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Outline

Language classes can be defined using abstract models of computation,
such as dfas, transition systems, etc.
Now we are concerned with an alternative approach that uses certain
transformers of words called grammars. These systems can analyze or
generate words and, therefore, can be used to recognize or generate
languages.
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Grammars and Chomsky’s Hierarchy

Definition

A grammar is a 4-tuple G = (AN ,AT , S ,P) such that:

AN is an alphabet whose members are the non-terminal symbols of G ;

AT is the alphabet of terminal symbols;

Alphabets AN and AT are disjoint;

S is a symbol in AN called the initial symbol;

P is the set of productions of G (defined next).

The set A = AN ∪ AT is the alphabet of the grammar.
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Grammars and Chomsky’s Hierarchy

Definition

A production in a grammar G = (AN ,AT ,S ,P) is a pair of words (γ, γ′)
such that γ contains at least one non-terminal symbol.
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Productions and Derivations in Grammars

If G = (AN ,AT , S ,P) is a grammar and π = (γ, γ′) ∈ P we use the
notation γ → γ′.

Definition

If π is the production γ → γ′, and α, β ∈ A∗ such that α = α1γα2 and
β = α1γ

′α2, we say that α generates β by applying the production γ → γ′.

This is denoted by α ⇒
π
β.

If α ⇒
π
β for some production π ∈ P of the grammar G = (AN ,AT ,S ,P)

we write α ⇒
G
β.
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Productions and Derivations in Grammars

Definition

The sequence d = (γ0, γ1, . . . , γn) is referred to as a derivation of β from
α in the grammar G , where n is the length of the derivation if the
following conditions are satisfied:

α = γ0 and γn = β, and

γi ⇒
G
γi+1 for 0 6 i 6 n − 1.

An alternative notation for a derivation d = (γ0, γ1, . . . , γn) is

γ0 ⇒
G
γ1 ⇒

G
· · · ⇒

G
γn.

When the grammar is understood from the context, we may omit the
subscript G .
Also, if there exists a derivation in G of the word β starting with α, we

shall write α
∗⇒
G
β.
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Productions and Derivations in Grammars

The relation
∗⇒
G

on the set of words (AN ∪ AT )∗ is reflexive, that is,

α
∗⇒
G
α

for every word in (AN ∪ AT )∗. This is interpreted as the existence of a
derivation of length 0 of α from itself.
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Productions and Derivations in Grammars

Example

The set of productions of the grammar

G = ({S ,X ,Y }, {a, b, c},S ,P),

consists of the productions listed below:

π0 : S → abc, π1 : S → aXbc,
π2 : Xb → bX , π3 : Xc → Ybcc,
π4 : bY → Yb, π5 : aY → aaX ,
π6 : aY → aa
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Productions and Derivations in Grammars

Example Cont’d

The following sequence is a derivation in G :

S ⇒
π1

aXbc ⇒
π2

abXc ⇒
π3

abYbcc

⇒
π4

aYbbcc ⇒
π5

aaXbbcc ⇒
π2

aabXbcc

⇒
π2

aabbXcc ⇒
π3

aabbYbccc ⇒
π4

aabYbbccc

⇒
π4

aaYbbbccc ⇒
π6

aaabbbccc.
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Productions and Derivations in Grammars

Definition

A derivation α0 ⇒
G
α1 ⇒

G
· · · ⇒

G
αn in a grammar G = (AN ,AT , S ,P)

is complete if αn ∈ A∗T .

If S
∗⇒
G
α, we refer to α as a sentential form of G .
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Productions and Derivations in Grammars

Definition

The language generated by a grammar G = (AN ,AT , S ,P) is the set of
words

L(G ) = {x ∈ A∗T | S
∗⇒
G

x}.

Clearly, every word in L(G ) is a sentential form of G that contains no
nonterminal symbols.
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Productions and Derivations in Grammars

Types of Productions

Definition

Let AN ,AT be two disjoint alphabets. A production α→ β is

1 a context-free production on AN ,AT if α consists of one nonterminal
symbol X and β ∈ (AN ∪ AT )∗;

2 a context-sensitive production if α = α′Xα′′ and β = α′γα′′, where
X ∈ AN , α′, α′′, γ ∈ (AN ∪ AT )∗ and γ 6= λ.
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Productions and Derivations in Grammars

Notational Recall

For a grammar G = (AN ,AT , S ,P) we denote

words from (AN ∪ AT )∗ by α, β, γ, . . .;

word from A∗T by x , y , z , u, . . .;

derivations can be written as

γ0 ⇒
G
γ1 ⇒

G
· · · ⇒

G
γn;

if we wish to specify the productions used, the same can be denoted
as

γ0 ⇒
π1

γ1 ⇒
π2

· · · ⇒
πn

γn;
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Productions and Derivations in Grammars

Example

Let AN = {X ,Y ,Z} and let AT = {a, b}. The following pairs are
context-free productions over AN ,AT :

π0 : X → abXYa

π1 : Y → λ

π2 : Z → bba

The production π3 : aYXb → abXZXb is context-sensitive; note that π3
involves replacing Y by bXZ when Y is surrounded by a at left and by Xb
at the right, that is, Y occurs in the context of a and Xb.
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Productions and Derivations in Grammars

Context-free productions of the form X → λ are called null
productions or erasure productions. The effect of X → λ is to erase
the symbol X .

A grammar without erasure productions is said to be λ-free.
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Chomsky’s Hierarchy

Let G = (AN ,AT ,S ,P) be a grammar.

Every grammar is a grammar of type 0.

G is of type 1 (or, is context-sensitive) if all its productions are
context-sensitive with the possible exception of a production S → λ;
if P contains S → λ, then S does not occur in the right member of
any production of G .

G is of type 2 (or, is context-free) if all its productions are
context-free.

G is of type 3 (or, is regular) if every production has the form
X → uY or X → u, where X ,Y ∈ AN and u ∈ A∗T .
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Chomsky’s Hierarchy

Definition

A grammar G is length-increasing grammar if all its productions are
length-increasing with the possible exception of a production S → λ; if P
contains S → λ, then S does not occur in the right member of any
production of G .

It is clear that every grammar of type 3 is also of type 2, every grammar of
type 1 is also of type 0 and every context-sensitive grammar is also
length-increasing.
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Chomsky’s Hierarchy

Definition

Let G be a class of grammars. A language L is a G-language if there is a
grammar G in G such that L(G ) = L.
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Chomsky’s Hierarchy

L is a context-free language if there exists a context-free grammar G such
that L = L(G ).
Similarly, K is a length-increasing language if there is a length-increasing
grammar G1 such that K = L(G1), etc.
We denote by Li the class of languages generated by grammars of type i
for 0 ≤ i ≤ 3.
Clearly, we have L3 ⊆ L2 ⊆ L0 and L1 ⊆ L0. Actually, as we shall see
later, we also have the inclusion L2 ⊆ L1, so

L3 ⊆ L2 ⊆ L1 ⊆ L0.
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Chomsky’s Hierarchy

The corresponding classes Li of languages constitute the Chomsky
hierarchy.

The inclusions between classes will be shown to be strict.

It is clear that every language in L1 is length-increasing. Actually, we
shall prove that L1 coincides with the class of length-increasing
languages.
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Chomsky’s Hierarchy

Example

The language generated by the context-free grammar

G = ({S}, {a, b}, S , {S → λ,S → aSb})

is {anbn | n ∈ N}.
We prove by induction on n ≥ 0 that anbn ∈ L(G ) for every n ∈ N.
The case n = 0 follows from the existence of the production π0 : S → λ in
G .
Suppose now that anbn ∈ L(G ), so S

∗⇒
G

anbn. Using the production

S → aSb we obtain the derivation

S ⇒
G

aSb
∗⇒
G

aanbnb = an+1bn+1,

which shows that an+1bn+1 ∈ L(G ).
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Chomsky’s Hierarchy

Example (cont’d)

Conversely, we prove by induction on the length m ≥ 1 of the derivation

S
∗⇒
G

x that x has the form x = anbn for some n ∈ N.

If m = 1, S
∗⇒
G

x implies x = λ since S → λ is the single production that

erases S . Therefore, x = anbn for n = 0.
Suppose that the statement holds for derivations of length m and let

S
∗⇒
G

x be a derivation of length m + 1. If we write the first step of this

derivation explicitly we have

S ⇒
G

aSb
∗⇒
G

x ,

so x = ayb, where S
∗⇒
G

y is a derivation of length m. By the inductive

hypothesis, y = anbn for some n ∈ N, so x = an+1bn+1, which concludes
our argument. Thus, {anbn | n ∈ N} is a context-free language.
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Chomsky’s Hierarchy

A Previous Example

Example

Consider again the length-increasing grammar

G = ({S ,X ,Y }, {a, b, c},S ,P),

where P consists of the following productions:

π0 : S → abc, π1 : S → aXbc,
π2 : Xb → bX , π3 : Xc → Ybcc,
π4 : bY → Yb, π5 : aY → aaX ,
π6 : aY → aa

We claim that L(G ) = {anbncn | n ∈ P}.
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Chomsky’s Hierarchy

Example (cont’d)

Any word α ∈ {S ,X ,Y , a, b, c}∗ that occurs in a derivation, S
∗⇒ α

contains at most one nonterminal symbol.

A derivation must end either by applying the production S → abc or
the production aY → aa because only these productions allow us to
eliminate a nonterminal symbol.

If the last production applied is S → abc, then the derivation is
S ⇒ abc, and the derived word has the form prescribed. Otherwise,

the symbol Y must be generated starting from S , and the first
production applied is S → aXbc.
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Chomsky’s Hierarchy

Example (cont’d)

For every i ≥ 1 we have aiXbic i
∗⇒ ai+1Xbi+1c i+1. Indeed, we can write:

aiXbic i
i⇒
π2

aibiXc i
1⇒
π3

aibiYbc i+1

i⇒
π4

aiYbi+1c i+1 1⇒
π5

ai+1Xbi+1c i+1

We claim that a word α contains the infix aY (which allows us to apply

the production π5) and S
∗⇒ α if and only if α has the form

α = aiYbi+1c i+1 for some i ≥ 1.
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Chomsky’s Hierarchy

Example (cont’d)

An easy argument by induction on i ≥ 1 allows us to show that if

α = aiYbi+1c i+1 then S
∗⇒ α. We need to prove only the inverse

implication. This can be done by strong induction on the length n ≥ 3 of

the derivation S
∗⇒ α.

The shortest derivation that allows us to generate the word containing the
infix aY is

S ⇒ aXbc ⇒ abXc ⇒ abYbcc ⇒ aYb2c2,

and this word has the prescribed form.
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Chomsky’s Hierarchy

Example (cont’d)

Suppose now that for derivations shorter than n the condition is satisfied,

and let S
∗⇒
G
α be a derivation of length n such that α contains the infix

aY . By the inductive hypothesis the previous word in this derivation that
contains the infix aY has the form α′ = ajYbj+1c j+1. To proceed from α′

we must apply the production π5 and replace Y by X . Thus, we have

S
∗⇒
G

ajYbj+1c j+1 ⇒
G

aj+1Xbj+1c j+1.

Next, X must “travel” to the right using π2, transform itself into an Y
(when in touch with the cs) and Y must “travel” to the left to create the
infix aY . This can happen only through the application of π3 and π4:

aj+1Xbj+1c j+1 j+1⇒
π2

aj+1bj+1Xc j+1

1⇒
π3

aj+1bj+1Ybc j+2 i⇒
π4

aj+1Ybj+2c j+2,

so α has the desired form. Therefore, the words in the language L(G ) have
the form anbncn.
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Equivalent Grammars

There are certainly an infinite number of grammars for any language
L ∈ L0.

Definition

Two grammars G ,G ′ are equivalent if L(G ) = L(G ′).
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Equivalent Grammars

There are many benefits to examining equivalent grammars that generate
a language.

For example, we may be given a context-sensitive grammar for a
language for which there exists a context-free grammar or even a
regular grammar. The simpler grammar leads to easier recognition of
words in the language and provides more information about the
structure of the language.

By selecting specific characteristics of the form of the productions of
a grammar, we may prove interesting facts about the language it
generates.
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Equivalent Grammars

Theorem

Let G = (AN ,AT ,S ,P) be a length-increasing grammar or a grammar of
type i , where i ∈ {0, 1, 2}. There exists an equivalent grammar
G ′ = (A′N ,AT , S ,P

′) of the same type as G such that every production of
P ′ that contains a terminal symbol is of the form X → a.
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Equivalent Grammars

Proof

Consider the alphabet A′ = {Xa | a ∈ AT} that contains a symbol Xa for
every terminal symbol a, where AN ∩ A′ = ∅, and define A′N as
A′N = AN ∪ A′.
The productions of P ′ are obtained by replacing each terminal symbol a by
the corresponding nonterminal Xa and by adding the productions Xa → a
for a ∈ AT . The set of productions P ′ satisfies the requirements of the
theorem, and the resulting grammar is clearly of the same type as G .
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Equivalent Grammars

Proof (cont’d)

Let u = ai0 · · · ain−1 ∈ L(G ). The definition of the grammar G ′ implies that

S
∗⇒
G ′

Xai0
· · ·Xain−1

. By using the productions Xa → a we obtain

S
∗⇒
G ′

ai0 · · · ain−1 ,

so ai0 · · · ain−1 ∈ L(G ′). Thus, L(G ) ⊆ L(G ′).
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Equivalent Grammars

Proof (cont’d)

To prove the converse inclusion, L(G ′) ⊆ L(G ), consider a morphism
h : (A′N ∪ AT )∗ −→ (AN ∪ AT )∗ defined by h(Xa) = a for a ∈ AT and
h(Y ) = Y for every Y ∈ AN ∪ AT . We claim that if α ⇒

G ′
β for some

α, β ∈ (A′N ∪ AT )∗, then h(α)
∗⇒
G

h(β). Indeed, if a production of the

form X → a was used in α ⇒
G ′

β, then h(α) = h(β).
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Equivalent Grammars

Proof (cont’d)

If another kind of production was used, then h(α) ⇒
G

h(β), so in any case,

h(α)
∗⇒
G ′

h(β). Let now v ∈ L(G ′). We have S
∗⇒
G ′

v , so

S = h(S)
∗⇒
G

h(v) = v , which implies v ∈ L(G ). Therefore,

L(G ) = L(G ′).
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Equivalent Grammars

Example

Let G = ({S ,X ,Y }, {a, b, c},S ,P) be the length-increasing grammar that
generates the language {anbncn | n > 1}. The grammar G ′ defined below
is length-increasing, equivalent to G , and every production of this
grammar that contains a terminal symbol is of the form X → a.
Specifically, the set of productions P ′ of the grammar

G ′ = ({S ,X ,Y ,Xa,Xb,Xc}, {a, b, c},S ,P ′)

consists of the following productions:

π′0 : S → XaXbXc , π′1 : S → XaXXbXc ,
π′2 : XXb → XbX , π′3 : XXc → YXbXcXc ,
π′4 : XbY → YXb, π′5 : XaY → XaXaX ,
π′6 : XaY → XaXa π′7 : Xa → a
π′8 : Xb → b π′9 : Xc → c
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