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Consider a simple data set that consists of four points in R?:

G

)

G
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LLinearly Inseparable Data Sets

It is impossible to separate the red point (the positive examples)
from the negative examples (the blue points) using a line, no
matter how you draw the line!
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L Eigenvalues and Eigenvectors

Reminder: eigenvalues and eigenvectors of a matrix

Definition

An eigenvalue for a matrix A € C"™" is a number A such that
Ax = Ax
for some non-zero vector x € C" referred to as an eigenvector for \.

This implies x*Ax = AxHx, so

xH Ax

xHx

A=

For real matrices we have

x' Ax
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L Eigenvalues and Eigenvectors

The Characteristic Polynomial of a Matrix

If X is an eigenvalue of the matrix A € C"*", there exists a
non-zero eigenvector x € C" such that Ax = Ax. Therefore, the
linear system

(M, —Ax=0,

has a non-trivial solution. This is possible if and only if
det(Ml, — A) = 0, so eigenvalues are the solutions of the equation

det(Al, — A) = 0.

det(Al, — A) is a polynomial of degree n in A, known as the
characteristic polynomial matrix A. We denote this polynomial by

Pa-

6/59



Support Vector Machines - Il
LEigenvalues and Eigenvectors

The characteristic polynomial of the matrix
a b
A= (¢ o)

A—a —b
—-c M\—d

= (A—a)(A—d)—bc=X—(a+d)A+ad — bc.

p(A) = det(hA—A) = '

Thus, the eigenvalues are

a+d+/(a—d)2+4bc
A1 = .
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LEigenvalues and Eigenvectors

Let

a1l ax a3
A=|ax ax ax

a31 d32 4as3

be a matrix in C3*3. Its characteristic polynomial is

A—an  —ap —a13
3 2
pa = | —az1 A—ax —axs | =X — (a1 +axn +a33)A
—az1 —aszpy A —as3

+(a11a22 + axpazs + azzair — aipap; — a3asy — ai3asi)A

_(311322333 + 312323331 + 313332321 — 312421333 — 323332311 —
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L Positive Definite Matrices

Recall that a matrix A € R"™" is positive definite if xX’Ax > 0 for
x # 0.

Theorem

The eigenvalues of a real symmetric positive matrix are positive.

Proof: The eigenvalues of real symmetric matrices are real. If A is
an eigenvalue of A with the eigenvector x, then Ax = Ax, hence
X'Ax = Ax'x = A || x ||>> 0. Thus, A > 0.
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Theorem

If the eigenvalues if a real symmetric matrix are positive, then A is
positive definite.

Proof: For a real symmetric matrix there exists an orthogonal
matrix @ such that Q’AQ = D, where

M O -0
0 X -+ 0
D=1 . i )
0 0 - A\,

If x # 0,, then X’ Ax = X' Q'DQx = y’' Dy, where y = Qx.
Then, y'Dy = A\1y? + -+ \,y2 > 0 beacuse y = @'x is a
non-zero vector. Here we used the fact that Q! = Q.
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L Hilbert Spaces

Hilbert spaces, named after David Hilbert, generalize the notion of
Euclidean space. They extend the methods of vector algebra and
calculus from the two-dimensional Euclidean plane and
three-dimensional space to spaces with any finite or infinite
number of dimensions.
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m An inner product (x,y) defined on a linear space H generates
anorm || x [|= /(x, x).

m A norm on a linear space generates a distance (a metric)
d(x,y) =|| x — y ||. Thus, every normed space becomes a
metric space.

m A Cauchy sequence in a metric space is a sequence (x,) such
that for every € > 0 there exists a number n, such that
m, p > ne imply d(xm,xp) < €.

m A metric space is complete if every Cauchy sequence has a
limit in that space.
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What is a Hilbert Space?

Hilbert spaces are generalizations of Euclidean spaces.

A Hilbert space is a linear space that is equipped with an inner
product such that the metric space generated by the inner product
is complete.

As above, the inner product of two elements x, y of a Hilbert space
H is denoted by (x,y). Note that in the case of R” (which is a
special case of a Hilbert space) the inner product of x,y was
denoted by x'y.
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The Euclidean space R” equipped with the inner product

(x,y) = x1y1 + -+ + Xn¥n

is a Hilbert space.
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Example

The space £? that consists of infinite sequences of the form
z = (z1,2,...) such that the series Y |z,|?> converges is a Hilbert
space, where the innner product is defined as

oo
(sz) = Z ZnWh.
n=1
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Example

For two function f, g such that fab f2(x) dx and fab g2(x) dx exist,
an inner product can be defined as

b
(f.g) = / F(x)g(x) dx.

The resulting linear space is a Hilbert space.
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Definition

Let H is a Hilbert space called the feature space and let X’ be the
input space that is mapped by a function ® : X — H into a
Hilbert space.

A kernel over X is a function K : X x X — R such that there
exists a function ® : X — H that satisfies the condition
K(u,v) = (®(u), ®(v))

for every u,v € X.
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m The purpose of ® is to map the input space X into a Hilbert
space where data may become lineraly separable.

m If a kernel K exists, then the inner product (®(u), ®(v)) in
the Hilbert space that may be difficult to calculate. This is
the case because we would have to compute both ®(u) and
®(v) and then compute the inner product (®(u), ®(v)) in the
Hilbert space. But, if there exists a kernel K, the inner
product (®(u), ®(v)) may be obtained directly using the
equality K(u,v) = (P(u), d(v)).
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Recall the general form of the dual optimization problem for SVMs:

maximize fora Y "1 a; — 2a;ajyiy;x\x;
subject to 0 < a; < C and Y i"; ajyi =0
for1 <i<m.

Note the presence of the inner product x/x;. This is replaced by
the inner product (®(x;), ®(x;)), in the Hilbert feature space, that
is, by K(xi,x;), where K is a suitable kernel function.
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A More General SVM Formulation

maximize fora .71 a; — 2a;a;yiy; K(xi, x;)
subject to0 < a; < C and Y " ajyi =0
for1 <i<m.

The hypothesis returned by the SVM algorithm is now
m
h(x) = sign <Z aiyiK(x;, x) + b) .
i=1
with b= y; — 2121 ajy;K(xj, x;) for any x; with 0 < a; < C.

Note that we do not work with the feature mapping ®; instead we
use the kernel only!
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Let S be a non-empty set. A complex-valued function
K :S xS — C is of positive type if for every n > 1 we have:

z": z”: aiK(xj,xj)aj = 0

i=1 j=1
for every a; € C and x; € S, where 1 </ < n.
K:5 xS — Ris real and of positive type if for every n > 1 we

have .
ZZQ,‘K(X,’,X_,’)QJ' >0

i=1 j=1

for every a; € R and x; € S, where 1 </ < n.
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If K:S x5 — Cis of positive type, then taking n =1 we have
aK(x,x)a = K(x,x)|a|> > 0 for every a € C and x € S. This
implies K(x,x) > 0 for x € S.

Note that K : S x S — C is of positive type if for every n > 1
and for every xi, ..., xs the matrix A, k(x1,...,xn) = (K(xi,x;)) is
positive definite, and, therefore it has positive eigenvalues.
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The function K : R x R — R given by K(x,y) = cos(x — y) is of
positive type because

n

Zzn:a,-K(x,-,@)a_j = Zn:zn:aiCOS(Xi—Xj)a_j

i=1 j=1 i=1 j=1

n n
= E g aj(cos x; cos x; + sin x; sin x;)a;
i=1 j=1

n 2 n
= | E a,-cosx,-) +‘E a; sin x;
i=1 i=1

for every a; € C and x; € S, where 1 <7 < n.

2
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Definition

Let S be a non-empty set. A complex-valued function

K :S xS — Cis Hermitian if K(x,y) = K(y, x) for every
x,y €8S.
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Theorem

Let H be a Hilbert space, S be a non-empty set and let
f:S — H be a function. The function K : S x S — C defined

by
K(s,t) = (f(s), f(t))

is of positive type.
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Proof

We can write

ZZa,—a_jK(t,-,tj) = Zzaia_j(f(ti)vf(tj))

i=1 j=1 i=1 j=1
n
= H Z a,-f(a,-)
i=1

which means that K is of positive type.

2
\20,
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Let S be a set and let F: S x S — C be a positive type function.
The following statements hold:

F(x,y) = F(y,x) for every x,y € S, that is, F is Hermitian;
F is a positive type function;
[F(x )P < F(x,x)F(y,y).

27 /59



Support Vector Machines - Il
L Functions of Positive Type

Proof

Take n = 2 in the definition of positive type functions. We have

ararF(x1, x1) + a1a3F (x1, %) + a2a1F (x2, x1) + a2 F(x2, x2) > 0,
(1)

which amounts to
|a1PF (31, 31) + 132 F (31, %) + 3231F (%2, x1) + |22 F (32, x0) > 0,
By taking a; = a» = 1 we obtain

p = F(x1,x1) + F(x1,x2) + F(x2,x1) + F(x2,x2) > 0,

where p is a positive real number.
Similarly, by taking a; = i and a, = 1 we have

q= —F(Xl,Xl) + iF(Xl,Xg) — iF(XQ,Xl) + F(Xz,XQ) > 0,

where g is a positive real number.
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Proof (cont'd)

Thus, we have

F(x1,x) + F(x2,x1) = p—F(x,x1) — Fx, x),
iF(x1,x2) — iF(x2,x1) = q+ F(x1,x1) — F(x2, x2).

These equalities imply

2F(x1,x2) = P—iQ
2F(X2,X1) = P+iQ,
where P = p — F(x1,x1) — F(x2,x2) and

Q = g+ F(x1,x1) — F(x2,x2), which shows the first statement
holds.
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The second part of the theorem follows by applying the
conjugation in the equality of Definition.
For the final part, note that if F(x1,x2) = 0 the desired inequality
holds immediately. Therefore, assume that F(x1,x2) # 0 and take
a; =ac€Rand to ap = F(xy,x2). We have

a2F(x1, Xl) + aF(xl, X2)F(X17 X2)

+F(x1,x2)aF (x2,x1) + F(x1, x2) F(x1,x2) F(x2, x2) = 0,

which amounts to

aZF(xl,xl) + 23|F(X1,X2)| + ‘F(Xl,X2)|2F(X2,X2) > 0.

If F(x1,x1) this trinomial in a must be non-negative for every a,
which implies

|F(x1,x2)|4 — |F(X1,X2)|2F(X1,X1)F(X2,X2) <0.

Since F(x1,x2) # 0, the desired inequality follows.
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Theorem

A real-valued function G : S x S — R is a positive type function
if it is symmetric and

ZZa,aJ (xi, %) > (2)

i=1 i=1

forai,...,an €ER and x1,...,x, € S.
In other words G is a positive type function iff (G(x;, x;)) is a
positive-definite matrix for any xi,...,x, € S.
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Theorem

Let S be a non-empty set. If Ki : S xS — C fori = 1,2 are
functions of positive type, then their pointwise product Ki K>
defined by (K1K2)(x,y) = Ki(x,y)Ka(x,y) is of positive type.
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Proof

Since K; is a function of positive type, the matrix
An ki (X1, ..., xn) = (Ki(xj, xn))
is positive, where i = 1,2. Thus, such matrices can be factored as
An ki (X1, ..., xn) = P"P and A, k,(x1,...,x2) = R"R

for i = 1,2. Therefore, we have:

n

S5 aiKi(x ) Kalx )3

i=1 j=1
n n n
= > > aiK(xi,x) - | D Tmitmi | 7
i=1 j=1 m=1
= E (E 3lrml> XHXJ § rimaj | 2 0,
m=1 33/59
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Theorem

Let S be a non-empty set. The set of functions of positive type is
closed with respect to multiplication with non-negative scalars and
with respect to addition.

34/59



Support Vector Machines - Il
L Functions of Positive Type

m A function K : S x § — C defined by K(s,t) = (f(s), f(t)),
where f : S — H is of positive type, where H is a Hilbert
space.

m The reverse is also true:

If K is of positive type a special Hilbert space exists such that
K can be expressed as an inner product on this space
(Aronszajn's Theorem).

m This fact is essential for data kernelization that, in turn, is
essential for support vector machines.
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Theorem

(Aronszajn’s Theorem) Let K : X x X — R be a positive type
kernel. Then, there exists a Hilbert space H of functions and a
feature mapping ® : X — H such that K(x,y) = (®(x), ®(y)) for
all x,y € X. Furthermore, H has the reproducing property which
means that for every h € H we have

h(x) = (h, K(x,-))-

The function space H is called a reproducing Hilbert space
associated with K.
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Which of the following functions are kernels?
For x,y € R™

K(x,y) = Z(X,‘ + vi)
i=1

K is not a kernel. Indeed, for x = <é> and y = <2> we have
k11 == K(X,X) = 2, k12 == K(X, y) =3= k21, and

k22 = K(y,y) =4,
The matrix of K is
k11 k12 . 2 3
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L Functions of Positive Type

Its characteristic polynomial is

2-A 3 2
det<3 4_)\>_)\ —6A— 1.

and has a negative eigenvalue.
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Ka(x.y) =ﬁh(x"gc) h<y";C),

Jj=1

X2

where h(x) = cos(1.75x)e™ 2 .
K> is a kernel because it can be written as a product
Ko = f(x)f(y).
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_(xy)
[ [yl
K3 is not a kernel because it has negative eigenvalues.

Ks(x,y) =
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Ka(x,y) = /Il x =y [> +1
0

kin ki) (1 5
ko ko) \5 1

has a negative eigenvalue.

Ky is not a kernel. Indeed, for x = <1> and y = <(1)) the matrix
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Example

A special case of functions of positive type on R" are obtained by
defining K : R” X R" — R as K¢(x,y) = f(x —y), where

f :R" — C is a continuous function on R". K is translation
invariant and is designated as a stationary kernel.
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Definition

A continuous linear operator h: H — H on a Hilbert space H is
positive if (h(x),x)) = 0 for every x € H.
h is positive definite if it is positive and invertible.

If his an operator on a space of functions and h(f) is the function
defined as h(f)(x) = [ K(x,y)f(y) dy, then we say that K is the
kernel of h.
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Theorem

(Mercer’s Theorem) Let K : [0,1] x [0,1] — R be a function
continuous in both variables that is the kernel of a positive
operator h on L?([0,1]). If the eigenfunctions of h are ¢1, o, . ..
and they correspond to the eigenvalues p1, i, . . ., respectively
then we have:

K(x,y) = 2{::PUQ%

where the series 32, 11;6;(x)b;(y) converges uniformly and
absolutely to K(x, y).
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From the equality for the kernel of a positive operator
K(uv V) = Z an¢n(u)¢n(v)
n=0

with a, > 0 we can constract a mapping ® into a feature space (in
this case the potentially infinite ¢») as

O(u) = > Vanbn(u).
n=0
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Example

For ¢ > 0 a polynomial kernel of degree d is the kernel defined

over R” by
K(u,v) = (u'v + ¢)“.

As an example, consider n = 2, d = 2 and the kernel
K(u,v) = (u'v + c)?. We have:

2
K(u,v) = (un1vi+ wava+c)
2.2 2.2 2

= uivi +usvy + ¢+ 2uiviupve + 2uivic 4 2upvac,
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Example (cont'd)

Feature space is R®

/
ug vi x{
2 2 2
u; V2 X2
V2uiup V2vivy V2x1x

K(u,v) = Vaeu Vacn | = ®(u)'®(v) and d(x) = Nore
\/ZU2 \/2_CV2 \/2_CX2

C C C
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In general, features associated to a polynomial kernel of degree d
are all monomials of degree d associated to the original features. It
is possible to show that polynomial kernels of degree d on R"” map

the input space to a space of dimension (”Jgd).
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LE><amp|es of Positive Definite Kernels
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For the kernel K(u, v) = (u’v + 1)? we have

1 1 1
1 1 1
o) || )| 5| ()| 2

For this set of points differences occur in the third,fourth, and fifth features.
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To any kernel K we can associate a normalized kernel K’ defined by

if K(u,u)=0o0r K(v,v) =0,

0
A —
K'(u,v) = K(u,v) otherwise.

vV K(u,u)r/K(v,v)

If K(u,u)#0, then K'(u,u) = 1.
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Let K be a positive type kernel. For any u,v € X we have

K(u,v)? < K(u, u)K(v, v).

Proof: Consider the matrix

< (5 Ke)

K is positive, so its eigenvalues A1, A2 must be non-negative. Its
characteristic equation is

‘K(u, b - K(u,v)

K(v.u)  K(v,v)— )\‘ =0
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Equivalently,
2N — (K (u,u) + K(v, v))A + det(K) = 0
Therefore, A\ A2 = det(K) > 0 and this implies

K(u,u)K(v,v) — K(u,v)? > 0.
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Theorem

Let K be a positive type kernel. Its normalized kernel is a positive
type kernel.

Proof: Let {x1,...,xm} C X and c € R™. We prove that
i CiciK! (xi, %) 2 0.

If K(xi,xi) =0, then K(x;,x;) = 0 and, thus, K’(x;, xj) = 0 for
1 <j < m. Thus, we may assume that K(x;, x;) > 0 for

1< i< m We have

B (XI7X)
Zc,cj (xi,x) = Z ’J\/K x,,x,)KJ(x Xj)
G))

;) |1

_ B(x
- Z“fﬂ d>(x, HHH &(
- HZ||¢X, ||HH 0

where @ ic the featiire mannino accaciated ta K 54 /59
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Example

Let K be the kernel

/

u'v
K(u,v) =eo?,

Ju> liv][®
where o > 0. Note that K(u,u) = e «> and K(v,v) = e 7,

hence its normalized kernel is

K(u,v)
\/K(u, u)\/K(v, v)

v

K'(u,v) =
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Example

For a positive constant o a Gaussian kernel or a radial basis
function is the function K : R" x R” — R defined by
_llu—v?

K(u,v) = e 22

We prove that K is of positive type by showing that
K(x,y) = (¢(x), ¢(y)), where ¢ : RK — ¢2(R). Note that for this
example ¢ ranges over an infinite-dimensional space.
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We have
lIx—y[2
Kixy) = e =

_ Xl 1% —=2(x.y)
= e 20
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Taking into account that

oo
2 > 1(x,yy
j! 0%
Jj=0
we can write
[e¢] H 2 2
Gy X2 yl? X _ x| _ Lyl
e o2 e 2052 e 2052 = ( 7y),Je 202 . e 2052
Z Jlo?
Jj=0
[Ix)1 llyli? J

where

m s

_ 1
e 2jo'2 _l 2
o(x) = ey 1( ) Xphe X
U-’\mj ni,...,Ngk

JjvariesinNand ng+ -+ ng =J.
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For a, b > 0, a sigmoid kernel is defined as
K(x,y) = tanh(ax'y + b)

With a, b > 0 the kernel is of positive type.
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