a 0 in it by saying that k 6∈ D.
On the other hand, if akk is a 0, i.e., k 6∈ f (k), then we force the
corresponding position for the set D to be a 1 by putting k into D. This
guarantees that D 6= f (k), because its characteristic functions differs from
that of f (k) in column k .
This proof technique, usually referred to as diagonalization, first appeared
in an 1891 paper of Georg Cantor (1845–1918); it has found many
applications in the theory of computation.

28 / 1



Pairing Functions

Corollary

If A is a countably infinite set, then P(A) is not countable.

Proof.

Let A be a countably infinite set. Since A ∼ N, we have N ∼ A, so there is
a bijection F : P(N) −→ P(A). If P(A) were countable (and, therefore,
countably infinite), this would imply the existence of a bijection
G : P(A) −→ N, so we would obtain a bijection between P(N) and N.
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Pairing Functions

Example

Let F2 be the set of all functions of the form f : N −→ {0, 1}. Define the
mapping φ : F2 −→ P(N) by φ(f ) = {n ∈ N | f (n) = 1}. It is not difficult
to see that φ is a bijection. Indeed, suppose that φ(f ) = φ(g), that is
{n ∈ N | f (n) = 1} = {n ∈ N | g(n) = 1}.
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Pairing Functions

Example (cont’d)

This means that f (n) = 1 if and only if g(n) = 1 for n ∈ N, so f = g ,
which means that φ is an injection. To prove that φ is a bijection consider
an arbitrary subset K of N. Then, for its characteristic function fK (given
by fK (n) = 1 if n ∈ K and fK (n) = 0, otherwise) we have φ(fK ) = K , so φ
is also a surjection, and therefore, a bijection. Thus, we conclude that the
set F2 is not countable.
If F is the set of functions of the form f : N −→ N, then the
uncountability of F2 implies the uncountability of F .
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