Context-Free languages (part IV)

Prof. Dan A. Simovici

UMB
1 Type 3 Grammars and Finite Automata

2 The Case of One-Symbol Alphabet

3 Other Closure Properties of \mathcal{L}_2
The main result of this section is a proof that the class \mathcal{R} of regular languages coincides with \mathcal{L}_3.

Theorem

Let G be a type-3 grammar, and let L be the language generated by G. There is a transition system \mathcal{T} such that $L = L(\mathcal{T})$.
Proof

Suppose that $G = (A_N, A_T, S, P)$ is a type-3 grammar. Define the transition system $\mathcal{T} = (A_T, A_N \cup \{Z\}, \theta, S, \{Z\})$, where Z is a new symbol, $Z \not\in A_N \cup A_T$, and

$$\theta = \{(X, u, Y) \mid X \rightarrow uY \in P\} \cup \{(X, u, Z) \mid X \rightarrow u \in P\}.$$
Let \(w \in L(G) \). There exists a derivation

\[
S \xrightarrow{G} u_0X_{i_0} \xrightarrow{G} u_0u_1X_{i_1} \cdots \xrightarrow{G} u_0u_1 \cdots u_{n-1}X_{i_{n-1}} \xrightarrow{G} u_0u_1 \cdots u_{n-1}u_n,
\]

where \(w = u_0 \cdots u_{n-1}u_n \). The productions used in this derivation are \(S \rightarrow u_0X_{i_0}, X_{i_{p-1}} \rightarrow u_pX_{i_p} \) for \(1 \leq p \leq n-1 \), and \(X_{i_{n-1}} \rightarrow u_n \). Therefore, the triples

\[
(S, u_0, X_{i_0}), (X_{i_0}, u_1, X_{i_1}), \ldots, (X_{i_{n-2}}, u_{n-1}, X_{i_{n-1}}), (X_{i_{n-1}}, u_n, Z)
\]

must all be in \(\theta \), which implies that \((S, u_0 \cdots u_n, Z) \in \theta^* \). Since \(Z \) is a final state of \(T \), we have \(u \in L(T) \), so \(L(G) \subseteq L(T) \).
Conversely, if \(u \in L(\mathcal{T}) \), then \((S, u, Z) \in \theta^*\). Taking into account the definition of \(\theta \), there are \(n \) intermediate states in \(\mathcal{T} \), \(X_{i_0}, \ldots, X_{i_{n-1}} \) such that \(u = u_0 \cdots u_n \) and the triples

\[
(S, u_0, X_{i_0}), (X_{i_0}, u_1, X_{i_1}), \ldots, (X_{i_{n-2}}, u_{n-1}, X_{i_{n-1}}), (X_{i_{n-1}}, u_n, Z)
\]

exist in \(\theta \). This implies the existence in \(P \) of the productions

\[
S \rightarrow u_0 X_{i_0}, X_{i_0} \rightarrow u_1 X_{i_1}, \ldots, X_{i_{n-2}} \rightarrow u_{n-1} X_{i_{n-1}}, X_{i_{n-1}} \rightarrow u_n
\]

Using these productions we obtain the derivation

\[
S \xrightarrow{G} u_0 X_{i_0} \xrightarrow{G} u_0 u_1 X_{i_1} \cdots \xrightarrow{G} u_0 u_1 \cdots u_{n-1} X_{i_{n-1}} \xrightarrow{G} u_0 u_1 \cdots u_{n-1} u_n,
\]

which implies that \(x \in L(\mathcal{T}) \). This proves the inclusion \(L(\mathcal{T}) \subseteq L(G) \).
Theorem

For every regular language \(L \) there is a type-3 grammar \(G \) such that \(L(G) = L \).

Proof.

Let \(\mathcal{M} = (A, Q, \delta, q_0, F) \) be a dfa such that \(L = L(\mathcal{M}) \). The type-3 grammar \(G = (Q, A, q_0, P) \) whose productions are

\[
q \rightarrow aq' \quad \text{for each } q, q', a \text{ with } q' = \delta(q, a) \\
q \rightarrow \lambda \quad \text{for each } q \in F.
\]

generates \(L(\mathcal{M}) \).
Corollary

The class \mathcal{L}_3 coincides with the class \mathcal{R} of regular languages.
Recall the Pumping Lemma for context-free languages:

Theorem

Let L be a context-free language. There exists a number $n_L \in \mathbb{N}$ such that if $w \in L$ and $|w| \geq n_L$, then we can write

$$w = xyzut$$

such that $|y| \geq 1$ or $|u| \geq 1$, $|yzu| \leq n_L$ and $xy^nzu^n t \in L$ for all $n \in \mathbb{N}$.

This is a necessary condition for the “context-freeness” of a language.
Let $A = \{a\}$ be an one-symbol alphabet.

- Word concatenation in A^* is commutative.
- The formulation of the Pumping Lemma in this special case:
 Let L be a context-free language. There exists a number $n_L \in \mathbb{N}$ such that if $w \in L$ and $|w| \geq n_L$, then we can write

 \[w = rs \]

 such that $1 \leq |s| \leq n_G$ and $rs^n \in L(G)$ for all $n \in \mathbb{N}$.

Note that $r \in L$ (since we can take $n = 0$).
If \(|r| > n_L\) the same pumping lemma can be applied to \(r\), and \(r = r_1 w_1\) with \(|w_1| \leq n_L\) such \(r_1 w_1^{n_1} \in L\) for \(n_1 \in \mathbb{N}\). Again \(r_1 \in L\) (for \(n = 0\), etc. This leads to a stronger form of the Pumping Lemma for languages over one-symbol alphabets.

If \(L\) is a context-free language on an one-symbol alphabet, there exists a number \(n_L\) such that every word \(w \in L\) with \(|w| \geq n_L\) can be written as

\[
w = rs_1 s_2 \cdots s_k,
\]

where \(|r|, |s_1|, \ldots, |s_k| \leq n_L\) and

\[
rs_1^{n_1} \cdots s_k^{n_k} \in L
\]

for \(n_1, \ldots, n_k \in \mathbb{N}\).
Note that the set $K_n(L)$ of words in L shorter than n_L is finite, so it is a regular language. Since $L = (L \cap K_n(L)) \cup (L - K_n(L))$, and the set $L - K_n(L)$ has the form $\{w_1, w_2, \ldots, w_n\}^*$, where w_1, \ldots, w_n are the words that can be “pumped”, it follows that L is a regular language.
Theorem

Let $s : A^* \rightarrow B^*$ be a substitution. If $s(a)$ is a context-free language for every $a \in A$ and $L \subseteq A^*$ is a context-free language, then $s(L)$ is a context-free language.
Other Closure Properties of \mathcal{L}_2

Proof

Suppose that $L = L(G)$, where $G = (A_N, A, S, P)$ is a context-free grammar and let $s(a)$ is generated by the context-free grammar $G_a = (A_N^a, B, S_a, P_a)$ for $a \in A$.

We may assume that the sets of nonterminal symbols A_N^a are pairwise disjoint.

Let P' be the set of productions obtained from P as follows. In each production of P replace every letter $a \in A$ by the nonterminal S_a. We claim that the language $s(L)$ is generated by the grammar $G' = (A_N \cup \bigcup_{a \in A} A_N^a, B, S, P' \cup \bigcup_{a \in A} P_a)$.
(Proof cont’d)

Let \(y \in s(L) \). There exists a word \(x = a_{i_0} \ldots a_{i_{n-1}} \in L \) such that \(y \in s(x) \). This means that \(y = y_0 \ldots y_{n-1} \), where \(y_k \in s(a_{i_k}) = L(G_{a_{i_k}}) \) for \(0 \leq k \leq n - 1 \). Thus, we have the derivations \(S_{a_{i_k}} \xrightarrow{G_{a_{i_k}}^*} y_k \) for \(0 \leq k \leq n - 1 \), and the same derivations can be done in \(G' \). Consequently, we obtain the derivation

\[
S \xrightarrow{G'} S_{a_{i_0}} \ldots S_{a_{i_{n-1}}} \xrightarrow{G'} y_0 \ldots y_{n-1} = y,
\]

which implies \(y \in L(G') \), so \(s(L) \subseteq L(G') \).
Conversely, if \(y \in L(G') \), then any derivation \(S \xrightarrow{G'}^* y \) is of the previous form.

The word \(y \) can be written as \(y = y_0 \ldots y_{n-1} \), where \(S_{a_{i_k}} \xrightarrow{G'}^* y_k \) for \(0 \leq k \leq n - 1 \), so \(y_k \in L(G_{a_{i_k}}) = s(a_{i_k}) \) for \(0 \leq k \leq n - 1 \). This implies \(y = y_0 \ldots y_{n-1} \in s(a_{i_0} \ldots s(a_{i_{n-1}}) = s(x) \in s(L) \), so \(L(G') \subseteq s(L) \).

Since \(s(L) = L(G') \), it follows that \(s(L) \) is a context-free language.
Corollary

If \(h : A^* \rightarrow B^* \) is a morphism and \(L \subseteq A^* \) is a context-free language, then \(h(L) \) is a context-free language.
The class \mathcal{L}_2 is closed with respect to inverse morphic images. In other words, if $h : B^* \rightarrow A^*$ is a morphism, and $L \subseteq A^*$ is a context-free language, then $h^{-1}(L)$ is a context-free language.
Proof

Suppose that \(B = \{ b_0, \ldots, b_{m-1} \} \) and that \(h(b_i) = x_i \) for \(0 \leq i \leq m - 1 \). Let \(B' = \{ b'_0, \ldots, b'_{m-1} \} \), and let \(s \) be the substitution given by \(s(a) = B'^* a B'^* \) for \(a \in A \).

\[
\begin{align*}
B &= \{ b_0, \ldots, b_{m-1} \} \\
h(b_i) &= x_i \\
B^* &\xrightarrow{B'^*} A^* \\
&\quad \downarrow \downarrow s(a) = B'^* a B'^* \\
B' &= \{ b'_0, \ldots, b'_{m-1} \}
\end{align*}
\]
Consider the finite language \(H = \{ b_i x_i \mid 0 \leq i \leq m \} \) in \((B' \cup A)^*\) and the mapping \(g : \mathcal{P}(A^*) \longrightarrow \mathcal{P}((A \cup B')^*) \) given by \(g(L) = s(L) \cap H^* \).

Define \(h_1 : (A \cup B')^* \longrightarrow (\{c\} \cup B)^* \) and \(h_2 : (\{c\} \cup B)^* \longrightarrow B^* \) by

\[
\begin{align*}
h_1(a) &= c \text{ for } a \in A, \quad h_1(b') = b \text{ for all } b' \in B', \\
h_2(c) &= \lambda, \quad h_2(b) = b \text{ for } b \in B.
\end{align*}
\]
We claim that for every language $L \in \mathcal{P}(A)$ such that $\lambda \notin L$, $h^{-1}(L) = h_2(h_1(g(L)))$ and hence, $h^{-1}(L)$ is context-free. This follows from the following equivalent statements:

1. $u = b_{i_0} \cdots b_{i_{k-1}} \in h^{-1}(L)$;
2. $h(u) = x_{i_0} \cdots x_{i_{k-1}} \in L$;
3. $b'_{i_0}x_{i_0} \cdots b'_{i_{k-1}}x_{i_{k-1}} \in g(L)$;
4. $h_1(b'_{i_0}x_{i_0} \cdots b'_{i_{k-1}}x_{i_{k-1}}) = b_{i_0}c \cdots c \cdots b_{i_{k-1}}c \cdots c \in h_1(g(L))$;
5. $h_2(b_{i_0}c \cdots c \cdots b_{i_{k-1}}c \cdots c) = b_{i_0} \cdots b_{i_{k-1}} = u \in h_2(h_1(g(L)))$.
If $\lambda \in L$, the language $L - \{\lambda\}$ is context-free, so $h^{-1}(L - \{\lambda\})$ is also context-free. Note that $h^{-1}(L) = h^{-1}(L - \{\lambda\}) \cup h^{-1}(\{\lambda\})$ and that $h^{-1}(\{\lambda\}) = \{ a \in A \mid h(a) = \lambda \}^*$. Since $h^{-1}(\{\lambda\})$ is regular it follows that $h^{-1}(L)$ is context-free.
Reminder

We defined the shuffle of languages

Definition

Let A be an alphabet and let G, K be two languages over A. The shuffle of G and K is the language

$$\text{shuffle}(G, K) = \{ x_0 y_0 x_1 y_1 \cdots x_{n-1} y_{n-1} \mid x_0 x_1 \cdots x_{n-1} \in G$$

$$\text{and } y_0 y_1 \cdots y_{n-1} \in K \}.$$
We proved

Theorem

There is an alphabet B and there exist three morphisms g, k, h from B to A* such that h is a very fine morphism, g, k are fine morphisms and *shuffle*(G, K) = *h*(g⁻¹(G) ∩ k⁻¹(K)).*
Corollary

Let $L \subseteq A^*$ be a context-free language and let $R \subseteq A^*$ be a regular language. Then, $\text{shuffle}(L, R)$ is a context-free language.