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Nondeterministic Pushdown Automata

Pushdown automata provide abstract models of computation. They
play the same role for the class of context-free languages that finite
automata play for regular languages: the class of languages accepted
by pushdown automata is precisely the class L2 of context-free
languages.

Unlike finite automata, deterministic pushdown automata are weaker
than non-deterministic ones; i.e., they accept only languages
belonging to a strict subclass of L2.
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Nondeterministic Pushdown Automata

Just like a finite automaton, a pushdown automaton (pda) has a
finite set of states and a one-way, read-only input tape, divided into
cells each of which contains a symbol of an alphabet A, referred to as
the input alphabet.

The pushdown model adds a pushdown store, that can be
conceptualized as a tape that has a beginning but is infinitely long.
It, too, is divided into cells, and each cell that is in use contains a
symbol from an alphabet Z , referred to as the pushdown alphabet.
The pushdown store is thought of as being oriented vertically, with
the used portion at the top.

The automaton can read and write only the top-most cell, referred to
as the top of the pushdown store.
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Nondeterministic Pushdown Automata

As in the case of nondeterministic finite automata, a pda accepts a word if
there is a sequence of choices that allows the suitably initialized pda to
consume the word and end in a state that is an element of a specified set
of accepting states.
The set of words accepted by a pda is referred to as the language accepted
by that pda. We shall show an exact correspondence between the class of
languages accepted by pdas and the class of context-free languages.
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Nondeterministic Pushdown Automata

Components of a Pushdown Automaton
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Nondeterministic Pushdown Automata

Let Pf (M) be the set of all finite subsets of a set M.

Definition

A pushdown automaton (pda) is a 7-tuple

M = (A,Z ,Q, δ, q0, z0,F ),

where A is the input alphabet, Z is the alphabet of the pushdown store,

δ : Z × Q × (A ∪ {λ}) −→ Pf (Z
∗ × Q)

is the transition function, q0 is the initial state, z0 is the start symbol, and
F is the set of final states. We assume that Q ∩ A = Q ∩ Z = ∅.
We refer to the pairs (q′,w) ∈ δ(z , q, a) as the transitions of the triple
(z , q, a).
The transitions of a triple (z , q, λ) (where nothing is read from the input
tape) are referred to as (z , q)-null transitions.
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Nondeterministic Pushdown Automata

The Working of a PDA

When scanning the input symbol a in the state q and reading the symbol
z from the top of the pushdown store, the automaton selects a pair
(w , q′) ∈ Z ∗ × Q from the set δ(z , q, a); after that:

the state changes to q′ and the top symbol of the pushdown store is
replaced by the word w ;

If w = λ, this amounts to popping the top symbol out of the top cell;
if |w | > 1, the replacement of z by w causes the symbols located
below the top cell to be pushed downwards by |w | − 1 cells in order to
accommodate the symbols of the word w .
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Nondeterministic Pushdown Automata

Example

If the state of the pda is q, the content of the pushdown store is w ′z ,
where z is the symbol at the top, and the pda chooses the pair
(zj0 · · · zjm−1 , q

′) from δ(z , q, a), then:

the new content of the pushdown store will be w ′zj0 · · · zjm−1 ;

and the new state will be q′;

the symbol at the top of the stack will then be zjm−1 .

A pda is a nondeterministic device, because at any given moment a pda
may chose one among several transitions (z , q′) for its next step.
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Nondeterministic Pushdown Automata

Example

Consider the pushdown automaton

M = ({a, b}, {z0, z1, z2, z3}, {q0, q1, q2}, δ, q0, z0, {q2}),

where δ is defined by the table

Top State Input Transition Function
z q a δ(z , q, a)

z0 q0 λ {(z3z0), q1}
z0 q1 λ {(λ, q1), (z1z0z1, q1), (z2z0z2, q1)}
z1 q1 a {(λ, q1)}
z2 q1 b {(λ, q1)}
z3 q1 λ {(z3, q2)}

For triples (z , q, a) that do not appear in this table we assume that
δ(z , q, a) = ∅.
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Nondeterministic Pushdown Automata

(Example cont’d)

M begins by writing z3z0 onto the stack. Thus, z3 is placed at the bottom
of the stack. After reading through the entire input, the pda will have to
find z3 at the top of the stack in order to go into state q2, which is the

only accepting state.
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Nondeterministic Pushdown Automata

When z0 is at the top of the stack, the pda guesses whether the next
symbol is a or b. If it guesses a, it pushes z1z0z1 onto the stack.
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Nondeterministic Pushdown Automata

If it guesses b, it pushes z2z0z2 onto the stack.
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Nondeterministic Pushdown Automata

It then verifies its guess by examining the next symbol. If it made the
“right guess”, then it has left a trace of what that symbol was on the
stack. For example, if it guessed that the next symbol is a and z1 is at the
top of the stack, the next configuration will pop z1:
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If it made the “wrong guess”, it cannot proceed.
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Nondeterministic Pushdown Automata

(Example cont’d)

Over time, this records the symbols read from the input with the
most recent nearest the top. In other words, reading the stack from
top to bottom would allow one to reconstruct the input word in
reverse order.

This process continues until the pda guesses that it has reached the
mid-point of the input word. At that time, it simply pops the z0 off
the stack.

Now it reads through the remaining portion of the input, checking
that what is there is the reverse of what was encountered in the first
half, as only that input will match the trace left in the stack; i.e., if
the word x was read from the input tape before the pda guessed it
had reached the middle, only xR will allow it to pop each symbol off
the stack as the pda processes the remaining input word. When it
exhausts the input, z3 should be at the top of the stack, allowing the
pda to accept the word.
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Nondeterministic Pushdown Automata

There are many places where the pda must make guesses, but if it is
possible to make a sequence of guesses that allows the pda to read
through the word on its input tape and end up in an accepting state,
then the pda accepts the word.

Only if no possible sequence of guesses permits the pda to accept the
word does it reject the word. In this case, the language accepted by
the pda is {xxR | x ∈ {a, b}∗}.
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Nondeterministic Pushdown Automata

Definition

Let M = (A,Z ,Q, δ, q0, z0,F ) be a pda. The set I(M) of instantaneous
descriptions of M is the set Z ∗ × Q × A∗.
A pda M is described by (w , q, u) ∈ I(M) if M is in the state q, u is the
portion of input that is still to be read, and w is the content of the
pushdown store, with the rightmost symbol of w at the top of the
pushdown store.
Any instantaneous description of the form (z0, q0, u) is an initial
instantaneous description of M.
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Nondeterministic Pushdown Automata

Definition

Let M = (A,Z ,Q, δ, q0, z0,F ) be a pda. The binary relation ⊢
M

on the

set I(M) is given by (w ′z , q, au) ⊢
M

(w ′w , p, u) if (w , p) ∈ δ(z , q, a), for

z ∈ Z , q ∈ Q, and a ∈ A ∪ {λ}.
When M is obvious from context we may simply write ⊢ for ⊢

M
.

The nth power of ⊢
M

is denoted, as usual, by
n
⊢
M

for n ∈ N; also, the

transitive closure of ⊢
M

is denoted by
+
⊢
M

and the reflexive and transitive

closure of the same relation is denoted by
∗
⊢
M

.
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Nondeterministic Pushdown Automata

A pda may have instantaneous descriptions (w , q, u) such that there are no
instantaneous descriptions (w1, q1, u1) such that (w , q, u) ⊢

M
(w1, q1, u1).

We refer to (w , q, u) as a blocking instantaneous description.
For instance, such instantaneous descriptions occur when the pushdown
store is empty.
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Nondeterministic Pushdown Automata

Definition

A computation in a pda M is a sequence (c0, . . . , cn) of instantaneous
descriptions of M such that ci ⊢

M
ci+1 for 0 ≤ i ≤ n − 1.

We will denote the above computation by c0 ⊢
M

· · · ⊢
M

cn.

20 / 33



Nondeterministic Pushdown Automata

Example

Let M be the pda introduced previously. We have

(z0, q0, abbbba) ⊢ (z3z0, q1, abbbba) ⊢ (z3z1z0z1, q1, abbbba)
⊢ (z3z1z0, q1, bbbba) ⊢ (z3z1z2z0z2, q1, bbbba) ⊢ (z3z1z2z0, q1, bbba)
⊢ (z3z1z2z2z0z2, q1, bbba) ⊢ (z3z1z2z2z0, q1, bba)
⊢ (z3z1z2z2, q1, bba) ⊢ (z3z1z2, q1, ba)
⊢ (z3z1, q1, a) ⊢ (z3, q1, λ) ⊢ (z3, q2, λ).

Therefore, we can write (z0, q0, abbbba)
∗
⊢
M

(z3, q2, λ).
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Nondeterministic Pushdown Automata

(Example cont’d)

When M reaches the state q1 and z0 is at the top of the pushdown
store, there are three possible moves, namely (λ, q1), (z1z0z1, q1), or
(z2z0z2, q1). None of these involves reading an input symbol.

If M makes the “wrong guess” when the instantaneous description
(z3z1z2z0, q1, bbba) is reached and makes use of the pair (z1z0z1, q1)
instead of (z2z0z2, q1), the next instantaneous description will be
(z3z1z2z1z0z1, q1, bbba).

A symbol z1 cannot be popped out of the pushdown store unless M
reads a from the input. Since only one symbol a remains in the input,
at most one z1 can be popped off, and thus it would be impossible to
get z3 at the top of the pushdown store. This would prevent M from
reaching the final state q2.
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Nondeterministic Pushdown Automata

Theorem

Let M = (A,Z ,Q, δ, q0, z0,F ) be a pda.

1 If (zi0 · · · zin−1 , p, t) ⊢
∗ (λ, p′, λ), then we can write t as a product of n

words t = tn−1 · · · t0 such that

(zin−1 , p0, tn−1) ⊢∗ (λ, p1, λ)

(zin−2 , p1, tn−2) ⊢∗ (λ, p2, λ)

· · ·
(zi0 , pn−1, t0) ⊢∗ (λ, pn, λ),

where p = p0, p1, . . . , pn = p′ is a sequence of states in Q.

2 (w , q, x) ⊢∗ (w ′, q′, λ) for some q, q′ ∈ Q, w ,w ′ ∈ Z ∗, and x ∈ A∗ if
and only if (w , q, xy) ⊢∗ (w ′, q′, y) for every y ∈ A∗.

3 If (w , q, xy) ⊢∗ (w ′, q′, y), then (w1w , q, xy) ⊢∗ (w1w
′, q′, y) for each

w1 ∈ Z ∗.
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Nondeterministic Pushdown Automata

Proof of first part

The argument for the first part of the theorem is by induction on the
length n of the initial content of the pushdown store w = zi0 · · · zin−1 ,
where n ≥ 1. The base case, n = 1 is immediate.
Suppose that the statement holds for |w | ≤ n − 1, and let w = zi0 · · · zin−1

be a word of length n. The symbol zin−1 at the top of the pushdown store
must eventually be erased. If tn−1 is the prefix of input word t that causes
the erasure of zin−1 , then we can write t = tn−1t

′, where

(zin−1 , p0, tn−1) ⊢∗ (λ, p1, λ)

(zi0 · · · zin−2 , p1, t
′) ⊢∗ (λ, p′, λ)

for some state p1 ∈ Q.
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Nondeterministic Pushdown Automata

(Proof cont’d)

The inductive hypothesis implies that t ′ can be written as a product of
n − 1 words t ′ = tn−2 . . . t0 such that

(zin−2 , p1, tn−2) ⊢∗ (λ, p2, λ)

· · ·
(zi0 , pn−1, t0) ⊢∗ (λ, pn, λ),

where p1, p2, . . . , pn−1 = p′ is a sequence of states of M. Combining this
fact with the previous observation gives the desired conclusion.
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Nondeterministic Pushdown Automata

As in the case of nondeterministic finite automata, pdas accept languages
by reading through their input words, making guesses as necessary along
the way, and ending in a final, accepting state. This is formalized in the
next definition.

Definition

The language accepted by the pda M = (A,Z ,Q, δ, q0, z0,F ) is the
language

L(M) = {x ∈ A∗ | (z0, q0, x)
∗
⊢
M

(w , q, λ) for some q ∈ F and w ∈ Z ∗}

The pda M,M′ are said to be equivalent if L(M) = L(M′).
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Nondeterministic Pushdown Automata

Example

The language accepted by M, the pda previously introduced, is
L(M) = {xxR | x ∈ {a, b}∗}.
We begin by showing that for every x ∈ {a, b}∗ we have xxR ∈ L(M). To

this end, we prove that (z0, q1, xx
R)

∗
⊢
M

(λ, q1, λ). The argument is by

induction on the length of x .

For |x | = 0, we have xxR = λ and (z0, q1, λ)
∗
⊢
M

(λ, q1, λ) in view of the

fact that (q1, λ) ∈ δ(z0, q1, λ).
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Nondeterministic Pushdown Automata

(Example cont’d)

Suppose that our claim holds for words of length n, and let y ∈ A∗ be a
word of length n + 1. We can write either y = au, or y = bv for some
u, v ∈ A∗ with |u| = |v | = n, depending on the first symbol of y . In the
first case we can write:

(z0, q1, yy
R) = (z0, q1, auu

Ra)
⊢ (z1z0z1, q1, auu

Ra) (since (z1z0z1, q1) ∈ δ(z0, q1, λ))
⊢ (z1z0, q1, uu

Ra) (since (λ, q1) ∈ δ(z1, q1, a))
⊢∗ (z1, q1, a) (by the inductive hypothesis)
⊢ (λ, q1, λ) (since (λ, q1) ∈ δ(z1, q1, a)).

The case y = bv can be treated similarly.
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Nondeterministic Pushdown Automata

(Example cont’d)

Since (z3z0, q1) ∈ δ(z0, q0, λ) we have

(z0, q0, xx
R) ⊢ (z3z0, q1, xx

R),

for every x ∈ {a, b}∗.
Therefore, by the previous claim, we obtain the computation:

(z0, q0, xx
R) ⊢ (z3z0, q1, xx

R)

⊢∗ (z3, q1, λ)

⊢ (z3, q2, λ),

so xxR ∈ L(M) because q2 is a final state of M.
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Nondeterministic Pushdown Automata

(Example cont’d)

Conversely, suppose that t ∈ L(M). We have

(z0, q0, t) ⊢∗ (w , q2, λ),

for some w ∈ Z ∗. The definition of M implies that this computation must
be written as

(z0, q0, t) ⊢ (z3z0, q1, t) ⊢∗ (w , q2, λ),

since this is the single means of switching from the state q0 into the state
q1, which, in turn, is the unique state of M that precedes the final state q2.
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Nondeterministic Pushdown Automata

To reach the final state q2, the pda must have the symbol z3 at the top of
the pushdown store. Thus, the instantaneous description that precedes
(w , q2, λ) in the previous computation necessarily has the form (z3, q1, λ).
This implies that w = z3, so we have

(z0, q0, t) ⊢ (z3z0, q1, t) ⊢∗ (z3, q1, λ) ⊢ (z3, q2, λ).

In turn, this means that we have the computation

(z0, q1, t) ⊢∗ (λ, q1, λ),

during which M remains in the state q1. We prove by induction on k = |t|
that t = xxR for some x ∈ {a, b}∗.
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Nondeterministic Pushdown Automata

(Example cont’d)

If k = 0, then t = λ, so t = λλR . In this case, M chooses the pair
(λ, q1) ∈ δ(z0, q1, λ), and we have

(z0, q1, t) ⊢ (λ, q1, t);

thus, the statement holds.
Suppose that the statement holds for words t of length less than k , and let
t ∈ A∗ be a word of length k . If M chooses the pair
(z1z0z1, q1) ∈ δ(z0, q1, λ), then

(z0, q1, t) ⊢ (z1z0z1, q1, t) ⊢∗ (λ, q1, λ).
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Nondeterministic Pushdown Automata

(Example cont’d)

By the first part of a previous Theorem, t = t ′ut ′′, where

(z1, q1, t
′) ⊢∗ (λ, q1, λ),

(z0, q1, u) ⊢∗ (λ, q1, λ),

(z1, q1, t
′′) ⊢∗ (λ, q1, λ).

Note that if z1 is at the top of the pushdown store, then the single way to
eliminate this symbol is to have t ′ = a; similarly, t ′′ = a. By the inductive
hypothesis, u = zzR , so t = azzRa = az(az)R . A similar argument can be
made when M chooses the pair (z2z0z2, q1) ∈ δ(z0, q1, λ). Thus,
L(M) = {xxR | x ∈ {a, b}∗}.
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