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Linearly Inseparable Data Sets

Consider a simple data set that consists of four points in R2:(
−1
1

)

(
−1
−1

)

(
1
1

)

(
1
−1

)
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Linearly Inseparable Data Sets

It is impossible to separate the red point (the positive examples)
from the negative examples (the blue points) using a line, no
matter how you draw the line!
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Eigenvalues and Eigenvectors

Reminder: eigenvalues and eigenvectors of a matrix

Definition

An eigenvalue for a matrix A ∈ Cn×n is a number λ such that

Ax = λx

for some non-zero vector x ∈ Cn referred to as an eigenvector for λ.

This implies xHAx = λxHx, so

λ =
xHAx

xHx
.

For real matrices we have

λ =
x′Ax

x′x
.
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Eigenvalues and Eigenvectors

The Characteristic Polynomial of a Matrix

If λ is an eigenvalue of the matrix A ∈ Cn×n, there exists a
non-zero eigenvector x ∈ Cn such that Ax = λx. Therefore, the
linear system

(λIn − A)x = 0n

has a non-trivial solution. This is possible if and only if
det(λIn − A) = 0, so eigenvalues are the solutions of the equation

det(λIn − A) = 0.

det(λIn − A) is a polynomial of degree n in λ, known as the
characteristic polynomial matrix A. We denote this polynomial by
pA.
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Eigenvalues and Eigenvectors

Example

The characteristic polynomial of the matrix

A =

(
a b
c d

)
is

p(λ) = det(I2λ− A) =

∣∣∣∣λ− a −b
−c λ− d

∣∣∣∣
= (λ− a)(λ− d)− bc = λ2 − (a + d)λ+ ad − bc.

Thus, the eigenvalues are

λ1,2 =
a + d ±

√
(a− d)2 + 4bc

2
.
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Eigenvalues and Eigenvectors

Example

Let

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33


be a matrix in C3×3. Its characteristic polynomial is

pA =

∣∣∣∣∣∣
λ− a11 −a12 −a13

−a21 λ− a22 −a23

−a31 −a32 λ− a33

∣∣∣∣∣∣ = λ3 − (a11 + a22 + a33)λ2

+(a11a22 + a22a33 + a33a11 − a12a21 − a23a32 − a13a31)λ

−(a11a22a33 + a12a23a31 + a13a32a21 − a12a21a33 − a23a32a11 − a13a31a22).
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Positive Definite Matrices

Recall that a matrix A ∈ Rn×n is positive definite if x′Ax > 0 for
x 6= 0.

Theorem

The eigenvalues of a real symmetric positive matrix are positive.

Proof: The eigenvalues of real symmetric matrices are real. If λ is
an eigenvalue of A with the eigenvector x, then Ax = λx, hence
x′Ax = λx′x = λ ‖ x ‖2> 0. Thus, λ > 0.
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Positive Definite Matrices

Theorem

If the eigenvalues if a real symmetric matrix are positive, then A is
positive definite.

Proof: For a real symmetric matrix there exists an orthogonal
matrix Q such that Q ′AQ = D, where

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

... · · ·
...

0 0 · · · λn


If x 6= 0n, then x′Ax = x′Q ′DQx = y′Dy, where y = Qx.
Then, y′Dy = λ1y

2
1 + · · ·+ λny

2
n > 0 beacuse y = Q ′x is a

non-zero vector. Here we used the fact that Q−1 = Q ′.
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Hilbert Spaces

Hilbert spaces, named after David Hilbert, generalize the notion of
Euclidean space. They extend the methods of vector algebra and
calculus from the two-dimensional Euclidean plane and
three-dimensional space to spaces with any finite or infinite
number of dimensions.
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Hilbert Spaces

An inner product (x , y) defined on a linear space H generates
a norm ‖ x ‖=

√
(x , x).

A norm on a linear space generates a distance (a metric)
d(x , y) =‖ x − y ‖. Thus, every normed space becomes a
metric space.

A Cauchy sequence in a metric space is a sequence (xn) such
that for every ε > 0 there exists a number nε such that
m, p > nε imply d(xm, xp) < ε.

A metric space is complete if every Cauchy sequence has a
limit in that space.
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Hilbert Spaces

What is a Hilbert Space?

Hilbert spaces are generalizations of Euclidean spaces.
A Hilbert space is a linear space that is equipped with an inner
product such that the metric space generated by the inner product
is complete.
As above, the inner product of two elements x , y of a Hilbert space
H is denoted by (x , y). Note that in the case of Rn (which is a
special case of a Hilbert space) the inner product of x, y was
denoted by x′y.
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Hilbert Spaces

Example

The Euclidean space Rn equipped with the inner product

(x, y) = x1y1 + · · ·+ xnyn

is a Hilbert space.
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Hilbert Spaces

Example

The space `2 that consists of infinite sequences of the form
z = (z1, z2, . . .) such that the series

∑
n |zn|2 converges is a Hilbert

space, where the innner product is defined as

(z,w) =
∞∑
n=1

znwn.
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Hilbert Spaces

Example

For two function f , g such that
∫ b
a f 2(x) dx and

∫ b
a g2(x) dx exist,

an inner product can be defined as

(f , g) =

∫ b

a
f (x)g(x) dx .

The resulting linear space is a Hilbert space.
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Kernels

Definition

Let H is a Hilbert space called the feature space and let X be the
input space that is mapped by a function Φ : X −→ H into a
Hilbert space.
A kernel over X is a function K : X × X −→ R such that there
exists a function Φ : X −→ H that satisfies the condition

K (u, v) = 〈Φ(u),Φ(v)〉

for every u, v ∈ X .
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Kernels

The purpose of Φ is to map the input space X into a Hilbert
space where data may become lineraly separable.

If a kernel K exists, then the inner product 〈Φ(u),Φ(v)〉 in
the Hilbert space that may be difficult to calculate. This is
the case because we would have to compute both Φ(u) and
Φ(v) and then compute the inner product 〈Φ(u),Φ(v)〉 in the
Hilbert space. But, if there exists a kernel K , the inner
product 〈Φ(u),Φ(v)〉 may be obtained directly using the
equality K (u, v) = 〈Φ(u),Φ(v)〉.
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Kernels

Recall the general form of the dual optimization problem for SVMs:

maximize for a
∑m

i=1 ai −
1
2aiajyiyjx

′
ixj

subject to 0 6 ai 6 C and
∑m

i=1 aiyi = 0
for 1 6 i 6 m.

Note the presence of the inner product x′ixj . This is replaced by
the inner product (Φ(xi ),Φ(xj)), in the Hilbert feature space, that
is, by K (xi , xj), where K is a suitable kernel function.
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Kernels

A More General SVM Formulation

maximize for a
∑m

i=1 ai −
1
2aiajyiyjK (xi , xj)

subject to 0 6 ai 6 C and
∑m

i=1 aiyi = 0
for 1 6 i 6 m.

The hypothesis returned by the SVM algorithm is now

h(x) = sign

(
m∑
i=1

aiyiK (xi , x) + b

)
.

with b = yi −
∑m

j=1 ajyjK (xj , xi ) for any xi with 0 < ai < C .
Note that we do not work with the feature mapping Φ; instead we
use the kernel only!
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Functions of Positive Type

Definition

Let S be a non-empty set. A complex-valued function
K : S × S −→ C is of positive type if for every n > 1 we have:

n∑
i=1

n∑
j=1

aiK (xi , xj)aj > 0

for every ai ∈ C and xi ∈ S , where 1 6 i 6 n.

K : S × S −→ R is real and of positive type if for every n > 1 we
have

n∑
i=1

n∑
j=1

aiK (xi , xj)aj > 0

for every ai ∈ R and xi ∈ S , where 1 6 i 6 n.
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Functions of Positive Type

If K : S × S −→ C is of positive type, then taking n = 1 we have
aK (x , x)a = K (x , x)|a|2 > 0 for every a ∈ C and x ∈ S . This
implies K (x , x) > 0 for x ∈ S .
Note that K : S × S −→ C is of positive type if for every n > 1
and for every x1, . . . , xs the matrix An,K (x1, . . . , xn) = (K (xi , xj)) is
positive definite, and, therefore it has positive eigenvalues.
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Functions of Positive Type

Example

The function K : R× R −→ R given by K (x , y) = cos(x − y) is of
positive type because

n∑
i=1

n∑
j=1

aiK (xi , xj)aj =
n∑

i=1

n∑
j=1

ai cos(xi − xj)aj

=
n∑

i=1

n∑
j=1

ai (cos xi cos xj + sin xi sin xj)aj

=
∣∣∣ n∑
i=1

ai cos xi

∣∣∣2 +
∣∣∣ n∑
i=1

ai sin xi

∣∣∣2.
for every ai ∈ C and xi ∈ S , where 1 6 i 6 n.
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Functions of Positive Type

Definition

Let S be a non-empty set. A complex-valued function
K : S × S −→ C is Hermitian if K (x , y) = K (y , x) for every
x , y ∈ S .
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Functions of Positive Type

Theorem

Let H be a Hilbert space, S be a non-empty set and let
f : S −→ H be a function. The function K : S × S −→ C defined
by

K (s, t) = (f (s), f (t))

is of positive type.
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Functions of Positive Type

Proof

We can write

n∑
i=1

n∑
j=1

aiajK (ti , tj) =
n∑

i=1

n∑
j=1

aiaj(f (ti ), f (tj))

=
∣∣∣∣∣∣ n∑

i=1

ai f (ai )
∣∣∣∣∣∣2 > 0,

which means that K is of positive type.
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Functions of Positive Type

Theorem

Let S be a set and let F : S × S −→ C be a positive type function.
The following statements hold:

i F (x , y) = F (y , x) for every x , y ∈ S, that is, F is Hermitian;

ii F is a positive type function;

iii |F (x , y)|2 6 F (x , x)F (y , y).
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Functions of Positive Type

Proof

Take n = 2 in the definition of positive type functions. We have

a1a1F (x1, x1) + a1a2F (x1, x2) + a2a1F (x2, x1) + a2a2F (x2, x2) > 0,
(1)

which amounts to

|a1|2F (x1, x1) + a1a2F (x1, x2) + a2a1F (x2, x1) + |a2|2F (x2, x2) > 0,

By taking a1 = a2 = 1 we obtain

p = F (x1, x1) + F (x1, x2) + F (x2, x1) + F (x2, x2) > 0,

where p is a positive real number.
Similarly, by taking a1 = i and a2 = 1 we have

q = −F (x1, x1) + iF (x1, x2)− iF (x2, x1) + F (x2, x2) > 0,

where q is a positive real number.
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Functions of Positive Type

Proof (cont’d)

Thus, we have

F (x1, x2) + F (x2, x1) = p − F (x1, x1)− F (x2, x2),

iF (x1, x2)− iF (x2, x1) = q + F (x1, x1)− F (x2, x2).

These equalities imply

2F (x1, x2) = P − iQ

2F (x2, x1) = P + iQ,

where P = p − F (x1, x1)− F (x2, x2) and
Q = q + F (x1, x1)− F (x2, x2), which shows the first statement
holds.
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Functions of Positive Type

The second part of the theorem follows by applying the
conjugation in the equality of Definition.
For the final part, note that if F (x1, x2) = 0 the desired inequality
holds immediately. Therefore, assume that F (x1, x2) 6= 0 and take
a1 = a ∈ R and to a2 = F (x1, x2). We have

a2F (x1, x1) + aF (x1, x2)F (x1, x2)

+F (x1, x2)aF (x2, x1) + F (x1, x2)F (x1, x2)F (x2, x2) > 0,

which amounts to

a2F (x1, x1) + 2a|F (x1, x2)|+ |F (x1, x2)|2F (x2, x2) > 0.

If F (x1, x1) this trinomial in a must be non-negative for every a,
which implies

|F (x1, x2)|4 − |F (x1, x2)|2F (x1, x1)F (x2, x2) 6 0.

Since F (x1, x2) 6= 0, the desired inequality follows.
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Functions of Positive Type

Theorem

A real-valued function G : S × S −→ R is a positive type function
if it is symmetric and

n∑
i=1

n∑
i=1

aiajG (xi , xj) > 0 (2)

for a1, . . . , an ∈ R and x1, . . . , xn ∈ S.
In other words G is a positive type function iff (G (xi , xj)) is a
positive-definite matrix for any x1, . . . , xn ∈ S.

31 / 59



Support Vector Machines - II

Functions of Positive Type

Theorem

Let S be a non-empty set. If Ki : S × S −→ C for i = 1, 2 are
functions of positive type, then their pointwise product K1K2

defined by (K1K2)(x , y) = K1(x , y)K2(x , y) is of positive type.
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Functions of Positive Type

Proof

Since Ki is a function of positive type, the matrix

An,Ki
(x1, . . . , xn) = (Ki (xj , xh))

is positive, where i = 1, 2. Thus, such matrices can be factored as

An,K1(x1, . . . , xn) = PHP and An,K2(x1, . . . , xn) = RHR

for i = 1, 2. Therefore, we have:
n∑

i=1

n∑
j=1

aiK1(xi , xj)K2(xi , xj)aj

=
n∑

i=1

n∑
j=1

aiK (xi , xj) ·

(
n∑

m=1

rmi rmj

)
aj

=
n∑

m=1

(
n∑

i=1

ai rmi

)
K (xi , xj)

 n∑
j=1

rjmaj

 > 0,

which shows that (K1K2)(x , y) is a function of positive type.
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Functions of Positive Type

Theorem

Let S be a non-empty set. The set of functions of positive type is
closed with respect to multiplication with non-negative scalars and
with respect to addition.
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Functions of Positive Type

A function K : S × S −→ C defined by K (s, t) = (f (s), f (t)),
where f : S −→ H is of positive type, where H is a Hilbert
space.

The reverse is also true:
If K is of positive type a special Hilbert space exists such that
K can be expressed as an inner product on this space
(Aronszajn’s Theorem).

This fact is essential for data kernelization that, in turn, is
essential for support vector machines.

35 / 59



Support Vector Machines - II

Functions of Positive Type

Theorem

(Aronszajn’s Theorem) Let K : X × X −→ R be a positive type
kernel. Then, there exists a Hilbert space H of functions and a
feature mapping Φ : X −→ H such that K (x, y) = (Φ(x),Φ(y)) for
all x, y ∈ X . Furthermore, H has the reproducing property which
means that for every h ∈ H we have

h(x) = (h,K (x, ·)).

The function space H is called a reproducing Hilbert space
associated with K .
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Functions of Positive Type

Which of the following functions are kernels?
For x, y ∈ Rn:

K (x, y) =
n∑

i=1

(xi + yi )

K is not a kernel. Indeed, for x =

(
1
0

)
and y =

(
0
2

)
we have

k11 = K (x, x) = 2, k12 = K (x, y) = 3 = k21, and
k22 = K (y, y) = 4.
The matrix of K is (

k11 k12

k21 k22

)
=

(
2 3
3 4

)
.
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Functions of Positive Type

Its characteristic polynomial is

det

(
2− λ 3

3 4− λ

)
= λ2 − 6λ− 1.

and has a negative eigenvalue.
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Functions of Positive Type

K2(x, y) =
n∏

j=1

h

(
xi − c

a

)
h

(
yi − c

a

)
,

where h(x) = cos(1.75x)e−
x2

2 .
K2 is a kernel because it can be written as a product
K2 = f (x)f (y).
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Functions of Positive Type

K3(x, y) = − (x, y)

‖ x ‖‖ y ‖
K3 is not a kernel because it has negative eigenvalues.
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Functions of Positive Type

K4(x, y) =
√
‖ x− y ‖2 +1

K4 is not a kernel. Indeed, for x =

(
1
0

)
and y =

(
0
1

)
the matrix

(
k11 k12

k21 k22

)
=

(
1 5
5 1

)
has a negative eigenvalue.
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Functions of Positive Type

Example

A special case of functions of positive type on Rn are obtained by
defining K : Rn × Rn −→ R as Kf (x, y) = f (x− y), where
f : Rn −→ C is a continuous function on Rn. K is translation
invariant and is designated as a stationary kernel.
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Functions of Positive Type

Definition

A continuous linear operator h : H −→ H on a Hilbert space H is
positive if (h(x), x)) > 0 for every x ∈ H.
h is positive definite if it is positive and invertible.

If h is an operator on a space of functions and h(f ) is the function
defined as h(f )(x) =

∫
K (x , y)f (y) dy , then we say that K is the

kernel of h.
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Functions of Positive Type

Theorem

(Mercer’s Theorem) Let K : [0, 1]× [0, 1] −→ R be a function
continuous in both variables that is the kernel of a positive
operator h on L2([0, 1]). If the eigenfunctions of h are φ1, φ2, . . .
and they correspond to the eigenvalues µ1, µ2, . . ., respectively
then we have:

K (x , y) =
∞∑
j=1

µjφj(x)φj(y),

where the series
∑∞

j=1 µjφj(x)φj(y) converges uniformly and
absolutely to K (x , y).
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Functions of Positive Type

From the equality for the kernel of a positive operator

K (u, v) =
∞∑
n=0

anφn(u)φn(v)

with an > 0 we can constract a mapping Φ into a feature space (in
this case the potentially infinite `2) as

Φ(u) =
∞∑
n=0

√
anφn(u).
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Examples of Positive Definite Kernels

Example

For c > 0 a polynomial kernel of degree d is the kernel defined
over Rn by

K (u, v) = (u′v + c)d .

As an example, consider n = 2, d = 2 and the kernel
K (u, v) = (u′v + c)2. We have:

K (u, v) = (u1v1 + u2v2 + c)2

= u2
1v

2
1 + u2

2v
2
2 + c2 + 2u1v1u2v2 + 2u1v1c + 2u2v2c ,

46 / 59



Support Vector Machines - II

Examples of Positive Definite Kernels

Example (cont’d)

Feature space is R6

K (u, v) =



u2
1

u2
2√

2u1u2√
2cu1√
2cu2

c



′

v2
1

v2
2√

2v1v2√
2cv1√
2cv2

c

 = Φ(u)′Φ(v) and Φ(x) =



x2
1

x2
2√

2x1x2√
2cx1√
2cx2

c


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Examples of Positive Definite Kernels

In general, features associated to a polynomial kernel of degree d
are all monomials of degree d associated to the original features. It
is possible to show that polynomial kernels of degree d on Rn map
the input space to a space of dimension

(n+d
d

)
.
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Examples of Positive Definite Kernels

For the kernel K (u, v) = (u′v + 1)2 we have

Φ

(
x1

x2

)
=



x2
1

x2
2√

2x1x2√
2x1√
2x2

1

 .
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Examples of Positive Definite Kernels

(
−1
1

)

(
−1
−1

)

(
1
1

)

(
1
−1

)

√
2x1

√
2x1x2

For the kernel K(u, v) = (u′v + 1)2 we have

Φ

(
1
1

)
=



1
1√
2√
2√
2

1

 ,Φ

(
−1
−1

)
=



1
1√
2

−
√

2

−
√

2
1

 ,Φ

(
−1
1

)
=



1
1

−
√

2

−
√

2√
2

1

 ,Φ

(
1
−1

)
=



1
1

−
√

2√
2

−
√

2
1


For this set of points differences occur in the third,fourth, and fifth features.
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Examples of Positive Definite Kernels

Definition

To any kernel K we can associate a normalized kernel K ′ defined by

K ′(u, v) =

0 if K (u, u) = 0 or K (v , v) = 0,
K(u,v)√

K(u,u)
√

K(v ,v)
otherwise.

If K (u, u) 6= 0, then K ′(u, u) = 1.
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Examples of Positive Definite Kernels

Theorem

Let K be a positive type kernel. For any u, v ∈ X we have

K (u, v)2 6 K (u, u)K (v , v).

Proof: Consider the matrix

K =

(
K (u, u) K (u, v)
K (v , u) K (v , v)

)
K is positive, so its eigenvalues λ1, λ2 must be non-negative. Its
characteristic equation is∣∣∣∣K (u, u)− λ K (u, v)

K (v , u) K (v , v)− λ

∣∣∣∣ = 0
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Equivalently,

λ2 − (K (u, u) + K (v , v))λ+ det(K) = 0

Therefore, λ1λ2 = det(K) > 0 and this implies

K (u, u)K (v , v)− K (u, v)2 > 0.
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Theorem

Let K be a positive type kernel. Its normalized kernel is a positive
type kernel.

Proof: Let {x1, . . . , xm} ⊆ X and c ∈ Rm. We prove that∑
i ,j cicjK

′(xi , xj) > 0.
If K (xi , xi ) = 0, then K (xi , xj) = 0 and, thus, K ′(xi , xj) = 0 for
1 6 j 6 m. Thus, we may assume that K (xi , xi ) > 0 for
1 6 i 6 m. We have∑

i ,j

cicjK
′(xi , xj) =

∑
i ,j

cicj
K (xi , xj)√

K (xi , xi )K (xj , xj)

=
∑
i ,j

cicj
〈Φ(xi ),Φ(xj)〉

‖ Φ(xi ) ‖H‖ Φ(xj) ‖H

=
∣∣∣∣∣∣∑

i

ciΦ(xi )

‖ Φ(xi ) ‖H

∣∣∣∣∣∣ > 0,

where Φ is the feature mapping associated to K . 54 / 59
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Example

Let K be the kernel

K (u, v) = e
u′v
σ2 ,

where σ > 0. Note that K (u,u) = e
‖u‖2

σ2 and K (v, v) = e
‖v‖2

σ2 ,
hence its normalized kernel is

K ′(u, v) =
K (u, v)√

K (u, u)
√
K (v , v)

=
e

u′v
σ2

e
‖u‖2

2σ2 e
‖v‖2

2σ2

= e−
‖u−v‖2

2σ2
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Example

For a positive constant σ a Gaussian kernel or a radial basis
function is the function K : Rn × Rn −→ R defined by

K (u, v) = e−
‖u−v‖2

2σ2 .

We prove that K is of positive type by showing that
K (x, y) = (φ(x), φ(y)), where φ : Rk −→ `2(R). Note that for this
example φ ranges over an infinite-dimensional space.
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We have

K (x, y) = e−
‖x−y‖2

2σ2

= e−
‖x‖2+‖y‖2−2(x,y)

2σ2

= e−
‖x‖2

2σ2 · e−
‖y‖2

2σ2 · e
(x,y)

σ2
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Taking into account that

e
(x,y)

σ2 =
∞∑
j=0

1

j!

(x, y)j

σ2j

we can write

e
(x,y)

σ2 · e−
‖x‖2

2σ2 · e−
‖y‖2

2σ2 =
∞∑
j=0

(x, y)j

j!σ2j
e−
‖x‖2

2σ2 · e−
‖y‖2

2σ2

=
∞∑
j=0

e
− ‖x‖

2

2jσ2

σ
√
j!

1
j

e
− ‖y‖

2

2jσ2

σ
√
j!

1
j

(x, y)

j

= (φ(x), φ(y)),

where

φ(x) =

. . . , e− ‖x‖
2

2jσ2

σj
√
j!

1
j

(
j

n1, . . . , nk

) 1
2

xn1
1 · · · x

nk
k , . . .

 .

j varies in N and n1 + · · ·+ nk = j .
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Example

For a, b > 0, a sigmoid kernel is defined as

K (x, y) = tanh(ax′y + b)

With a, b > 0 the kernel is of positive type.
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