Pushdown Automata - II
(part II)

Prof. Dan A. Simovici

UMB
An Alternative Method of Language Acceptance by PDAs
Another method for associating a language with a PDA is to consider the language that consists of those input words for which there is a computation that leads to the emptying of the pushdown store. This is captured by the following definition.

Definition

Let $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ be a PDA. The *language accepted by \mathcal{M} with an empty store* is given by

$$N(\mathcal{M}) = \{ x \in A^* \mid (z_0, q_0, x) \xrightarrow{\ast} (\lambda, q, \lambda) \text{ for some } q \in Q \}.$$

The set F plays no role in the definition of $N(\mathcal{M})$.
Theorem

For every pda \mathcal{M} there is a pda \mathcal{M}' such that $L(\mathcal{M}) = N(\mathcal{M'})$.
Proof

Let $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$. We have

$$L(\mathcal{M}) = \{x \in A^* \mid (z_0, q_0, x) \xrightarrow{\ast} (w, q, \lambda) \text{ for some } w \in Z^* \text{ and } q \in F\}.$$

Define the pda $\mathcal{M}' = (A, Z \cup \{z'\}, Q \cup \{q', q'_0\}, \delta', q'_0, z', \emptyset)$, where q', q'_0 are two new states, and z' is a new initial pushdown symbol, where $z' \notin Z$. The transition function δ' is given by

$$\delta'(z, q, a) = \begin{cases}
\{(z'z_0, q_0)\} & \text{if } (z, q, a) = (z', q'_0, \lambda), \\
\delta(z, q, a) & \text{if } q \in Q - F, a \in A \cup \{\lambda\}, z \in Z, \\
\delta(z, q, a) \cup \{(\lambda, q')\} & \text{if } q \in F, z \in Z \cup \{z'\}, a \in A \cup \{\lambda\}, \\
\{(\lambda, q')\} & \text{if } q = q', z \in Z \cup \{z'\}, a = \lambda, \\
\emptyset & \text{in any other case.}
\end{cases}$$
The symbol z' was introduced for the pda \mathcal{M}' since some words in $A^* - L(\mathcal{M})$ may empty the pushdown store of \mathcal{M}. The presence of z' at the bottom of the pushdown store makes this impossible in \mathcal{M}'.

Since $\delta(z', q_0', \lambda) = \{(z'z_0, q_0)\}$, \mathcal{M}' begins its work by entering the state q_0 and by placing z_0 at the top of the pushdown store.

If $x \in L(\mathcal{M})$, then $(z_0, q_0, x) \xymulti{M}{*} (w, q, \lambda)$ for some $w \in Z^*$ and $q \in F$. Correspondingly, in \mathcal{M}' we have

$$(z', q_0', x) \xymulti{\mathcal{M}'}{*} (z'z_0, q_0, x) \xymulti{\mathcal{M}'}{*} (z'w, q, \lambda) \xymulti{\mathcal{M}'}{*} (\lambda, q', \lambda),$$

by the definition of δ'. This implies $L(\mathcal{M}) \subseteq N(\mathcal{M}')$.

(Proof cont’d)

To prove the converse inclusion, let $x \in N(\mathcal{M}')$, so $(z', q'_0, x) \xrightarrow{\mathcal{M}'}^* (\lambda, q, \lambda)$ for some state $q \in Q \cup \{q', q'_0\}$. The definition of δ' implies that this computation necessarily has the form

$$(z', q'_0, x) \xrightarrow{\mathcal{M}'} (z'z_0, q_0, x) \xrightarrow{\mathcal{M}'}^* (\lambda, q, \lambda),$$

since there exists only one transition for the triple (z', q', λ), namely $(z'z_0, q_0)$. Note that the symbol z' can be erased by \mathcal{M}' only if this pda reaches a state $q \in F \cup \{q'\}$. Let u be the suffix of x that remains to be read when \mathcal{M}' reached the state q' for the first time. Since \mathcal{M}' enters q' only from a final state q_1 of \mathcal{M} we have:

$$(z', q'_0, x) \xrightarrow{\mathcal{M}'} (z'z_0, q_0, x) \xrightarrow{\mathcal{M}'} (w, q_1, u) \xrightarrow{\mathcal{M}'}^* (w', q', u) \xrightarrow{\mathcal{M}'}^* (\lambda, q, \lambda).$$
(Proof cont’d)

Once M' enters the state q' no symbol is read from the input, so we have $u = \lambda$. This allows us to write the previous computation as

$$(z', q_0', x) \vdash_{M'} (z'z_0, q_0, x) \mathrel{\ast} (w, q_1, \lambda) \vdash_{M'} (w', q', \lambda) \mathrel{\ast} (\lambda, q, \lambda),$$

and this implies the existence of the computation

$$(z_0, q_0, x) \mathrel{\ast} (w, q_1, \lambda),$$

which, in turn, implies $x \in L(M)$. This proves the needed inclusion $N(M') \subseteq L(M)$.
Theorem

For every context-free grammar G there is a one-state PDA M such that $L = N(M)$.
Proof

Suppose that \(L = L(G) \), where \(G = (A_N, A_T, S, P) \) is a context-free grammar.
Let \(M = (A_T, A_N \cup A_T, \{q_0\}, \delta, q_0, S, \emptyset) \) be a pda whose transition function is given by:

\[
\delta(X, q_0, \lambda) = \{ (\alpha^R, q_0) \mid X \rightarrow \alpha \in P \},
\]

\[
\delta(a, q_0, a) = \{ (\lambda, q_0) \},
\]

for every \(a \in A_T, X \in A_N \), and \(\delta(s, q_0, a) = \emptyset \) in all other cases.
Note that the pushdown alphabet of \(M \) is \(A_N \cup A_T \).
Proof (cont’d)

Let

\[S = \gamma_0 \Rightarrow_G \gamma_1 \Rightarrow_G \cdots \Rightarrow_G \gamma_n = u\alpha \]

be a leftmost derivation of \(u\alpha \) in \(G \), where \(u \in A_T^* \) and \(\alpha \in (A_N \cup A_T)^* \) is either the null word or a word that begins with a nonterminal symbol. We claim that \((S, q_0, uw) \xRightarrow{\ast}{M} (\alpha^R, q_0, w) \) for every \(w \in A_T^* \).
The argument is by induction on \(n \). For \(n = 0 \), we have \(u = \lambda \) and \(\alpha = S \). Thus, the claim is simply

\[
(S, q_0, w) \vdash^*_M (S, q_0, w),
\]

which follows from the definition of \(\vdash^*_M \).

For the induction step suppose that \(S = \gamma_0 \Rightarrow^G \cdots \Rightarrow^G \gamma_n \Rightarrow^G \gamma_{n+1} = u\alpha \) is a leftmost derivation, where \(\gamma_n = u'X\theta \) and \(\gamma_{n+1} = u''u'\beta\theta \). In other words, the last step of the derivation uses the production \(X \rightarrow u''\beta \), where \(u'' \in A_T^* \) and \(\beta \in (A_N \cup A_T)^* \) is either the null word or a word that begins with a nonterminal symbol.
Thus, the derivation above may be written
\[
S \xrightarrow{n_G} u'X\theta \xrightarrow{G} u'u''\beta\theta,
\]
and we have the following computation of \(\mathcal{M} \):

\[
(S, q_0, u'u''w) \vdash^* ((X\theta)^R, q_0, u''w) = (\theta^R X, u''w)
\]
(by the inductive hypothesis)
\[
\vdash (\theta^R \beta^R u''^R, q_0, u''w)
\]
(since \((\beta^R u''^R, q_0) \in \delta(X, q_0, \lambda))
\[
\vdash^* (\theta^R \beta^R, q_0, w).
\]

The last line follows from the observation that \(\delta(a, q_0, a) = \{(\lambda, q_0)\} \) for each \(a \in A_T \) implies that \((x^R, q_0, x) \vdash^* (\lambda, q_0, \lambda) \) for every \(x \in A_T^\ast \). Since \(\theta^R \beta^R = (\beta\theta)^R \), we have completed the induction step. Therefore, if \(u \in L(G) \) we have \(S \xrightarrow{G}^* u \), and this implies \((S, q_0, u) \vdash^* (\lambda, q_0, \lambda) \), which shows that \(u \in N(\mathcal{M}) \), hence \(L(G) \subseteq N(\mathcal{M}) \).
To prove that $N(\mathcal{M}) \subseteq L(G)$, we show that $(X, q_0, u) \vdash_{\mathcal{M}} (\lambda, q_0, \lambda)$ implies $X \Rightarrow_G u$ for $X \in A_N$ and $u \in A_T^*$.

We factor the input word u into a series of subwords $u = u_0u_1 \cdots u_{k-1}$, each corresponding to a certain change in the pushdown store. Specifically, the top symbol of the pushdown store of each step of the computation can be either a terminal or a nonterminal symbol. Any step at which a nonterminal is at the top determines the boundary between a u_i and its successor u_{i+1} in the input. Thus, u_i could be empty (when a nonterminal at the top is replaced by a nonterminal) or could contain several symbols (when there are terminal symbols at the top that are popped off by transitions of the form $(\lambda, q_0) \in \delta(a, q_0, a)$).
Thus, we can write \(u = u_0 u_1 \cdots u_{k-1} \), where \(u_i \in A_T^* \) for \(0 \leq i \leq k - 1 \), and

\[
(X, q_0, u) = (\gamma_0, q_0, u_0 u_1 \cdots u_{k-1}) \\
\vdash^* (\gamma_1, q_0, u_1 \cdots u_{k-1}) \\
\vdots \\
\vdash^* (\gamma_{k-1}, q_0, u_{k-1}) \\
\vdash^* (\lambda, q_0, \lambda),
\]

where each \(\gamma_i \) has the form \(\gamma'_i X \) for \(\gamma'_i \in (A_T \cup A_N)^* \) and \(X \in A_N \).
The definition of \mathcal{M} implies that the computation

$$(\gamma_i, q_0, u_i \ldots u_{k-1}) \xrightarrow{\ast} \mathcal{M} (\gamma_{i+1}, q_0, u_{i+1} \ldots u_{k-1})$$

can be written as

$$(\gamma_i, q_0, u_i \ldots u_{k-1}) = (\gamma'_i X_{p_i}, q_0, u_i \ldots u_{k-1})$$

$$\xrightarrow{\mathcal{M}} (\gamma'_i \alpha_{p_i}^R, q_0, u_i \ldots u_{k-1})$$

$$\xrightarrow{\ast} (\gamma_{i+1}, q_0, u_{i+1} \ldots u_{k-1}),$$

where $X_{p_i} \rightarrow \alpha_{p_i} = u_i\beta_{p_i}$ is a production of G such that $\beta_{p_i} \in (A_N \cup A_T)^*$ is the null word or a word that begins with a nonterminal symbol, and $\gamma_{i+1} = \gamma'_i \beta_{p_i}^R$ for $0 \leq i \leq k - 1$.

We prove by induction on ℓ that we have the leftmost derivation

$$\gamma_{k-1-\ell}^R \xrightarrow{\ast}_G u_{k-1-\ell} \ldots u_{k-1}.$$
For $\ell = 0$ we have

$$
(\gamma_{k-1}, q_0, u_{k-1}) \vdash M (u_{k-1}^R, q_0, u_{k-1}) \vdash^* (\lambda, q_0, \lambda),
$$

because γ_{k-1} is the last content of the pushdown store that may contain a nonterminal, which means that $\gamma_{k-1} = X \in A_N$ and $X \rightarrow u_{k-1} \in P$.

Therefore, $\gamma_{k-1}^R = X \Rightarrow^*_G u_{k-1}$.
An Alternative Method of Language Acceptance by PDAs

Suppose that $\gamma_{i+1}^R \xrightarrow{G} u_{i+1} \cdots u_{k-1}$; that is, $\beta_p^i \gamma_i^R \xrightarrow{G} u_{i+1} \cdots u_{k-1}$.

This implies $u_i \beta_p^i \gamma_i^R \xrightarrow{G} u_i u_{i+1} \cdots u_{k-1}$, so $\alpha_p^i \gamma_i^R \xrightarrow{G} u_i u_{i+1} \cdots u_{k-1}$.

The existence of the production $X_i \rightarrow \alpha_p^i$ allows us to write

$$X_i \gamma_i^R \xrightarrow{G} \alpha_p^i \gamma_i^R \xrightarrow{G} u_i u_{i+1} \cdots u_{k-1},$$

and $X_i \gamma_i^R = (\gamma_i^R X_i)^R = \gamma_i^R$.

Choosing $X = S$ we conclude that $x \in N(M)$ implies

$$(S, q_0, u) \xrightarrow{\mathcal{M}} (\lambda, q_0, \lambda),$$

which in turn, implies $S \xrightarrow{G} u$ and $u \in L(G)$.
Note that a computation of the pda M that leads to the acceptance of a word u uniquely defines a leftmost derivation in the grammar G.

Consider the nonambiguous context-free grammar

$$G_{ae} = (\{X_e, X_t, X_f\}, \{+, -, *, /, (,), v, n\}, X_e, P)$$

introduced before which generates the language of parenthesized arithmetic expressions. The transitions in the pda are:

<table>
<thead>
<tr>
<th>Production in G_{ae}</th>
<th>Transitions in $\delta(X, q_0, \lambda)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>where X is the left member of production</td>
<td></td>
</tr>
<tr>
<td>$\pi_0 : X_e \rightarrow X_e + X_t$</td>
<td>$(X_t + X_e, \lambda)$</td>
</tr>
<tr>
<td>$\pi_1 : X_e \rightarrow X_e - X_t$</td>
<td>$(X_t - X_e, \lambda)$</td>
</tr>
<tr>
<td>$\pi_2 : X_e \rightarrow X_t$</td>
<td>(X_t, λ)</td>
</tr>
<tr>
<td>$\pi_3 : X_t \rightarrow X_t \ast X_f$</td>
<td>$(X_f \ast X_t, \lambda)$</td>
</tr>
<tr>
<td>$\pi_4 : X_t \rightarrow X_t / X_f$</td>
<td>$(X_f / X_t, \lambda)$</td>
</tr>
<tr>
<td>$\pi_5 : X_t \rightarrow X_f$</td>
<td>(X_f, λ)</td>
</tr>
<tr>
<td>$\pi_6 : X_f \rightarrow v$</td>
<td>(v, λ)</td>
</tr>
<tr>
<td>$\pi_7 : X_f \rightarrow n$</td>
<td>(n, λ)</td>
</tr>
<tr>
<td>$\pi_8 : X_f \rightarrow (X_e)$</td>
<td>$()X_e(, \lambda)$</td>
</tr>
</tbody>
</table>
The PDA that accepts the language $L(G_{ae})$ with an empty pushdown store is:

$$M = (\{+, -, *, /, (,), v, n\}, \{X_e, X_t, X_f, +, -, *, /, (,), v, n\}, \{q_0\}, \delta, q_0, X_e, \emptyset),$$

where δ is specified by the table in the next slide.
(Example cont’d)

<table>
<thead>
<tr>
<th>Top</th>
<th>State</th>
<th>Input</th>
<th>Transition Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>z</td>
<td>q</td>
<td>a</td>
<td>$\delta(z, q, a)$</td>
</tr>
<tr>
<td>X_e</td>
<td>q_0</td>
<td>λ</td>
<td>${(X_t + X_e, q_0), (X_t - X_e, q_0), (X_t, q_0)}$</td>
</tr>
<tr>
<td>X_t</td>
<td>q_0</td>
<td>λ</td>
<td>${(X_f * X_t, q_0), (X_f / X_t, q_0), (X_f, q_0)}$</td>
</tr>
<tr>
<td>X_f</td>
<td>q_0</td>
<td>λ</td>
<td>${(v, q_0), (n, q_0), ()X_e(, q_0)}$</td>
</tr>
<tr>
<td>a</td>
<td>q_0</td>
<td>a</td>
<td>${(\lambda, q_0)}$</td>
</tr>
</tbody>
</table>

The last line of the table applies to every symbol $a \in \{+, -, *, /, (,), v, n\}$. If $\delta(z, q_0, a)$ is not mentioned in the table, then $\delta(z, q_0, a) = \emptyset$.
The word \((n + n) \ast n\) can be generated in \(G_{ae}\) using the leftmost derivation

\[
\begin{align*}
X_e & \Rightarrow X_t & \Rightarrow X_t \ast X_f & \Rightarrow X_f \ast X_f \\
& & \Rightarrow (X_e) \ast X_f & \Rightarrow (X_e + X_t) \ast X_f \\
& & \Rightarrow (X_t + X_t) \ast X_f & \Rightarrow (X_f + X_t) \ast X_f & \Rightarrow (n + X_t) \ast X_f \\
& & & \Rightarrow (n + X_f) \ast X_f & \Rightarrow (n + n) \ast X_f & \Rightarrow (n + n) \ast n.
\end{align*}
\]

that corresponds to the derivation tree shown next:
An Alternative Method of Language Acceptance by PDAs

\[X_e \]

\[X_t \]

\[X_e \]

\[X_f \]

\[* \]

\[n \]

\[X_f \]

\[+ \]

\[X_t \]

\[X_f \]

\[n \]

\[n \]

\[n \]
The computation that leads to the acceptance of the word \((n + n) \ast n\) in \(M\) is

\[
\begin{align*}
(X_e, q_0, (n + n) \ast n) &\vdash (X_t, q_0, (n + n) \ast n) \\
\vdash (X_f \ast X_t, q_0, (n + n) \ast n) &\vdash (X_f \ast X_f, q_0, (n + n) \ast n) \\
\vdash (X_f \ast)X_e(, q_0, (n + n) \ast n) &\vdash (X_f \ast)X_e, q_0, n + n) \ast n) \\
\vdash (X_f \ast)X_t + X_e, q_0, n + n) \ast n) &\vdash (X_f \ast)X_t + X_t, q_0, n + n) \ast n) \\
\vdash (X_f \ast)X_t + X_f, q_0, n + n) \ast n) &\vdash (X_f \ast)X_t + n, q_0, n + n) \ast n) \\
\vdash (X_f \ast)X_t+, q_0, +n) \ast n) &\vdash (X_f \ast)X_t, q_0, n) \ast n) \\
\vdash (X_f \ast)X_f, q_0, n) \ast n) &\vdash (X_f \ast)X_f, q_0, n) \ast n) &\vdash (X_f \ast), q_0,) \ast n) \\
\vdash (X_f\ast, q_0, *n) &\vdash (X_f, q_0, n) \vdash (n, q_0, n) \vdash (\lambda, q_0, \lambda)
\end{align*}
\]
An Alternative Method of Language Acceptance by PDAs

For every pda \(M \) the language \(N(M) \) is context-free.

We need the following technical result showing that whenever there is a pda that accepts a language with an empty store, then there is a way to construct a pda that accepts the same language both with an empty store and by entering a final accepting state.

Theorem

*For every pda \(M = (A, Z, Q, \delta, q_0, z_0, F) \) there exists a pda \(M' = (A, Z', Q', \delta', q'_0, z'_0, \{q'\}) \) such that \((z'_0, q'_0, x) \vdash^*_{M'} (\lambda, q_1, \lambda) \) implies \(q_1 = q' \) and \(N(M) = N(M') = L(M') \).*
Proof

Pick $q'_0, q' \notin Q$ and $z'_0 \notin Z$. Define the pda

$$M' = (A, Z', Q', \delta', q'_0, z'_0, \{q'\})$$

as $Q' = Q \cup \{q'_0, q'\}$, $Z' = Z \cup \{z'\}$, $\delta'(z'_0, q'_0, \lambda) = \{(z'_0z_0, q_0)\}$, $\delta'(z'_0, q, \lambda) = \{(\lambda, q')\}$ for every $q \in Q$, and $\delta'(z, q, a) = \delta(z, q, a)$ in every other case. In other words, M' begins by putting a marker, z'_0, onto the pushdown store and then simulating M until M would have emptied its pushdown store. At this time M' removes the marker, thus emptying its store, and goes into a final state.
Let $x \in N(M)$. We have $(z_0, q_0, x) \xrightarrow{\ast} (\lambda, q, \lambda)$ for some $q \in Q$. Therefore, in M' we have the computation

$$(z'_0, q'_0, x) \xrightarrow{M'} (z'_0 z_0, q_0, x) \xrightarrow{\ast} (z'_0, q, \lambda) \xrightarrow{M'} (\lambda, q', \lambda),$$

so $x \in N(M')$ and $x \in L(M')$, which shows that $N(M) \subseteq N(M')$ and $N(M) \subseteq L(M')$.

(Proof cont’d)
Conversely, suppose that $x \in N(M')$ or that $x \in L(M')$. In the first case, $(z'_0, q'_0, x) \xrightarrow{*}_{M'} (\lambda, \bar{q}, \lambda)$ for some state $\bar{q} \in Q'$. The definition of M' implies that this computation can be written as

$$(z'_0, q'_0, x) \xrightarrow{*}_{M'} (z'_0 z_0, q_0, x) \xrightarrow{*}_{M'} (\lambda, \bar{q}, \lambda).$$

Note that in M' the symbol z'_0 cannot be erased unless M' switches to the state q'. Therefore, in the previous computation we have $\bar{q} = q'$, and this computation can be written as

$$(z'_0, q'_0, x) \xrightarrow{*}_{M'} (z'_0 z_0, q_0, x) \xrightarrow{*}_{M'} (z'_0, q, \lambda) \xrightarrow{*}_{M'} (\lambda, q', \lambda)$$

for some $q \in Q$. Thus, we must have $(z_0, q_0, x) \xrightarrow{*}_{M} (\lambda, q, \lambda)$, that is $x \in N(M)$.

(Proof cont’d)
In the second case, \(x \in L(M') \) implies \((z'_0, q'_0, x) \vdash_{M'} (w, q', \lambda)\). Observe that \(M' \) may enter its final state \(q' \) only by erasing the symbol \(z'_0 \) located at the bottom of the pushdown store. This implies that the above computation has the form

\[
(z'_0, q'_0, x) \vdash_{M'} (z'_0 z_0, q_0, x) \vdash_{M'} (z'_0, q, \lambda) \vdash_{M'} (\lambda, q', \lambda).
\]

As before, this implies the existence of the computation

\[
(z_0, q_0, x) \vdash_{M} (\lambda, q, \lambda), \text{ so } x \in N(M).
\]

We proved that \(N(M') \subseteq N(M) \) and \(L(M') \subseteq N(M) \). Thus, \(N(M) = N(M') = L(M') \), which is the desired conclusion.
Theorem

If \(L \) is a language such that \(L = N(\mathcal{M}) \) for some pda \(\mathcal{M} \), then \(L \) is a context-free language.
Proof

Suppose that $L = N(\mathcal{M})$, where $\mathcal{M} = (A, Z, Q, \delta, q_0, F)$ is a pda. By Theorem 4 we can assume without loss of generality that $F = \{q_f\}$ and that $L = \{x \in A^* \mid (z_0, q_0, x)^* \vdash_{\mathcal{M}} (\lambda, q_f, \lambda)\}$.

Consider the alphabet $\hat{Z} = \{z^{q_iq_j} \mid z \in Z, q_i, q_j \in Q\}$ and the context-free grammar $G = (\hat{Z}, A, z_0^{q_0q_f}, P)$, whose set of productions P is constructed as follows:
If \((z_{i_k} \cdots z_{i_0}, p) \in \delta(z, q, a)\), then place the following productions into \(P\):

\[
z^{qq_{i_k}} \rightarrow a z^{p q_{i_0}} z^{q_{i_0} q_{i_1}} \cdots z^{q_{i_{k-1}} q_{i_k}},
\]

for every \(q_{i_0}, \cdots, q_{i_k} \in Q\).

If \((\lambda, p) \in \delta(z, q, a)\), then place the production \(z^{q_p} \rightarrow a\) into \(P\).

Define the relation \(\rho \subseteq \hat{Z} \times \hat{Z}\) by \((z^{q_i q_j}_m, z^{q_k q_h}_n) \in \rho\) if and only if \(q_j = q_k\) and consider the regular language \(H = L_\rho\). Let \(d : \hat{Z}^* \rightarrow Z^*\) be the morphism defined by \(d(z^{q_i q_j}) = z\) for every \(z^{q_i q_j} \in \hat{Z}\).
(Proof cont’d)

We prove that for $n \geq 1$, we have the leftmost derivation $z^{q_i q_j} \xrightarrow{n} w\alpha$ (where $w \in A^*$ and $\alpha \in \hat{Z}^*$) if and only if $(z, q_i, wy) \xrightarrow{n} M (d(\alpha)^R, p, y)$ and one of the following conditions is satisfied:

- $\alpha \in H$, the first symbol of α has the form z^{pq}, and the last symbol of α has the form z^{qq_j}, or
- $\alpha = \lambda$ and $p = q_j$.

The argument is by induction on n. For the basis step, $n = 1$, suppose that $z^{q_i q_j} \Rightarrow_G w\alpha$. The production applied for this one-step derivation is either $z^{q_i q_j} \rightarrow a z^{p q_i_{i_0}} z^{q_{i_0} q_{i_1}} \cdots z^{q_{i_k-1} q_j}$ which implies

$$w = a \text{ and } \alpha = z^{p q_i_{i_0}} z^{q_{i_0} q_{i_1}} \cdots z^{q_{i_k-1} q_j},$$

or is $z^{q_p} \rightarrow a$, which implies

$$w = a \text{ and } \alpha = \lambda,$$

respectively.
The first case may occur if and only if \((z_{i_k} \cdots z_{i_0}, p) \in \delta(z, q_i, a)\).

Therefore, we have

\[
(z, q_i, ay) \trianglerighteq_{\mathcal{M}} (z_{i_k} \cdots z_{i_0}, p, y) = (d(\alpha)^R, p, y)
\]

Also, the second case takes place if and only if \((\lambda, p) \in \delta(z, q_i, a)\) which is equivalent to

\[
(z, q_i, ay) \trianglerighteq_{\mathcal{M}} (\lambda, p, y).
\]

This concludes the basis step.
For the inductive step assume that the statement holds for n and consider a leftmost derivation of length $n + 1$: $z^{q_iq_j} \xrightarrow{n+1} w' \alpha'$. Two cases may occur depending on form of the production applied in the last step of this derivation:

- If the production applied in the last step was

 $$z^{qq_{j_\ell}} \rightarrow a z_{j_0}^r q_{j_0} q_{j_1} \cdots z_{j_\ell}^{q_{j_\ell-1} q_{j_\ell}},$$

 then the derivation can be written as

 $$z^{q_iq_j} \xrightarrow{n} wz^{qq_{j_\ell}} \alpha \xrightarrow{G} waz_{j_0}^r z_{j_1}^{q_{j_0} q_{j_1}} \cdots z_{j_\ell}^{q_{j_{\ell-1}} q_{j_\ell}} \alpha.$$

 (1)
This takes place if and only if $w' = wa$, $\alpha' = z_{j_0}^{r q_{j_0}} z_{j_1}^{q_{j_0} q_{j_1}} \cdots z_{j_{\ell}}^{q_{j_{\ell-1}} q_{j_\ell}} \alpha$. By the inductive hypothesis, the first part of the derivation takes place if and only if $z^{qq_{j_{\ell}}} \alpha \in H$ and

$$(z, q_i, way) \vdash^n_M (d(z^{qq_{j_{\ell}}} \alpha)^R, q, y) = (d(\alpha)^R z, q, ay).$$

The last step of the derivation can be executed if and only if

$$(z_{j_{\ell}} \cdots z_{j_0}, r) \in \delta(z, q, a),$$

by the definition of the grammar G. Thus, the derivation (1) takes place if and only if

$$(z, q_i, w'y) = (z, q_i, way) \vdash^n_M (d(\alpha)^R z, q, ay)
\vdash_M (d(\alpha)^R z_{j_{\ell}} \cdots z_{j_0}, r, y)
= (d(z_{j_0}^{r q_{j_0}} z_{j_1}^{q_{j_0} q_{j_1}} \cdots z_{j_{\ell}}^{q_{j_{\ell-1}} q_{j_{\ell}}} \alpha)^R, r, y)
= (d(\alpha')^R, r, y).$$
If the production applied in the last step of the derivation was $z^{q_iq_j} \rightarrow a$, the derivation can be written

$$z^{q_iq_j} \xrightarrow{\alpha} w z^{q_iq_j} \xrightarrow{\alpha} wa \alpha. \quad (2)$$

Thus $w' = wa$ and $\alpha' = \alpha$. By the inductive hypothesis we have:

$$(z, q_i, w'y) = (z, q_i, way) \vdash_n (d(z^{q_iq_j} \alpha)^R, q, ay) = (d(\alpha)^R z, q, ay).$$
The existence of the production \(z^{q_{j_ℓ}} \rightarrow a \) is equivalent to \((\lambda, q_{j_ℓ}) \in \delta(z, q, a)\), so the existence of the derivation (2) is equivalent to the existence of the computation

\[
(z, q_0, w'y) \xrightarrow{n} \mathcal{M} (d(\alpha)^R z, q, ay) \xrightarrow{n} \mathcal{M} (d(\alpha)^R, q_{j_ℓ}, y) = (d(\alpha')^R, q_{j_ℓ}, y).
\]

By taking \(q_i = q_0, \alpha = \lambda, z = z_0, y = \lambda, \) and \(p = q_f \) in the initial claim, we conclude that a leftmost derivation \(z^{q_0q_f} \xrightarrow{n} G w \) exists if and only if

\[
(z_0, q_i, w) \xrightarrow{n} \mathcal{M} (\lambda, q_f, \lambda).
\]

This shows that \(L(G) = N(M) \), so \(N(M) \) is indeed a context-free language.
Theorem

Let $L \subseteq A^*$ be a language over the alphabet A. The following statements are equivalent:

- There is a PDA M such that $L = L(M)$.
- There is a PDA M such that $L = N(M)$.
- There is a PDA M (having a single final state) such that $L = N(M) = L(M)$.
- There is an one-state PDA M such that $L = N(M)$.
- L is a context-free language.