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Length-Increasing vs. Context-Sensitive Grammars

Theorem

The class L1 equals the class of length-increasing languages.
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Length-Increasing vs. Context-Sensitive Grammars

Proof

Clearly, every type-1 grammar is length-increasing. Therefore, as we
observed earlier, L1 is included in the class of length-increasing languages.
To prove the converse inclusion, consider a length-increasing grammar
G = (AN ,AT , S ,P). We can assume that every production of P that
contains a terminal symbol is of the form X → a.
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Length-Increasing vs. Context-Sensitive Grammars

Proof (cont’d)

Let π : α → β ∈ P be a production such that α = X0 · · ·Xn−1,
β = Y0 · · ·Ym−1. If n = 1, then π is already a context-sensitive
production. Therefore, suppose that 2 ≤ n ≤ m. By hypothesis,
X0, . . . ,Xn−1,Y0, . . . ,Ym−1 are nonterminals. Consider n new
nonterminals Zπ

0 , . . . ,Z
π
n−1 and the set of productions Pπ that consists of:

X0 · · ·Xn−1 → Zπ
0 X1 · · ·Xn−1

Zπ
0 X1 · · ·Xn−1 → Zπ

0 Z
π
1 X2 · · ·Xn−1

...
Zπ
0 Z

π
1 · · ·Zπ

n−2Xn−1 → Zπ
0 Z

π
1 · · ·Zπ

n−1Yn · · ·Ym−1

Zπ
0 Z

π
1 · · ·Zπ

n−1Yn · · ·Ym−1 → Y0Z
π
1 · · ·Zπ

n−1Yn · · ·Ym−1

Y0Z
π
1 · · ·Zπ

n−1Yn · · ·Ym−1 → Y0Y1 · · ·Zπ
n−1Yn · · ·Ym−1

...
Y0Y1 · · ·Zπ

n−1Yn · · ·Ym−1 → Y0Y1 · · ·Yn−1Yn · · ·Ym−1.

The set Pπ consists of context-sensitive productions.
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Length-Increasing vs. Context-Sensitive Grammars

Proof (cont’d)

Let P1 be the set of productions that consists of
⋃
{Pα→β | 2 ≤ |α| ≤ |β|}

and the productions of the form X → β or S → λ (whenever such
productions belong to P). Consider the context-sensitive grammar
G1 = (AN ∪ A,AT , S ,P1), where A consists of all new nonterminal
symbols introduced when the production sets Pπ were constructed.
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Length-Increasing vs. Context-Sensitive Grammars

Proof (cont’d)

Note that a derivation step in G that consists of the application of a
production π : α → β with 2 ≤ |α| ≤ |β| corresponds to the successive
application of the productions of Pπ in G1; conversely, the productions of
Pπ can be applied only in this order in a derivation in G1, and they
simulate a step in a derivation in G that makes use of the production π. A
step that uses a production X → β or S → λ is the same in both G and

G1. Thus, S
∗⇒
G

x if and only if S
∗⇒
G1

x , so L(G ) = L(G1). This shows

that the class of length-increasing languages is included in L1.
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Length-Increasing vs. Context-Sensitive Grammars

Example

Let
G ′ = ({S ,X ,Y ,Xa,Xb,Xc}, {a, b, c},S ,P ′)

be the length-increasing previously constructed grammar. The set of
productions P1 consists of:

The context-sensitive productions in P ′, namely:

π′
0 : S → XaXbXc , π′

1 : S → XaXXbXc ,
π′
7 : Xa → a, π′

8 : Xb → b
π′
9 : Xc → c
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Length-Increasing vs. Context-Sensitive Grammars

Example (cont’d)

Each remaining production in P ′ generates the following productions:

For π′
2 : XXb → XbX , include the productions:

π′
10 : XXb → Z0Xb

π′
11 : Z0Xb → Z0Z1

π′
12 : Z0Z1 → XbZ1

π′
13 : XbZ1 → XbX

For π′
3 : XXc → YXbXcXc , include the productions:

π′
14 : XXc → Z2Xc

π′
15 : Z2Xc → Z2Z3XcXc

π′
16 : Z2Z3XcXc → YZ3XcXc

π′
17 : YZ3XcXc → YXbXcXc
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Length-Increasing vs. Context-Sensitive Grammars

Example (cont’d)

For π′
4 : XbY → YXb, include the productions:

π′
18 : XbY → Z4Y

π′
19 : Z4Y → Z4Z5

π′
20 : Z4Z5 → YZ5

π′
21 : YZ5 → YXb

For π′
5 : XaY → XaXaX , include the productions:

π′
22 : XaY → Z6Y

π′
23 : Z6Y → Z6Z7X

π′
24 : Z6Z7X → XaZ7X

π′
25 : XaZ7X → XaXaX
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Length-Increasing vs. Context-Sensitive Grammars

Finally, for π′
6 : XaY → XaXa, include the productions:

π′
26 : XaY → Z8Y

π′
27 : Z8Y → Z8Z9

π′
28 : Z8Z9 → XaZ9

π′
29 : XaZ9 → XaXa

This gives the context-sensitive grammar:

G1 = ({S ,X ,Y ,Xa,Xb,Xc} ∪ {Zi | 0 ≤ i ≤ 10}, {a, b, c},S ,
{π′

0, π
′
1, π

′
7, π

′
8, π

′
9} ∪ {π′

j | 10 ≤ j ≤ 29}.

that generates the language L = {anbncn | n ∈ N}. This implies that L is
a context-sensitive language.
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Length-Increasing vs. Context-Sensitive Grammars

Theorem

The classes L0,L1,L2 are closed with respect to the reversal operation; in
other words, if L ∈ Li , then LR ∈ Li for i ∈ {0, 1, 2}.
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Length-Increasing vs. Context-Sensitive Grammars

Proof

Let G = (AN ,AT ,S ,P) be a grammar, and let
PR = {αR → βR | α → β ∈ P}.
Define GR = (AN ,AT , S ,P

R). If G is of type i , then so is GR for
i ∈ {0, 1, 2}.
Further, we have γ

∗⇒
G

γ′ if and only if γR
∗⇒
GR

γ′R , as can be shown by

induction on the length of the two derivations. Thus, S
∗⇒
G

w if and only

if S = SR
∗⇒
GR

wR . This shows that L(GR) = L(G )R , so L(G )R has the

same type as the language L(G ).
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Closure Properties of Classes of Languages

Theorem

Each of the classes Li of Chomsky’s hierarchy contains the class of finite
languages, for i ∈ {0, 1, 2}.

Proof.

Let L = {u0, . . . , un−1} be a finite, nonempty language over an alphabet
A. The grammar G = ({S},A,S , {S → u0, . . . ,S → un−1}) is of type 3
and, therefore, of type 2, 1, and 0. If L = ∅, then L is generated by the
grammar G = ({S},A,S , {S → S}) that is, again, of type 3.
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Closure Properties of Classes of Languages

Theorem

If L is a language of type i , where i ∈ {0, 1}, then so is the language K,
where K = L− {λ}.

Proof.

If L is a type-1 language, then there exists a type-1 grammar
G = (AN ,AT , S ,P) such that L(G ) = L. If λ ∈ L, the production S → λ
belongs to P, and S does not occur in the right member of any
production. The language K is generated by the type-1 grammar
G ′ = (AN ,AT , S ,P − {S → λ}). If λ ̸∈ L, we have K = L.
If L is of type 0 and λ ∈ L, let P ′ be the set of productions obtained from
P by replacing all erasure productions α → λ with Yα → Y and αY → Y
for every Y ∈ AN ∪ AT . The grammar (AN ,AT ,S ,P

′) generates the
language K , so K is a type-0 language.
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Closure Properties of Classes of Languages

Theorem

Li is closed with respect to union, for i ∈ {0, 1, 2, 3}.

Proof.

Suppose that L, L′ are two languages of type i that are generated by the
grammars G = (AN ,AT ,S ,P) and G ′ = (A′

N ,AT ,S
′,P ′), respectively,

where AN ∩ A′
N = ∅.

Consider the grammar
G∪ = (AN ∪ A′

N ∪ {S0},AT ,S0,P ∪ P ′ ∪ {S0 → S , S0 → S ′}), where S0 is
a new nonterminal symbol such that S0 ̸∈ AN ∪ A′

N . Note that the
grammar G∪ is of the same type i as the grammars G and G ′. To
complete the proof, we need to show that L ∪ L′ = L(G∪).
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Closure Properties of Classes of Languages

Proof (cont’d)

Consider the grammar
G∪ = (AN ∪ A′

N ∪ {S0},AT ,S ,P ∪ P ′ ∪ {S0 → S , S0 → S ′}), where S0 is
a new nonterminal symbol such that S0 ̸∈ AN ∪ A′

N . Note that the
grammar G∪ is of the same type i as the grammars G and G ′. To
complete the proof, we need to show that L ∪ L′ = L(G∪).

Let x ∈ L ∪ L′. If x ∈ L, then S
∗⇒
G

x , so S0 ⇒
G∪

S
∗⇒
G∪

x which shows that

x ∈ L(G∪). The case when x ∈ L′ is entirely similar and is left to the
reader. Thus, L ∪ L′ ⊆ L(G∪).
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Closure Properties of Classes of Languages

Proof (cont’d)

Conversely, suppose that x ∈ L(G∪). We have S0
∗⇒
G∪

x . If the first

production applied in this derivation is S0 → S , then the derivation can be

written as S0 ⇒
G∪

S
∗⇒
G∪

x . The last part of this derivation S
∗⇒
G∪

x uses

only productions from P since AN ∩ A′
N = ∅ implies P ∩ P ′ = ∅.

Therefore, we have S
∗⇒
G

x , so x ∈ L(G ). Similarly, if the first production

applied is S0 → S ′, then x ∈ L(G ′). Therefore, L(G∪) ⊆ L(G ) ∪ L(G ′),
hence L(G∪) = L(G ) ∪ L(G ′).
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Closure Properties of Classes of Languages

In Slides 20–30 we show that the classes Li are closed with respect to the
∗ operation for 0 ⩽ i ⩽ 3.
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Closure Properties of Classes of Languages

Lemma

The classes L0 and L1 are closed with respect to the ∗ operation.

Proof.

We must prove that if L ∈ Li , then L∗ ∈ Li for i ∈ {0, 1}. Let us assume
initially that λ ̸∈ L.
Let G = (AN ,AT ,S ,P) be a grammar of type 0 or type 1 that generates
the language L. We can assume that terminal symbols do not occur in the
left member of any production of P.
Let S0, S1 be new symbols such that S0, S1 ̸∈ AN , and let
G∗ = (AN ∪ {S0,S1},AT ,S0,P∗) be the grammar whose set of
productions is

P∗ = P ∪ {S0 → λ,S0 → S ,S0 → S1S} ∪
{S1a → S1Sa | a ∈ AT} ∪ {S1a → Sa | a ∈ AT}.
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Closure Properties of Classes of Languages

Proof (cont’d)

If G is of type 1, then so is G∗.
We have Ln ⊆ L(G∗) for n ∈ N.
Let x ∈ Ln. If n = 0 we have x = λ, and x ∈ L(G∗) because S0 → λ is in
P∗. Suppose now that x = x0x1 . . . xn−1, where x0, . . . , xn−1 ∈ L for n ≥ 1.

We have S
∗⇒
G

xj for 0 ≤ j ≤ n − 1, and the same derivations are valid in

G∗ because P ⊂ P∗. Thus, we can put together the following derivation in
the grammar G∗:

S0 ⇒
G∗

S1S
∗⇒
G∗

S1xn−1

⇒
G∗

S1Sxn−1

∗⇒
G∗

S1xn−2xn−1

...

⇒
G∗

S1Sx2 · · · xn−1

∗⇒
G∗

S1x1 · · · xn−1

⇒
G∗

Sx1 · · · xn−1

∗⇒
G∗

x0x1 · · · xn−1 = x .
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Closure Properties of Classes of Languages

Proof (cont’d)

This proves that x ∈ L(G∗). Thus, L
∗ =

⋃
n∈N Ln ⊆ L(G∗). Observe that

the “regeneration” of the symbol S is made possible in the above
derivation by the fact that the words xj are not null (which puts S1
adjacent with terminal symbols, thereby allowing the application of the
productions S1a → S1Sa).
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Closure Properties of Classes of Languages

Proof (cont’d)

Conversely, let x ∈ L(G∗). There exists a derivation S0
∗⇒
G∗

x . If we write

this derivation explicitly,

S0 ⇒
G∗

α1 ⇒
G∗

· · · ⇒
G∗

αn−1 = x ,

we have to consider three cases:
Case 1: If the first production applied in this derivation is S0 → λ, then
x = λ, so x ∈ L∗.

Case 2: If the first production applied is S0 → S , then we have S
∗⇒
G∗

x ,

and the same derivation is valid in G , which shows that x ∈ L(G ) = L.

23 / 55



Closure Properties of Classes of Languages

Proof (cont’d)

Case 3: If the first production applied is S0 → S1S , then each word αℓ in
the above derivation falls into one of the following two cases:

Case 3a: αℓ is of the form S1β1 · · ·βk , where k ≥ 1, S
∗⇒
G

βq for

1 ≤ q ≤ k, and the first symbol of each of the words β2, . . . , βk is a
terminal.
Case 3b: αℓ is of the form β0β1 · · ·βk , where k ≥ 1, the first symbol of

each βp is a terminal for p ≥ 1, and S
∗⇒
G

βp for 0 ≤ p ≤ k .
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Closure Properties of Classes of Languages

Proof (cont’d)

This argument is by induction on ℓ ≥ 1. It is clear that α1 falls in Case 3a.
Suppose that αh satisfies the conditions of either Case 3a or Case 3b.
Since the productions of P do not have terminal symbols in their left
members, their application may involve only one word βi . This guarantees
that if αh+1 was obtained through the application of a production in P,
then αh+1 satisfies one of the conditions of the previous cases. The same
conclusion can be reached if αh+1 was obtained by applying a production
of the form S1a −→ S1Sa or S1a −→ Sa.

25 / 55



Closure Properties of Classes of Languages

Proof (cont’d)

The existence of the derivation S0
∗⇒
G∗

x ∈ A∗
T implies that x is a word of

the form 3b. Therefore x can be written as a product, x = β0 · · ·βk ,
where k ≥ 1, and S

∗⇒
G

βp for 0 ≤ p ≤ k. Since every word

β0, β1, . . . , βk ∈ A∗
T it follows that β0, β1, . . . , βk ∈ L(G ). Thus,

x ∈ (L(G ))k+1 ⊆ L(G )∗ which implies L(G∗) ⊆ L(G )∗.
If λ ∈ L, then consider the language K = L− {λ}. The language K is of
the same type as L and, by the above argument, so is K ∗. Since K ∗ = L∗

we obtain the desired closure property.
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Closure Properties of Classes of Languages

Lemma

The class L2 is closed with respect to the ∗ operation.

Proof.

Let L be a context-free language generated by the type-2 grammar
G = (AN ,AT , S ,P). Suppose that S0 is a new nonterminal symbol and
consider the type-2 grammar
G∗ = (AN ∪ {S0},AT ,S0,P ∪ {S0 → λ,S0 → S0S}). It is easy to verify
that L(G∗) = L∗, so L∗ ∈ L2.
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Closure Properties of Classes of Languages

Lemma

The class L3 is closed with respect to the ∗ operation.

Proof.

Let L ∈ L3 such that L = L(G ), where G = (AN ,AT ,S ,P) is a type-3
grammar. Define the set of productions P1 = {X → uS | X → u ∈ P}.
Consider the type-3 grammar

G∗ = (AN ∪ {S0},AT ,S0,P ∪ P1 ∪ {S0 → λ,S0 → S}),

where S0 be a new nonterminal symbol, S0 ̸∈ AN . It is easy to verify that
L(G∗) = L∗, so L∗ ∈ L3.
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Closure Properties of Classes of Languages

Theorem

The classes Li are closed with respect to the ∗ operation for
i ∈ {0, 1, 2, 3}.

Proof.

This follows from the previous lemmas.
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Closure Properties of Classes of Languages

Corollary

The classes Li are closed with respect to the + operation for
i ∈ {0, 1, 2, 3}.

Proof.

Let Li be one of the classes of Chomsky’s hierarchy, and let L ∈ Li . Note
that

L+ =

{
L∗ if λ ∈ L
L∗ − {λ} if λ ̸∈ L.

In all cases L+ ∈ Li .
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Closure Properties of Classes of Languages

In the next few slides (Slides 32-37) we prepare the necessary results for
proving that the classes Li are closed with respect to the product
operation for 0 ⩽ i ⩽ 3.
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Closure Properties of Classes of Languages

Lemma

The classes L0 and L2 are closed with respect to the product operation.

Proof.

Let L, L′ be two languages of type i , and let G = (AN ,AT , S ,P),
G ′ = (A′

N ,AT , S
′,P ′) be two grammars of type i such that L(G ) = L and

L(G ′) = L′, where i ∈ {0, 2}. Without any loss of generality, we can
assume that AN ∩ A′

N = ∅.
If S0 is a new symbol, S0 ̸∈ AN ∪ A′

N , then the grammar
Gp = (AN ∪A′

N ∪ {S0},AT , S0,P ∪P ′ ∪ {S0 → SS ′}) is also of type i . We
claim that L(Gp) = LL′.
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Closure Properties of Classes of Languages

Proof (cont’d)

Let x ∈ LL′. We can write x = uv for some u ∈ L and v ∈ L′. By

hypothesis, S
∗⇒
G

u and S ′ ∗⇒
G ′ v , so

S0 ⇒
Gp

SS ′ ∗⇒
Gp

uS ′ ∗⇒
Gp

uv = x .

Thus, x ∈ L(Gp).
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Closure Properties of Classes of Languages

Conversely, suppose that x ∈ Lp. There is a derivation

S0 ⇒
Gp

SS ′ ∗⇒
Gp

x .

Since AN and A′
N are disjoint sets, the sets of productions P and P ′ are

disjoint. Therefore, the productions of Gp used to transform S into a word
over AT belong to P, while the ones used to rewrite S ′ belong to P ′. Thus,

we can write x = uv , where S
∗⇒
G

u and S ′ ∗⇒
G ′ v , which implies x ∈ LL′.
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Closure Properties of Classes of Languages

Lemma

The class L1 is closed with respect to the product operation.

Proof.

Let L, L′ be two languages in L1. If neither L nor L′ contains the null
word, we may assume that both languages are generated by type-1
grammars that have no erasure rules. It is easy to see that, in this case,
the construction of the grammar Gp given in the proof of previous Lemma
yields a type-1 grammar, so LL′ belongs to L1.
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Closure Properties of Classes of Languages

Proof cont’d

Suppose now that λ ∈ L or λ ∈ L′. By The languages L1 = L− {λ} and
L′1 = L′ − {λ} also belong to L1 and, by the previous argument
L1L

′
1 ∈ L1. We need to consider the cases summarized below.

Case λ ∈ L λ ∈ L′ L L′ LL′

1 yes no L1 ∪ {λ} L′1 L1L
′
1 ∪ L′1

2 no yes L1 L′1 ∪ {λ} L1L
′
1 ∪ L1

3 yes yes L1 ∪ {λ} L′1 ∪ {λ} L1L
′
1 ∪ L1 ∪ L′1 ∪ {λ}

In each case, we have LL′ ∈ L1.
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Closure Properties of Classes of Languages

Lemma

The class L3 is closed with respect to the product operation.

Proof.

Let L, L′ be two languages in L3 and assume that L, L′ are generated by
the grammars G = (AN ,AT , S ,P) and G ′ = (A′

N ,A
′
T , S

′,P ′), respectively.
Without loss of generality, we may assume that AN ∩ A′

N = ∅; this also
implies P ∩ P ′ = ∅. Consider the set of productions
P1 = {X → uY | X → uY ∈ P} ∪ {X → uS ′ | X → u ∈ P}, which is
obtained from P by replacing every production X → u by a production
X → uS ′.
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Closure Properties of Classes of Languages

Proof cont’d

The type-3 grammar G1 = (AN ∪ A′
N ,AT ∪ A′

T ,S ,P1 ∪ P ′) generates the

language LL′. Indeed, if x ∈ L(G ) and y ∈ L(G ′), then S
∗⇒
G

x and

S ′ ∗⇒
G ′ y . Since P was replaced by P1 in G1, we have S

∗⇒
G1

xS ′. Note that

we also have S ′ ∗⇒
G1

y . Combining the last two derivations we can write

S
∗⇒
G1

xy , so LL′ ⊆ L(G1).
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Closure Properties of Classes of Languages

Proof cont’d

Conversely, let z ∈ L(G1). We have S
∗⇒
G1

z . This derivation begins with a

symbol from AN and must eventually use a production from P ′ since,
otherwise, nonterminal symbols cannot be erased. Therefore, the last
derivation can be written as

S
∗⇒
G1

uS ′ ∗⇒
G1

uv = z ,

where u ∈ A∗
T and v ∈ A′

T
∗. This implies the existence of the derivations

S
∗⇒
G1

uS ′ and S ′ ∗⇒
G1

v . Note that the first derivation corresponds to

S
∗⇒
G

u; the second corresponds to S ′ ∗⇒
G ′ v . Thus, u ∈ L(G ), v ∈ L(G ′),

and this implies z = uv ∈ LL′. Therefore, L(G1) ⊆ LL′.
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Closure Properties of Classes of Languages

Theorem

Each of the classes Li is closed with respect to the product operation.

Proof.

Follows from previous lemmas.
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Properties of Type-2 Grammars

Theorem

Let G = (AN ,AT ,S ,P) be a context-free grammar. If

X0 · · ·Xk−1

n⇒
G

α,

where X0, . . . ,Xk−1 ∈ AN ∪ AT and α ∈ (AN ∪ AT )
∗, then we can write

α = α0 · · ·αk−1, where Xi

ni⇒
G

αi for 0 ≤ i ≤ k − 1 and
∑

0≤i≤k−1 ni = n.

Proof.

We use an argument by induction on n, n ≥ 0. For n = 0, we have
αi = Xi for 0 ≤ i ≤ k − 1, and the statement is obviously true; in this
case, n0 = · · · = nk−1 = 0.
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Properties of Type-2 Grammars

Proof cont’d

Assume that the statement is true for derivations of length n, and let

X0 · · ·Xk−1

n+1⇒
G

α.

If X0 · · ·Xk−1

n⇒
G

γ ⇒
G

α, by the inductive hypothesis, we have

γ = γ0 · · · γk−1, where Xi

ni⇒
G

γi for 0 ≤ i ≤ k − 1 and∑
{ni | 0 ≤ i ≤ k − 1} = n.

42 / 55



Properties of Type-2 Grammars

Proof cont’d

Let Y → β be the production applied in the last step γ ⇒
G

α. Y occurs in

one of the words γ0, . . . , γk−1, say, γj . In this case, we can write
γj = γ′jY γ′′j and α can be written as α = α0 · · ·αk−1, where αi = γi for

0 ≤ i ≤ j − 1, and j + 1 ≤ i ≤ k − 1, Xj

nj⇒
G

γj ⇒
G

γ′jβγ
′′
j = αj , which

proves the statement.
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Properties of Type-2 Grammars

Definition

A derivation γ0 ⇒
G

γ1 ⇒
G

· · · ⇒
G

γn in a context-free grammar

G = (AN ,AT , S ,P) is complete if γn ∈ A∗
T .

Note that if X0 · · ·Xk−1 ⇒
G

· · · ⇒
G

α is a complete derivation in G , then

every derivation that results from “splitting” this derivation is also
complete.
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Properties of Type-2 Grammars

Example

Let G = (AN ,AT ,S0,P) be a context-free grammar, where
AN = {S0, S1,S2}, AT = {a, b}, and P contains the following productions:

S0 → aS2,S0 → bS1,S1 → a, S1 → aS0,
S1 → bS1S1, S2 → b, S2 → bS0,S2 → aS2S2.
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Properties of Type-2 Grammars

Example cont’d

We prove that L(G ) consists of all nonnull words over {a, b} that contain
an equal number of a’s and b’s. Recall that nX (α) is the number of
occurrences of symbol X in the word α.
We will show by strong induction on p, p ≥ 1, that

1 if na(u) = nb(u) = p, then S0
∗⇒
G

u;

2 if na(u) = nb(u) + 1 = p, then S1
∗⇒
G

u;

3 if nb(u) = na(u) + 1 = p, then S2
∗⇒
G

u.
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Properties of Type-2 Grammars

Example cont’d

In the first case, for p = 1, we have either u = ab or u = ba; hence, we
have either S0 ⇒

G
aS2 ⇒

G
ab or S0 ⇒

G
bS1 ⇒

G
ba.

For the second case, u = a, and we have S1 ⇒
G

a; the third case, for

u = b, is similar.

47 / 55



Properties of Type-2 Grammars

Example cont’d

Suppose that the statement holds for p ≤ n. Again, we consider three
cases for the word u:

1 na(u) = nb(u) = n + 1;

2 if na(u) = nb(u) + 1 = n + 1;

3 if nb(u) = na(u) + 1 = n + 1.

In the first case, we may have four situations:

11. u = abt, where t ∈ {a, b}∗ and na(t) = nb(t) = n,

12. u = bat, where t ∈ {a, b}∗ and na(t) = nb(t) = n,

13. u = aav with nb(v) = n + 1 and na(v) = n − 1, or

14. u = bbw with na(w) = n + 1 and nb(w) = n − 1.
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Properties of Type-2 Grammars

Example cont’d

By the inductive hypothesis, we have S0
∗⇒
G

t, and therefore, we obtain

one of the following derivations:

S0 ⇒
G

aS2 ⇒
G

abS0
∗⇒
G

abt = u,

S0 ⇒
G

bS1 ⇒
G

baS0
∗⇒
G

bat = u,

for the cases (11) and (12), respectively.
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Properties of Type-2 Grammars

Example cont’d

On the other hand, if u = aav , we can write v = v ′v ′′, where v ′ is the
shortest prefix of v , where the number of bs exceeds the number of as.
Clearly, we must have nb(v

′) = na(v
′) + 1 = n′, and therefore,

nb(v
′′) = na(v

′′) + 1 = n′′, where n′ + n′′ = n + 1. By the inductive

hypothesis, we have S2
∗⇒
G

v ′, S2
∗⇒
G

v ′′; hence,

S0 ⇒
G

aS2 ⇒
G

aaS2S2
∗⇒
G

aav ′v ′′ = u,

which concludes the argument for (13). We leave to the reader the similar
arguments for the remaining cases. This allows us to conclude that every
word that contains an equal number of a’s and b’s belongs to L(G ).
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Properties of Type-2 Grammars

Example cont’d

To prove the reverse inclusion, we justify the following implications:

1 If S0
n⇒
G

α, then na(α) + nS1(α) = nb(α) + nS2(α).

2 If S1
n⇒
G

α, then na(α) + nS1(α) = nb(α) + nS2(α) + 1.

3 If S2
n⇒
G

α, then na(α) + nS1(α) + 1 = nb(α) + nS2(α).

The proof is by strong induction on n, where n ≥ 1. For n = 1, the
verification is immediate. For instance, if S1 ⇒

G
α, we have α = a,

α = aS0, or α = bS1S1; in every case, the equality is satisfied.
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Properties of Type-2 Grammars

Example cont’d

Suppose that the implications hold for derivations no longer than n.

If S0
n+1⇒
G

α, the first production applied in the derivation is S0 → aS2 or

S0 → bS1. In the first case, we have α = aβ, where S2
n⇒
G

β, and by the

inductive hypothesis, we have na(β) + nS1(β) + 1 = nb(β) + nS2(β), so

na(α) + nS1(α) = na(β) + 1 + nS1(β)

= nb(β) + nS2(β)

= nb(α) + nS2(α).

The second case has a similar treatment.
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Properties of Type-2 Grammars

Example cont’d

If S1
n+1⇒
G

α, we have three possibilities.

(a) If the first production of the derivation is S1 → a, then α = a and the
equality corresponding to this case is obviously satisfied.
(b) If the first production is S1 → aS0, we can write α = aβ, where

S0
n⇒
G

β; hence, na(β) + nS1(β) = nb(β) + nS2(β), so

na(α) + nS1(α) = na(β) + 1 + nS1(β)

= nb(β) + nS2(β) + 1

= nb(α) + nS2(α) + 1.
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Properties of Type-2 Grammars

Example cont’d

(c) If the derivation begins with S1 → bS1S1 we can write α = bβγ, where

S1
p⇒
G

β and S1
q⇒
G

γ, where p, q ≤ n. By the inductive hypothesis,

na(β) + nS1(β) = nb(β) + nS2(β) + 1, and
na(γ) + nS1(γ) = nb(γ) + nS2(γ) + 1. Consequently,

na(α) + nS1(α) = na(β) + na(γ) + nS1(β) + nS1(γ)

= nb(β) + nS2(β) + 1 + nb(γ) + nS2(γ) + 1

= nb(α) + nS2(α) + 1.

The case of the derivation S2
∗⇒
G

α can be treated in a similar manner.
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Example cont’d

Let u ∈ L(G ). From the existence of the derivation S0
∗⇒
G

u we obtain

na(u) = nb(u), which shows that L(G ) ⊆ {x ∈ {a, b}∗ | na(x) = nb(x)}.
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