Pushdown Automata - II
(part II)

Prof. Dan A. Simovici

UMB
An Alternative Method of Language Acceptance by PDAs
Another method for associating a language with a pda is to consider the language that consists of those input words for which there is a computation that leads to the emptying of the pushdown store. This is captured by the following definition.

Definition

Let $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ be a pda. The *language accepted by \mathcal{M} with an empty store* is given by

$$
N(\mathcal{M}) = \{ x \in A^* \mid (z_0, q_0, x) \xrightarrow{\ast}_{\mathcal{M}} (\lambda, q, \lambda) \text{ for some } q \in Q \}.
$$

The set F plays no role in the definition of $N(\mathcal{M})$.
Theorem

For every pda M there is a pda M' such that $L(M) = N(M')$.
Proof

Let $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$. We have

$$L(\mathcal{M}) = \{ x \in A^* \mid (z_0, q_0, x) \xrightarrow{\ast} (w, q, \lambda) \text{ for some } w \in Z^* \text{ and } q \in F \}.$$

Define the pda $\mathcal{M}' = (A, Z \cup \{z'\}, Q \cup \{q', q'_0\}, \delta', q'_0, z', \emptyset)$, where q', q'_0 are two new states, and z' is a new initial pushdown symbol, where $z' \not\in Z$. The transition function δ' is given by

$$\delta'(z, q, a) = \begin{cases}
\{(z'z_0, q_0)\} & \text{if } (z, q, a) = (z', q'_0, \lambda), \\
\delta(z, q, a) & \text{if } q \in Q - F, a \in A \cup \{\lambda\}, z \in Z, \\
\delta(z, q, a) \cup \{(\lambda, q')\} & \text{if } q \in F, z \in Z \cup \{z'\}, a \in A \cup \{\lambda\}, \\
\{(\lambda, q')\} & \text{if } q = q', z \in Z \cup \{z'\}, a = \lambda, \\
\emptyset & \text{in any other case.}
\end{cases}$$
The symbol z' was introduced for the pda \mathcal{M}' since some words in $A^* - L(\mathcal{M})$ may empty the pushdown store of \mathcal{M}. The presence of z' at the bottom of the pushdown store makes this impossible in \mathcal{M}'.

Since $\delta(z', q_0', \lambda) = \{(z'z_0, q_0)\}$, \mathcal{M}' begins its work by entering the state q_0 and by placing z_0 at the top of the pushdown store. If $x \in L(\mathcal{M})$, then $(z_0, q_0, x) \vdash_{\mathcal{M}}^{*} (w, q, \lambda)$ for some $w \in Z^*$ and $q \in F$. Correspondingly, in \mathcal{M}' we have

$$(z', q_0', x) \vdash_{\mathcal{M}'} (z'z_0, q_0', x) \vdash_{\mathcal{M}'}^{*} (z'w, q, \lambda) \vdash_{\mathcal{M}'}^{*} (\lambda, q', \lambda),$$

by the definition of δ'. This implies $L(\mathcal{M}) \subseteq N(\mathcal{M}')$.

To prove the converse inclusion, let $x \in N(M')$, so $(z', q_0', x) \vdash_{M'}^* (\lambda, q, \lambda)$ for some state $q \in Q \cup \{q', q_0\}$. The definition of δ' implies that this computation necessarily has the form

$$(z', q_0', x) \vdash_{M'} (z'z_0, q_0, x) \vdash_{M'}^* (\lambda, q, \lambda),$$

since there exists only one transition for the triple (z', q', λ), namely $(z'z_0, q_0)$. Note that the symbol z' can be erased by M' only if this pda reaches a state $q \in F \cup \{q'\}$. Let u be the suffix of x that remains to be read when M' reached the state q' for the first time. Since M' enters q' only from a final state q_1 of M we have:

$$(z', q_0', x) \vdash_{M'} (z'z_0, q_0, x) \vdash_{M'}^* (w, q_1, u) \vdash_{M'} (w', q', u) \vdash_{M'}^* (\lambda, q, \lambda),$$
Once M' enters the state q' no symbol is read from the input, so we have $u = \lambda$. This allows us to write the previous computation as

$$(z', q'_0, x) \vdash M' (z' z_0, q_0, x) \vdash M' (w, q_1, \lambda) \vdash M' (w', q', \lambda) \vdash M' (\lambda, q, \lambda),$$

and this implies the existence of the computation

$$(z_0, q_0, x) \vdash M (w, q_1, \lambda),$$

which, in turn, implies $x \in L(M)$. This proves the needed inclusion $N(M') \subseteq L(M)$.
Theorem

For every context-free grammar G there is a one-state PDA M such that $L = N(M)$.
Suppose that $L = L(G)$, where $G = (A_N, A_T, S, P)$ is a context-free grammar. Let $M = (A_T, A_N \cup A_T, \{q_0\}, \delta, q_0, S, \emptyset)$ be a pda whose transition function is given by

$$
\delta(X, q_0, \lambda) = \{(\alpha^R, q_0) \mid X \rightarrow \alpha \in P\},
$$

$$
\delta(a, q_0, a) = \{(\lambda, q_0)\},
$$

for every $a \in A_T$, $X \in A_N$, and $\delta(s, q_0, a) = \emptyset$ in all other cases. Let

$$
S = \gamma_0 \xrightarrow{G} \gamma_1 \xrightarrow{G} \cdots \xrightarrow{G} \gamma_n = u\alpha
$$

be a leftmost derivation of $u\alpha$ in G, where $u \in A_T^*$ and $\alpha \in (A_N \cup A_T)^*$ is either the null word or a word that begins with a nonterminal symbol. We claim that $(S, q_0, uw) \xrightarrow{*} (\alpha^R, q_0, w)$ for every $w \in A_T^*$. The argument is by induction on n.

For $n = 0$, we have $u = \lambda$ and $\alpha = S$. Thus, the claim is simply

$$(S, q_0, w) \quad \vdash^* \quad (S, q_0, w),$$

which follows from the definition of \vdash^*. For the induction step suppose that

$$S = \gamma_0 \Rightarrow_G \cdots \Rightarrow_G \gamma_n \Rightarrow_G \gamma_{n+1} = u\alpha$$

is a leftmost derivation, where $\gamma_n = u'X\theta$ and $\gamma_{n+1} = u'u''\beta\theta$. In other words, the last step of the derivation uses the production $X \rightarrow u''\beta$, where $u'' \in A_T^*$ and $\beta \in (A_N \cup A_T)^*$ is either the null word or a word that begins with a nonterminal symbol.
Thus, the derivation above may be written

\[S \xrightarrow{\eta} G u' X \theta \xrightarrow{G} G u' u'' \beta \theta, \]

and we have the following computation of \(M \):

\[
(S, q_0, u' u'' w) \vdash^* ((X \theta)^R, q_0, u'' w) = (\theta^R X, u'' w) \\
(\text{by the inductive hypothesis}) \\
\vdash (\theta^R \beta^R u''^R, q_0, u'' w) \\
(\text{since } (\beta^R u''^R, q_0) \in \delta(X, q_0, \lambda)) \\
\vdash^* (\theta^R \beta^R, q_0, w).
\]

The last line follows from the observation that \(\delta(a, q_0, a) = \{ (\lambda, q_0) \} \) for each \(a \in A_T \) implies that \((x^R, q_0, x) \vdash^* (\lambda, q_0, \lambda) \) for every \(x \in A_T^* \). Since \(\theta^R \beta^R = (\beta \theta)^R \), we have completed the induction step. Therefore, if \(u \in L(G) \) we have \(S \xrightarrow{G} u \), and this implies \((S, q_0, u) \vdash^* (\lambda, q_0, \lambda) \), which shows that \(u \in N(M) \), hence \(L(G) \subseteq N(M) \).
To prove that \(N(\mathcal{M}) \subseteq L(G) \), we show that \((X, q_0, u) \xrightarrow{\ast} (\lambda, q_0, \lambda) \) implies \(X \xrightarrow{G} u \) for \(X \in A_N \) and \(u \in A_T^* \).

We factor the input word \(u \) into a series of subwords \(u = u_0u_1 \cdots u_{k-1} \), each corresponding to a certain change in the pushdown store. Specifically, the top symbol of the pushdown store of each step of the computation can be either a terminal or a nonterminal symbol. Any step at which a nonterminal is at the top determines the boundary between a \(u_i \) and its successor \(u_{i+1} \) in the input. Thus, \(u_i \) could be empty (when a nonterminal at the top is replaced by a nonterminal) or could contain several symbols (when there are terminal symbols at the top that are popped off by transitions of the form \((\lambda, q_0) \in \delta(a, q_0, a) \)).
Thus, we can write $u = u_0u_1 \cdots u_{k-1}$, where $u_i \in A_T^*$ for $0 \leq i \leq k - 1$, and

\[(X, q_0, u) = (\gamma_0, q_0, u_0u_1 \cdots u_{k-1}) \]
\[\vdash^* (\gamma_1, q_0, u_1 \cdots u_{k-1})
\]
\[\vdots \]
\[\vdash^* (\gamma_{k-1}, q_0, u_{k-1}) \]
\[\vdash^* (\lambda, q_0, \lambda), \]

where each γ_i has the form $\gamma_i'X$ for $\gamma_i' \in (A_T \cup A_N)^*$ and $X \in A_N$.
The definition of \mathcal{M} implies that the computation

\[(\gamma_i, q_0, u_i \cdots u_{k-1}) \stackrel{*}{\Rightarrow}_\mathcal{M} (\gamma_{i+1}, q_0, u_{i+1} \cdots u_{k-1})\]

can be written as

\[(\gamma_i, q_0, u_i \cdots u_{k-1}) = (\gamma'_i X_{p_i}, q_0, u_i \cdots u_{k-1})
\]
\[\vdash (\gamma'_i \alpha_{p_i} R, q_0, u_i \cdots u_{k-1})\]
\[\vdash^* (\gamma_{i+1}, q_0, u_{i+1} \cdots u_{k-1}),\]

where $X_{p_i} \rightarrow \alpha_{p_i} = u_i \beta_{p_i}$ is a production of G such that $\beta_{p_i} \in (A_N \cup A_T)^*$ is the null word or a word that begins with a nonterminal symbol, and

$\gamma_{i+1} = \gamma'_i \beta_{p_i} R$ for $0 \leq i \leq k - 1$.

We prove by induction on ℓ that we have the leftmost derivation

$\gamma_{k-1-\ell} R \Rightarrow^*_G u_{k-1-\ell} \cdots u_{k-1}$.
For $\ell = 0$ we have

$$(\gamma_{k-1}, q_0, u_{k-1}) \vdash M (u_{k-1}^R, q_0, u_{k-1}) \vdash^* (\lambda, q_0, \lambda),$$

because γ_{k-1} is the last content of the pushdown store that may contain a nonterminal, which means that $\gamma_{k-1} = X \in A_N$ and $X \rightarrow u_{k-1} \in P$. Therefore, $\gamma_{k-1}^R = X \rightharpoonup^* G u_{k-1}$.
Suppose that $\gamma_{i+1} R \xrightarrow[*]{G} u_{i+1} \cdots u_{k-1}$; that is, $\beta_p \gamma_i' R \xrightarrow[*]{G} u_{i+1} \cdots u_{k-1}$.

This implies $u_i \beta_p \gamma_i' R \xrightarrow[*]{G} u_i u_{i+1} \cdots u_{k-1}$, so $\alpha_p \gamma_i' R \xrightarrow[*]{G} u_i u_{i+1} \cdots u_{k-1}$.

The existence of the production $X_i \rightarrow \alpha_p$ allows us to write

$$X_i \gamma_i' R \xrightarrow{G} \alpha_p \gamma_i' R \xrightarrow[*]{G} u_i u_{i+1} \cdots u_{k-1},$$

and $X_i \gamma_i' R = (\gamma_i' X_i)^R = \gamma_i R$.

Choosing $X = S$ we conclude that $x \in N(M)$ implies

$$(S, q_0, u) \xrightarrow[*]{M} (\lambda, q_0, \lambda),$$

which in turn, implies $S \xrightarrow{*}{G} u$ and $u \in L(G)$.

Note that a computation of the pda M that leads to the acceptance of a word u uniquely defines a leftmost derivation in the grammar G.

Example

Consider the nonambiguous context-free grammar

$$G_{ae} = (\{X_e, X_t, X_f\}, \{+, -, *, /, (,), v, n\}, X_e, P)$$

introduced before which generates the language of parenthesized arithmetic expressions. The pda that accepts the language $L(G_{ae})$ with an empty pushdown store is

$$M = (\{+ , -, *, /, (,), v, n\}, \{X_e, X_t, X_f, +, -, *, /, (,), v, n\},$$

$$\{q_0\}, \delta, q_0, X_e, \emptyset),$$

where δ is specified by the table in the next slide.
(Example cont’d)

<table>
<thead>
<tr>
<th>Top</th>
<th>State</th>
<th>Input</th>
<th>Transition Function $\delta(z, q, a)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>q</td>
<td>a</td>
<td>{(X_t + X_e, q_0), (X_t - X_e, q_0), (X_t, q_0)}</td>
</tr>
<tr>
<td>X_e</td>
<td>q_0</td>
<td>λ</td>
<td>{(X_f * X_t, q_0), (X_f / X_t, q_0), (X_f, q_0)}</td>
</tr>
<tr>
<td>X_t</td>
<td>q_0</td>
<td>λ</td>
<td>{(v, q_0), (n, q_0), ()X_e(), q_0)}</td>
</tr>
<tr>
<td>X_f</td>
<td>q_0</td>
<td>λ</td>
<td>{(l, q_0)}</td>
</tr>
<tr>
<td>a</td>
<td>q_0</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>

The last line of the table applies to every symbol $a \in \{+, -, *, /, (,), v, n\}$. If $\delta(z, q_0, a)$ is not mentioned in the table, then $\delta(z, q_0, a) = \emptyset$.
The word \((n + n) \ast n\) can be generated in \(G_{ae}\) using the leftmost derivation

\[
\begin{align*}
X_e &\Rightarrow X_t &\Rightarrow X_t \ast X_f &\Rightarrow X_f \ast X_f \\
&\Rightarrow (X_e) \ast X_f &\Rightarrow (X_e + X_t) \ast X_f \\
&\Rightarrow (X_t + X_t) \ast X_f &\Rightarrow (X_f + X_t) \ast X_f &\Rightarrow (n + X_t) \ast X_f \\
&\Rightarrow (n + X_f) \ast X_f &\Rightarrow (n + n) \ast X_f &\Rightarrow (n + n) \ast n.
\end{align*}
\]

development of the leftmost derivation tree as follows: [Derivation Tree Image]
An Alternative Method of Language Acceptance by PDAs
The computation that leads to the acceptance of the word \((n + n) \ast n\) in \(M\) is

\[
(X_e, q_0, (n + n) \ast n) \vdash (X_t, q_0, (n + n) \ast n)
\]

\[
(X_f * X_t, q_0, (n + n) \ast n) \vdash (X_f * X_f, q_0, (n + n) \ast n)
\]

\[
(X_f * X_e, q_0, (n + n) \ast n) \vdash (X_f * X_e, q_0, (n + n) \ast n)
\]

\[
(X_f * X_t + X_e, q_0, n + n) \ast n) \vdash (X_f * X_t + X_t, q_0, n + n) \ast n)
\]

\[
(X_f * X_t + X_f, q_0, n + n) \ast n) \vdash (X_f * X_t + n, q_0, n + n) \ast n)
\]

\[
(X_f * X_t + , q_0, +n) \ast n) \vdash (X_f * X_t, q_0, n) \ast n)
\]

\[
(X_f * X_f, q_0, n) \ast n) \vdash (X_f * n, q_0, n) \ast n) \vdash (X_f * n, q_0, n) \ast n)
\]

\[
(X_f * n, q_0, *n) \vdash (X_f, q_0, n) \vdash (n, q_0, n) \vdash (\lambda, q_0, \lambda)
\]
An Alternative Method of Language Acceptance by PDAs

For every pda \mathcal{M} the language $N(\mathcal{M})$ is context-free.
We need the following technical result showing that whenever there is a pda that accepts a language with an empty store, then there is a way to construct a pda that accepts the same language both with an empty store and by entering a final accepting state.

Theorem

*For every pda $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ there exists a pda $\mathcal{M}' = (A, Z', Q', \delta', q'_0, z'_0, \{q'\})$ such that $(z'_0, q'_0, x) \vdash^*_{\mathcal{M}'} (\lambda, q_1, \lambda)$ implies $q_1 = q'$ and $N(\mathcal{M}) = N(\mathcal{M}') = L(\mathcal{M}')$.***
Proof

Pick \(q'_0, q' \not\in Q \) and \(z'_0 \not\in Z \). Define the pda

\[
M' = (A, Z', Q', \delta', q'_0, z'_0, \{ q' \})
\]

as \(Q' = Q \cup \{ q'_0, q' \} \), \(Z' = Z \cup \{ z' \} \), \(\delta'(z'_0, q'_0, \lambda) = \{(z'_0z_0, q_0)\} \), \(\delta'(z'_0, q, \lambda) = \{(\lambda, q')\} \) for every \(q \in Q \), and \(\delta'(z, q, a) = \delta(z, q, a) \) in every other case. In other words, \(M' \) begins by putting a marker, \(z'_0 \), onto the pushdown store and then simulating \(M \) until \(M \) would have emptied its pushdown store. At this time \(M' \) removes the marker, thus emptying its store, and goes into a final state.
Let $x \in N(M)$. We have $(z_0, q_0, x) \xrightarrow{*}_M (\lambda, q, \lambda)$ for some $q \in Q$. Therefore, in M' we have the computation

$$(z'_0, q'_0, x) \xrightarrow*_M (z'_0z_0, q_0, x) \xrightarrow*_M (z'_0, q, \lambda) \xrightarrow*_M (\lambda, q', \lambda),$$

so $x \in N(M')$ and $x \in L(M')$, which shows that $N(M) \subseteq N(M')$ and $N(M) \subseteq L(M')$.

(Proof cont’d)
(Proof cont’d)

Conversely, suppose that \(x \in N(\mathcal{M}') \) or that \(x \in L(\mathcal{M}') \).

In the first case, \((z'_0, q'_0, x) \xrightarrow{\mathcal{M}'}^* (\lambda, \bar{q}, \lambda) \) for some state \(\bar{q} \in Q' \). The definition of \(\mathcal{M}' \) implies that this computation can be written as

\[
(z'_0, q'_0, x) \xrightarrow{\mathcal{M}'} (z'_0z_0, q_0, x) \xrightarrow{\mathcal{M}'}^* (\lambda, \bar{q}, \lambda).
\]

Note that in \(\mathcal{M}' \) the symbol \(z'_0 \) cannot be erased unless \(\mathcal{M}' \) switches to the state \(q' \). Therefore, in the previous computation we have \(\bar{q} = q' \), and this computation can be written as

\[
(z'_0, q'_0, x) \xrightarrow{\mathcal{M}'} (z'_0z_0, q_0, x) \xrightarrow{\mathcal{M}'}^* (z'_0, q, \lambda) \xrightarrow{\mathcal{M}'} (\lambda, q', \lambda)
\]

for some \(q \in Q \). Thus, we must have \((z_0, q_0, x) \xrightarrow{\mathcal{M}}^* (\lambda, q, \lambda) \), that is \(x \in N(\mathcal{M}) \).
In the second case, $x \in L(\mathcal{M}')$ implies $(z'_0, q'_0, x) \xrightarrow{\ast} (w, q', \lambda)$. Observe that \mathcal{M}' may enter its final state q' only by erasing the symbol z'_0 located at the bottom of the pushdown store. This implies that the above computation has the form

$$(z'_0, q'_0, x) \xrightarrow{\mathcal{M}} (z'_0z_0, q_0, x) \xrightarrow{\ast} (z'_0, q, \lambda) \xrightarrow{\mathcal{M}'} (\lambda, q', \lambda).$$

As before, this implies the existence of the computation

$$(z_0, q_0, x) \xrightarrow{\ast} (\lambda, q, \lambda),$$

so $x \in N(\mathcal{M})$.

We proved that $N(\mathcal{M}') \subseteq N(\mathcal{M})$ and $L(\mathcal{M}') \subseteq N(\mathcal{M})$. Thus, $N(\mathcal{M}) = N(\mathcal{M}') = L(\mathcal{M}')$, which is the desired conclusion.
Theorem

If L is a language such that $L = N(M)$ for some pda M, then L is a context-free language.
Proof

Suppose that \(L = N(M) \), where \(M = (A, Z, Q, \delta, q_0, F) \) is a pda. By Theorem 5 we can assume without loss of generality that \(F = \{ q_f \} \) and that \(L = \{ x \in A^* \mid (z_0, q_0, x) \not\rightarrow^*_M (\lambda, q_f, \lambda) \} \).

Consider the alphabet \(\hat{Z} = \{ z^{q_i q_j} \mid z \in Z, q_i, q_j \in Q \} \) and the context-free grammar \(G = (\hat{Z}, A, z_0^{q_0 q_f}, P) \), whose set of productions \(P \) is constructed as follows:
If \((z_{i_k} \cdots z_{i_0}, p) \in \delta(z, q, a)\), then place the following productions into \(P\):

\[
z^{qq_{i_k}} \rightarrow az^{p_{i_0}} z_{i_0}^{q_{i_0}} z_{i_1}^{q_{i_1}} \cdots z_{i_{k-1}}^{q_{i_{k-1}}} z_{i_k}^{q_{i_k}},
\]

for every \(q_{i_0}, \cdots , q_{i_k} \in Q\).

If \((\lambda, p) \in \delta(z, q, a)\), then place the production \(z^{qp} \rightarrow a\) into \(P\).

Define the relation \(\rho \subseteq \hat{Z} \times \hat{Z}\) by \((z_{m}^{q_{i}q_{j}}, z_{n}^{q_{k}q_{h}}) \in \rho\) if and only if \(q_{j} = q_{k}\) and consider the regular language \(H = L_{\rho}\). Let \(d : \hat{Z}^* \rightarrow Z^*\) be the morphism defined by \(d(z^{q_{i}q_{j}}) = z\) for every \(z^{q_{i}q_{j}} \in \hat{Z}\).
We prove that for $n \geq 1$, we have the leftmost derivation $z^{q_iq_j} \xrightarrow{n} G w_{\alpha} \quad (\text{where } w \in A^* \text{ and } \alpha \in \hat{Z}^*)$ if and only if $(z, q_i, wy) \xrightarrow{n M} (d(\alpha)^R, p, y)$ and one of the following conditions is satisfied:

- $\alpha \in H$, the first symbol of α has the form z^{pq}, and the last symbol of α has the form z^{qq_j}, or
- $\alpha = \lambda$ and $p = q_j$.

(Proof cont’d)
The argument is by induction on n. For the basis step, $n = 1$, suppose
that $z^{q_i q_j} \Rightarrow_G w\alpha$. The production applied for this one-step derivation is
either $z^{q_i q_j} \rightarrow a z^{q_i_0 q_1} \cdots z^{q_{i_k-1} q_j}$ which implies

$$w = a \text{ and } \alpha = z^{q_i_0 q_1} \cdots z^{q_{i_k-1} q_j},$$

or is $z^{q p} \rightarrow a$, which implies

$$w = a \text{ and } \alpha = \lambda,$$

respectively.
The first case may occur if and only if \((z_{i_k} \cdots z_{i_0}, p) \in \delta(z, q_i, a)\). Therefore, we have

\[
(z, q_i, ay) \vdash \mathcal{M} (z_{i_k} \cdots z_{i_0}, p, y) = (d(\alpha)^R, p, y)
\]

Also, the second case takes place if and only if \((\lambda, p) \in \delta(z, q_i, a)\) which is equivalent to

\[
(z, q_i, ay) \vdash \mathcal{M} (\lambda, p, y).
\]

This concludes the basis step.
For the inductive step assume that the statement holds for n and consider a leftmost derivation of length $n + 1$: $z^{q_iq_j} \xrightarrow{n+1} G w' \alpha'$. Two cases may occur depending on form of the production applied in the last step of this derivation:

- If the production applied in the last step was

\[z^{qq_j \ell} \rightarrow az^{jq_0q_{j_0}q_{j_1}} \cdots z^{jq_{j_{\ell-1}}q_{j_{\ell}}} , \]

then the derivation can be written as

\[z^{q_iq_j} \xrightarrow{n} G wz^{qq_j \ell} \alpha \xrightarrow{G} waz^{jq_0q_{j_0}q_{j_1}} \cdots z^{jq_{j_{\ell-1}}q_{j_{\ell}}} \alpha. \]

(1)
This takes place if and only if \(w' = wa \), \(\alpha' = z_{j_0}^{r} q_{j_0} z_{j_1} q_{j_1} \cdots z_{j_\ell} q_{j_\ell-1} \alpha \). By the inductive hypothesis, the first part of the derivation takes place if and only if \(z^{qq_{j_\ell} \alpha} \in H \) and

\[
(z, q_i, \text{way}) \vdash_n^\mathcal{M} (d(z^{qq_{j_\ell} \alpha})^R, q, y) = (d(\alpha)^R z, q, ay).
\]

The last step of the derivation can be executed if and only if

\[
(z_{j_\ell} \cdots z_{j_0}, r) \in \delta(z, q, a),
\]

by the definition of the grammar \(G \). Thus, the derivation (1) takes place if and only if

\[
(z, q_i, w'y) = (z, q_i, \text{way}) \vdash_n^\mathcal{M} (d(\alpha)^R z, q, ay)
\]

\[
\vdash^\mathcal{M} (d(\alpha)^R z_{j_\ell} \cdots z_{j_0}, r, y)
\]

\[
= (d(z_{j_0}^{r} q_{j_0} z_{j_1} q_{j_1} \cdots z_{j_\ell} q_{j_\ell-1} \alpha)^R, r, y)
\]

\[
= (d(\alpha')^R, r, y).
\]
If the production applied in the last step of the derivation was \(z^{q q_j \ell} \rightarrow a \), the derivation can be written

\[
z^{q_i q_j} \xrightarrow{n}{G} w z^{q q_j \ell} \alpha \xrightarrow{G} w a \alpha. \tag{2}
\]

Thus \(w' = wa \) and \(\alpha' = \alpha \). By the inductive hypothesis we have:

\[
(z, q_i, w' y) = (z, q_i, w a y) \xrightarrow{n}{M} (d(z^{q q_j \ell} \alpha)^R, q, a y) = (d(\alpha)^R z, q, a y).
\]

The existence of the production \(z^{q q_j \ell} \rightarrow a \) is equivalent to \((\lambda, q_{j\ell}) \in \delta(z, q, a)\), so the existence of the derivation (2) is equivalent to the existence of the computation

\[
(z, q_0, w' y) \xrightarrow{n}{M} (d(\alpha)^R z, q, a y) \xrightarrow{M} (d(\alpha)^R, q_{j\ell}, y) = (d(\alpha')^R, q_{j\ell}, y).
\]

By taking \(q_i = q_0 \), \(\alpha = \lambda \), \(z = z_0 \), \(y = \lambda \), and \(p = q_f \) in the initial claim, we conclude that a leftmost derivation \(z^{q_0 q_f} \xrightarrow{n}{G} w \) exists if and only if

\[
(z_0, q_i, w) \xrightarrow{n}{M} (\lambda, q_f, \lambda).
\]

This shows that \(L(G) = N(M) \), so \(N(M) \) is indeed a context-free language.
Theorem

Let $L \subseteq A^*$ be a language over the alphabet A. The following statements are equivalent:

- There is a pda M such that $L = L(M)$.
- There is a pda M such that $L = N(M)$.
- There is a pda M (having a single final state) such that $L = N(M) = L(M)$.
- There is an one-state pda M such that $L = N(M)$.
- L is a context-free language.