Pushdown Automata - II (part II)

Prof. Dan A. Simovici

UMB

1 An Alternative Method of Language Acceptance by PDAs

Another method for associating a language with a pda is to consider the language that consists of those input words for which there is a computation that leads to the emptying of the pushdown store. This is captured by the following definition.

Definition

Let $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ be a pda. The *language accepted by* \mathcal{M} *with an empty store* is given by

$$N(\mathcal{M}) = \{x \in A^* \mid (z_0, q_0, x) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (\lambda, q, \lambda) \text{ for some } q \in Q\}.$$

The set F plays no role in the definition of $N(\mathcal{M})$.

Theorem

For every pda \mathcal{M} there is a pda \mathcal{M}' such that $L(\mathcal{M}) = N(\mathcal{M}')$.

Proof

Let
$$\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$$
. We have

$$L(\mathcal{M}) = \{ x \in A^* \mid (z_0, q_0, x) \stackrel{*}{\vdash}_{\mathcal{M}} (w, q, \lambda) \text{ for some } w \in Z^* \text{ and } q \in F \}.$$

Define the pda $\mathcal{M}' = (A, Z \cup \{z'\}, Q \cup \{q', q'_0\}, \delta', q'_0, z', \emptyset)$, where q', q'_0 are two new states, and z' is a new initial pushdown symbol, where $z' \notin Z$. The transition function δ' is given by

$$\delta'(z,q,a) = \begin{cases} \{(z'z_0,q_0)\} & \text{if } (z,q,a) = (z',q'_0,\lambda), \\ \delta(z,q,a) & \text{if } q \in Q - F, a \in A \cup \{\lambda\}, z \in Z, \\ \delta(z,q,a) \cup \{(\lambda,q')\} & \text{if } q \in F, z \in Z \cup \{z'\}, a \in A \cup \{\lambda\}, \\ \{(\lambda,q')\} & \text{if } q = q', z \in Z \cup \{z'\}, a = \lambda, \\ \emptyset & \text{in any other case.} \end{cases}$$

The symbol z' was introduced for the pda \mathcal{M}' since some words in $A^* - L(\mathcal{M})$ may empty the pushdown store of \mathcal{M} . The presence of z' at the bottom of the pushdown store makes this impossible in \mathcal{M}' . Since $\delta(z', q'_0, \lambda) = \{(z'z_0, q_0)\}, \mathcal{M}'$ begins its work by entering the state q_0 and by placing z_0 at the top of the pushdown store. If $x \in L(\mathcal{M})$, then $(z_0, q_0, x) \stackrel{*}{\underset{\mathcal{M}}{\mapsto}} (w, q, \lambda)$ for some $w \in Z^*$ and $q \in F$. Correspondingly, in \mathcal{M}' we have

$$(z',q_0',x) \stackrel{\vdash}{_{\mathcal{M}'}} (z'z_0,q_0,x) \stackrel{*}{\stackrel{\vdash}{_{\mathcal{M}'}}} (z'w,q,\lambda) \stackrel{*}{\stackrel{}{_{\mathcal{M}'}}} (\lambda,q',\lambda),$$

by the definition of δ' . This implies $L(\mathcal{M}) \subseteq N(\mathcal{M}')$.

(Proof cont'd)

To prove the converse inclusion, let $x \in N(\mathcal{M}')$, so $(z', q'_0, x) \stackrel{-}{\underset{\mathcal{M}'}{\vdash}} (\lambda, q, \lambda)$ for some state $q \in Q \cup \{q', q'_0\}$. The definition of δ' implies that this computation necessarily has the form

$$(z',q_0',x) \stackrel{\vdash}{\underset{\mathcal{M}'}{\vdash}} (z'z_0,q_0,x) \stackrel{*}{\underset{\mathcal{M}'}{\vdash}} (\lambda,q,\lambda),$$

since there exists only one transition for the triple (z', q', λ) , namely $(z'z_0, q_0)$. Note that the symbol z' can be erased by \mathcal{M}' only if this pda reaches a state $q \in F \cup \{q'\}$. Let u be the suffix of x that remains to be read when \mathcal{M}' reached the state q' for the first time. Since \mathcal{M}' enters q' only from a final state q_1 of \mathcal{M} we have:

$$(z',q_0',x) \stackrel{\vdash}{_{\mathcal{M}'}} (z'z_0,q_0,x) \stackrel{*}{\stackrel{\vdash}{_{\mathcal{M}'}}} (w,q_1,u) \stackrel{\vdash}{_{\mathcal{M}'}} (w',q',u) \stackrel{*}{\stackrel{\vdash}{_{\mathcal{M}'}}} (\lambda,q,\lambda),$$

(Proof cont'd)

Once \mathcal{M}' enters the state q' no symbol is read from the input, so we have $u = \lambda$. This allows us to write the previous computation as

$$(z',q_0',x) \stackrel{\vdash}{_{\mathcal{M}'}} (z'z_0,q_0,x) \stackrel{*}{\overset{}{_{\mathcal{H}'}}} (w,q_1,\lambda) \stackrel{\vdash}{_{\mathcal{M}'}} (w',q',\lambda) \stackrel{*}{\overset{}{_{\mathcal{H}'}}} (\lambda,q,\lambda),$$

and this implies the existence of the computation

$$(z_0, q_0, x) \stackrel{*}{\vdash}_{\mathcal{M}} (w, q_1, \lambda),$$

which, in turn, implies $x \in L(\mathcal{M})$. This proves the needed inclusion $N(\mathcal{M}') \subseteq L(\mathcal{M})$.

Theorem

For every context-free grammar G there is a one-state pda \mathfrak{M} such that $L = N(\mathfrak{M})$.

Suppose that L = L(G), where $G = (A_N, A_T, S, P)$ is a context-free grammar. Let $\mathcal{M} = (A_T, A_N \cup A_T, \{q_0\}, \delta, q_0, S, \emptyset)$ be a pda whose transition function is given by

$$\begin{split} \delta(X,q_0,\lambda) &= \{(\alpha^R,q_0) \mid X \to \alpha \in P\}, \\ \delta(a,q_0,a) &= \{(\lambda,q_0)\}, \end{split}$$

for every $a \in A_T$, $X \in A_N$, and $\delta(s, q_0, a) = \emptyset$ in all other cases. Let

$$S = \gamma_0 \stackrel{\Rightarrow}{\Rightarrow} \gamma_1 \stackrel{\Rightarrow}{\Rightarrow} \cdots \stackrel{\Rightarrow}{\Rightarrow} \gamma_n = u\alpha$$

be a leftmost derivation of $u\alpha$ in G, where $u \in A_T^*$ and $\alpha \in (A_N \cup A_T)^*$ is either the null word or a word that begins with a nonterminal symbol. We claim that $(S, q_0, uw) \stackrel{*}{\vdash}_{\mathcal{M}} (\alpha^R, q_0, w)$ for every $w \in A_T^*$. The argument is by induction on n. For n = 0, we have $u = \lambda$ and $\alpha = S$. Thus, the claim is simply

$$(S,q_0,w) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (S,q_0,w),$$

which follows from the definition of $\stackrel{\vdash}{{}_{\mathcal{M}}}$. For the induction step suppose that

$$S = \gamma_0 \stackrel{\Rightarrow}{\Rightarrow} \cdots \stackrel{\Rightarrow}{\Rightarrow} \gamma_n \stackrel{\Rightarrow}{\Rightarrow} \gamma_{n+1} = u\alpha$$

is a leftmost derivation, where $\gamma_n = u'X\theta$ and $\gamma_{n+1} = u'u''\beta\theta$. In other words, the last step of the derivation uses the production $X \to u''\beta$, where $u'' \in A_T^*$ and $\beta \in (A_N \cup A_T)^*$ is either the null word or a word that begins with a nonterminal symbol.

Thus, the derivation above may be written

$$S \stackrel{n}{\Rightarrow}_{G} u' X \theta \Rightarrow_{G} u' u'' \beta \theta,$$

and we have the following computation of $\ensuremath{\mathcal{M}}$:

$$S, q_0, u'u''w) \stackrel{\text{!`}}{=} ((X\theta)^R, q_0, u''w) = (\theta^R X, u''w)$$
(by the inductive hypothesis)
$$\vdash (\theta^R \beta^R u''^R, q_0, u''w)$$
(since $(\beta^R u''^R, q_0) \in \delta(X, q_0, \lambda)$)
$$\stackrel{\text{!`}}{=} (\theta^R \beta^R, q_0, w).$$

The last line follows from the observation that $\delta(a, q_0, a) = \{(\lambda, q_0)\}$ for each $a \in A_T$ implies that $(x^R, q_0, x) \models^* (\lambda, q_0, \lambda)$ for every $x \in A_T^*$. Since $\theta^R \beta^R = (\beta \theta)^R$, we have completed the induction step. Therefore, if $u \in L(G)$ we have $S \stackrel{*}{\Rightarrow}_{G} u$, and this implies $(S, q_0, u) \models^* (\lambda, q_0, \lambda)$, which shows that $u \in N(\mathcal{M})$, hence $L(G) \subseteq N(\mathcal{M})$. To prove that $N(\mathcal{M}) \subseteq L(G)$, we show that $(X, q_0, u) \stackrel{*}{\vdash}_{\mathcal{M}} (\lambda, q_0, \lambda)$ implies $X \stackrel{*}{\Rightarrow} u$ for $X \in A_N$ and $u \in A_T^*$.

We factor the input word u into a series of subwords $u = u_0 u_1 \cdots u_{k-1}$, each corresponding to a certain change in the pushdown store. Specifically, the top symbol of the pushdown store of each step of the computation can be either a terminal or a nonterminal symbol. Any step at which a nonterminal is at the top determines the boundary between a u_i and its successor u_{i+1} in the input. Thus, u_i could be empty (when a nonterminal at the top is replaced by a nonterminal) or could contain several symbols (when there are terminal symbols at the top that are popped off by transitions of the form $(\lambda, q_0) \in \delta(a, q_0, a)$). Thus, we can write $u = u_0 u_1 \cdots u_{k-1}$, where $u_i \in A_T^*$ for $0 \le i \le k-1$, and

$$egin{array}{rcl} (X, q_0, u) &=& (\gamma_0, q_0, u_0 u_1 \cdots u_{k-1}) \ &arepsilon & & & \ &arepsilon & arepsilon & & \ &arepsilon & & \ &arepsilon & arepsilon & & \ &arepsilon & arepsilon & arepsilon & & \ &arepsilon & arepsilon & arepsilo$$

where each γ_i has the form $\gamma'_i X$ for $\gamma'_i \in (A_T \cup A_N)^*$ and $X \in A_N$.

The definition of $\ensuremath{\mathcal{M}}$ implies that the computation

$$(\gamma_i, q_0, u_i \cdots u_{k-1}) \stackrel{*}{\vdash}_{\mathcal{M}} (\gamma_{i+1}, q_0, u_{i+1} \cdots u_{k-1})$$

can be written as

$$\begin{aligned} (\gamma_i, q_0, u_i \cdots u_{k-1}) &= & (\gamma'_i X_{p_i}, q_0, u_i \cdots u_{k-1}) \\ & \vdash & (\gamma'_i \alpha_{p_i}{}^R, q_0, u_i \cdots u_{k-1}) \\ & \stackrel{*}{\vdash} & (\gamma_{i+1}, q_0, u_{i+1} \cdots u_{k-1}), \end{aligned}$$

where $X_{p_i} \to \alpha_{p_i} = u_i \beta_{p_i}$ is a production of G such that $\beta_{p_i} \in (A_N \cup A_T)^*$ is the null word or a word that begins with a nonterminal symbol, and $\gamma_{i+1} = \gamma'_i \beta_{p_i}^R$ for $0 \le i \le k-1$.

We prove by induction on ℓ that we have the leftmost derivation

$$\gamma_{k-1-\ell}^R \stackrel{*}{\Rightarrow} u_{k-1-\ell} \cdots u_{k-1}.$$

For $\ell = 0$ we have

$$(\gamma_{k-1}, q_0, u_{k-1}) \stackrel{\vdash}{\underset{\mathcal{M}}{\vdash}} (u_{k-1}{}^R, q_0, u_{k-1}) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (\lambda, q_0, \lambda),$$

because γ_{k-1} is the last content of the pushdown store that may contain a nonterminal, which means that $\gamma_{k-1} = X \in A_N$ and $X \to u_{k-1} \in P$. Therefore, $\gamma_{k-1}{}^R = X \stackrel{*}{\underset{G}{\Rightarrow}} u_{k-1}$.

Suppose that
$$\gamma_{i+1}{}^R \stackrel{*}{\Rightarrow}_G u_{i+1} \cdots u_{k-1}$$
; that is, $\beta_{p_i} \gamma_i'^R \stackrel{*}{\Rightarrow}_G u_{i+1} \cdots u_{k-1}$.
This implies $u_i \beta_{p_i} \gamma_i'^R \stackrel{*}{\Rightarrow}_G u_i u_{i+1} \cdots u_{k-1}$, so $\alpha_{p_i} \gamma_i'^R \stackrel{*}{\Rightarrow}_G u_i u_{i+1} \cdots u_{k-1}$.
The existence of the production $X_i \to \alpha_{p_i}$ allows us to write

$$X_i \gamma_i^{\prime R} \stackrel{\Rightarrow}{\Rightarrow} \alpha_{p_i} \gamma_i^{\prime R} \stackrel{*}{\stackrel{\Rightarrow}{\Rightarrow}} u_i u_{i+1} \cdots u_{k-1},$$

and $X_i \gamma_i^{R} = (\gamma_i^{\prime} X_i)^{R} = \gamma_i^{R}$. Choosing X = S we conclude that $x \in N(\mathcal{M})$ implies $(S, q_0, u) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (\lambda, q_0, \lambda)$, which in turn, implies $S \stackrel{*}{\underset{G}{\Rightarrow}} u$ and $u \in L(G)$. Note that a computation of the pda \mathcal{M} that leads to the acceptance of a word *u* uniquely defines a leftmost derivation in the grammar *G*. Consider the nonambiguous context-free grammar

$$G_{ae} = (\{X_e, X_t, X_f\}, \{+, -, *, /, (,), v, n\}, X_e, P)$$

introduced before which generates the language of parenthesized arithmetic expressions. The transitions in the pda are:

Production in Gae	Transitions in $\delta(X, q_0, \lambda)$
	where X is the left member of production
$\pi_0: X_e \to X_e + X_t$	$(X_t + X_e, \lambda)$
$\pi_1: X_e \to X_e - X_t$	$(X_t - X_e, \lambda)$
$\pi_2: X_e \to X_t$	(X_t, λ)
$\pi_3: X_t \to X_t * X_f$	$(X_f * X_t, \lambda)$
$\pi_4: X_t \to X_t/X_f$	$(X_f/X_t,\lambda)$
$\pi_5: X_t \to X_f$	(X_f, λ)
$\pi_6: X_f o v$	(v, λ)
$\pi_7: X_f o n$	(n, λ)
$\pi_8: X_f ightarrow (X_e)$	$(\mathbf{)}X_{e}(\mathbf{,\lambda})$

The pda that accepts the language $L(G_{ae})$ with an empty pushdown store is:

$$\mathcal{M} = (\{+, -, *, /, (,), v, n\}, \{X_e, X_t, X_f, +, -, *, /, (,), v, n\}, \{q_0\}, \delta, q_0, X_e, \emptyset),$$

where δ is specified by the table in the next slide.

(Example cont'd)

Тор	State	Input	Transition Function
z	q	а	$\delta(z,q,a)$
X _e	q_0	λ	$\{(X_t + X_e, q_0), (X_t - X_e, q_0), (X_t, q_0)\}$
X_t	q_0	λ	$\{(X_f * X_t, q_0), (X_f / X_t, q_0), (X_f, q_0)\}$
X_f	q_0	λ	$\{(v, q_0), (n, q_0), (\mathbf{)} X_e(, q_0)\}$
а	q_0	а	$\{(\lambda, q_0)\}$

The last line of the table applies to every symbol $a \in \{+, -, *, /, (,), v, n\}$. If $\delta(z, q_0, a)$ is not mentioned in the table, then $\delta(z, q_0, a) = \emptyset$.

(Example cont'd)

The word (n+n)*n can be generated in G_{ae} using the leftmost derivation

$$\begin{array}{l} X_{e} \stackrel{\Rightarrow}{_{\pi_{2}}} X_{t} \stackrel{\Rightarrow}{_{\pi_{3}}} X_{t} * X_{f} \stackrel{\Rightarrow}{_{\pi_{5}}} X_{f} * X_{f} \\ \stackrel{\Rightarrow}{_{\pi_{8}}} (X_{e}) * X_{f} \stackrel{\Rightarrow}{_{\pi_{0}}} (X_{e} + X_{t}) * X_{f} \\ \stackrel{\Rightarrow}{_{\pi_{8}}} (X_{t} + X_{t}) * X_{f} \stackrel{\Rightarrow}{_{\pi_{5}}} (X_{f} + X_{t}) * X_{f} \stackrel{\Rightarrow}{_{\pi_{7}}} (n + X_{t}) * X_{f} \\ \stackrel{\Rightarrow}{_{\pi_{5}}} (n + X_{f}) * X_{f} \stackrel{\Rightarrow}{_{\pi_{7}}} (n + n) * X_{f} \stackrel{\Rightarrow}{_{\pi_{7}}} (n + n) * n. \end{array}$$

that corresponds to the derivation tree shown next:

The computation that leads to the acceptance of the word (n + n) * n in ${\mathfrak M}$ is

$$\begin{array}{l} (X_{e},q_{0},(n+n)*n) \underset{\mathcal{M}}{\vdash} (X_{t},q_{0},(n+n)*n) \\ \underset{\mathcal{M}}{\vdash} (X_{f}*X_{t},q_{0},(n+n)*n) \underset{\mathcal{M}}{\vdash} (X_{f}*X_{f},q_{0},(n+n)*n) \\ \underset{\mathcal{M}}{\vdash} (X_{f}*)X_{e}(,q_{0},(n+n)*n) \underset{\mathcal{M}}{\vdash} (X_{f}*)X_{e},q_{0},n+n)*n) \\ \underset{\mathcal{M}}{\vdash} (X_{f}*)X_{t}+X_{e},q_{0},n+n)*n) \underset{\mathcal{M}}{\vdash} (X_{f}*)X_{t}+X_{t},q_{0},n+n)*n) \\ \underset{\mathcal{M}}{\vdash} (X_{f}*)X_{t}+X_{f},q_{0},n+n)*n) \underset{\mathcal{M}}{\vdash} (X_{f}*)X_{t}+n,q_{0},n+n)*n) \\ \underset{\mathcal{M}}{\vdash} (X_{f}*)X_{t}+,q_{0},+n)*n) \underset{\mathcal{M}}{\vdash} (X_{f}*)X_{t},q_{0},n)*n) \\ \underset{\mathcal{M}}{\vdash} (X_{f}*)X_{f},q_{0},n)*n) \underset{\mathcal{M}}{\vdash} (X_{f}*)n,q_{0},n)*n) \underset{\mathcal{M}}{\vdash} (X_{f}*),q_{0},)*n) \\ \underset{\mathcal{M}}{\vdash} (X_{f}*,q_{0},*n) \underset{\mathcal{M}}{\vdash} (X_{f},q_{0},n) \underset{\mathcal{M}}{\vdash} (n,q_{0},n) \underset{\mathcal{M}}{\vdash} (\lambda,q_{0},\lambda) \end{array}$$

For every pda \mathcal{M} the language $N(\mathcal{M})$ is context-free.

We need the following technical result showing that whenever there is a pda that accepts a language with an empty store, then there is a way to construct a pda that accepts the same language both with an empty store and by entering a final accepting state.

Theorem

For every pda $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ there exists a pda $\mathcal{M}' = (A, Z', Q', \delta', q'_0, z'_0, \{q'\})$ such that $(z'_0, q'_0, x) \stackrel{*}{\vdash}_{\mathcal{M}'} (\lambda, q_1, \lambda)$ implies $q_1 = q'$ and $\mathcal{N}(\mathcal{M}) = \mathcal{N}(\mathcal{M}') = \mathcal{L}(\mathcal{M}').$

Proof

Pick $q'_0, q' \notin Q$ and $z'_0 \notin Z$. Define the pda

 $\mathcal{M}' = (A, Z', Q', \delta', q'_0, z'_0, \{q'\})$

as $Q' = Q \cup \{q'_0, q'\}$, $Z' = Z \cup \{z'\}$, $\delta'(z'_0, q'_0, \lambda) = \{(z'_0z_0, q_0)\}$, $\delta'(z'_0, q, \lambda) = \{(\lambda, q')\}$ for every $q \in Q$, and $\delta'(z, q, a) = \delta(z, q, a)$ in every other case. In other words, \mathcal{M}' begins by putting a marker, z'_0 , onto the pushdown store and then simulating \mathcal{M} until \mathcal{M} would have emptied its pushdown store. At this time \mathcal{M}' removes the marker, thus emptying its store, and goes into a final state.

(Proof cont'd)

Let $x \in N(\mathcal{M})$. We have $(z_0, q_0, x) \stackrel{\circ}{\vdash}_{\mathcal{M}} (\lambda, q, \lambda)$ for some $q \in Q$. Therefore, in \mathcal{M}' we have the computation

$$(z'_0,q'_0,x) \stackrel{\vdash}{\underset{\mathcal{M}'}{\vdash}} (z'_0z_0,q_0,x) \stackrel{*}{\underset{\mathcal{M}'}{\vdash}} (z'_0,q,\lambda) \stackrel{\vdash}{\underset{\mathcal{M}'}{\vdash}} (\lambda,q',\lambda),$$

so $x \in N(\mathcal{M}')$ and $x \in L(\mathcal{M}')$, which shows that $N(\mathcal{M}) \subseteq N(\mathcal{M}')$ and $N(\mathcal{M}) \subseteq L(\mathcal{M}')$.

(Proof cont'd)

Conversely, suppose that $x \in N(\mathcal{M}')$ or that $x \in L(\mathcal{M}')$. In the first case, $(z'_0, q'_0, x) \stackrel{*}{\underset{\mathcal{M}'}{\vdash}} (\lambda, \bar{q}, \lambda)$ for some state $\bar{q} \in Q'$. The definition of \mathcal{M}' implies that this computation can be written as

$$(z_0',q_0',x) \stackrel{\vdash}{\underset{\mathcal{M}'}{\vdash}} (z_0'z_0,q_0,x) \stackrel{*}{\underset{\mathcal{M}'}{\vdash}} (\lambda,ar{q},\lambda).$$

Note that in \mathcal{M}' the symbol z'_0 cannot be erased unless \mathcal{M}' switches to the state q'. Therefore, in the previous computation we have $\bar{q} = q'$, and this computation can be written as

$$(z_0',q_0',x) \stackrel{\vdash}{_{\mathcal{M}'}} (z_0'z_0,q_0,x) \stackrel{*}{\stackrel{\vdash}{_{\mathcal{M}'}}} (z_0',q,\lambda) \stackrel{\vdash}{_{\mathcal{M}'}} (\lambda,q',\lambda)$$

for some $q \in Q$. Thus, we must have $(z_0, q_0, x) \stackrel{*}{\vdash}_{\mathcal{M}} (\lambda, q, \lambda)$, that is $x \in N(\mathcal{M})$.

In the second case, $x \in L(\mathcal{M}')$ implies $(z'_0, q'_0, x) \stackrel{\circ}{\mapsto}_{\mathcal{M}'} (w, q', \lambda)$. Observe that \mathcal{M}' may enter its final state q' only by erasing the symbol z'_0 located at the bottom of the pushdown store. This implies that the above computation has the form

$$(z'_0,q'_0,x) \stackrel{\vdash}{_{\mathcal{M}}} (z'_0z_0,q_0,x) \stackrel{*}{\stackrel{\vdash}{_{\mathcal{M}'}}} (z'_0,q,\lambda) \stackrel{\vdash}{_{\mathcal{M}'}} (\lambda,q',\lambda).$$

As before, this implies the existence of the computation $(z_0, q_0, x) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (\lambda, q, \lambda)$, so $x \in N(\mathcal{M})$. We proved that $N(\mathcal{M}') \subseteq N(\mathcal{M})$ and $L(\mathcal{M}') \subseteq N(\mathcal{M})$. Thus, $N(\mathcal{M}) = N(\mathcal{M}') = L(\mathcal{M}')$, which is the desired conclusion.

Theorem

If L is a language such that L = N(M) for some pda M, then L is a context-free language.

Proof

Suppose that $L = N(\mathcal{M})$, where $\mathcal{M} = (A, Z, Q, \delta, q_0, F)$ is a pda. By Theorem 4 we can assume without loss of generality that $F = \{q_f\}$ and that $L = \{x \in A^* \mid (z_0, q_0, x) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (\lambda, q_f, \lambda)\}$. Consider the alphabet $\hat{Z} = \{z^{q_i q_j} \mid z \in Z, q_i, q_j \in Q\}$ and the context-free grammar $G = (\hat{Z}, A, z_0^{q_0 q_f}, P)$, whose set of productions P is constructed as follows: If (z_{ik} · · · z_{i0}, p) ∈ δ(z, q, a), then place the following productions into P:

$$z^{qq_{i_k}} \to az_{i_0}^{pq_{i_0}} z_{i_1}^{q_{i_0}q_{i_1}} \cdots z_{i_k}^{q_{i_{k-1}}q_{i_k}}$$

for every $q_{i_0}, \cdots, q_{i_k} \in Q$.

• If $(\lambda, p) \in \delta(z, q, a)$, then place the production $z^{qp} \to a$ into P. Define the relation $\rho \subseteq \hat{Z} \times \hat{Z}$ by $(z_m^{q_iq_j}, z_n^{q_kq_h}) \in \rho$ if and only if $q_j = q_k$ and consider the regular language $H = L_{\rho}$. Let $d : \hat{Z}^* \longrightarrow Z^*$ be the morphism defined by $d(z^{q_iq_j}) = z$ for every $z^{q_iq_j} \in \hat{Z}$.

(Proof cont'd)

We prove that for $n \ge 1$, we have the leftmost derivation $z^{q_i q_j} \stackrel{n}{\to} w\alpha$ (where $w \in A^*$ and $\alpha \in \hat{Z}^*$) if and only if $(z, q_i, wy) \stackrel{n}{\mapsto} (d(\alpha)^R, p, y)$ and one of the following conditions is satisfied:

- $\alpha \in H$, the first symbol of α has the form z^{pq} , and the last symbol of α has the form z^{qq_j} , or
- $\alpha = \lambda$ and $p = q_j$.

The argument is by induction on *n*. For the basis step, n = 1, suppose that $z^{q_i q_j} \underset{G}{\Rightarrow} w\alpha$. The production applied for this one-step derivation is either $z^{q_i q_j} \rightarrow a z_{i_0}^{pq_{i_0}} z_{i_1}^{q_{i_0}q_{i_1}} \cdots z_{i_k}^{q_{i_{k-1}}q_j}$ which implies w = a and $\alpha = z_{i_0}^{pq_{i_0}} z_{i_1}^{q_{i_0}q_{i_1}} \cdots z_{i_k}^{q_{i_{k-1}}q_j}$,

or is $z^{qp} \rightarrow a$, which implies

$$w = a$$
 and $\alpha = \lambda$,

respectively.

The first case may occur if and only if $(z_{i_k} \cdots z_{i_0}, p) \in \delta(z, q_i, a)$. Therefore, we have

$$(z, q_i, ay) \stackrel{\vdash}{}_{\mathcal{M}} (z_{i_k} \cdots z_{i_0}, p, y) = (d(\alpha)^R, p, y)$$

Also, the second case takes place if and only if $(\lambda, p) \in \delta(z, q_i, a)$ which is equivalent to

$$(z,q_i,ay) \vdash_{\mathcal{M}} (\lambda,p,y).$$

This concludes the basis step.

For the inductive step assume that the statement holds for n and consider a leftmost derivation of length n + 1: $z^{q_i q_j} \stackrel{n+1}{\underset{G}{\Rightarrow}} w'\alpha'$. Two cases may occur depending on form of the production applied in the last step of this derivation:

If the production applied in the last step was

$$z^{qq_{j_{\ell}}} \to az_{j_0}^{rq_{j_0}} z_{j_1}^{q_{j_0}q_{j_1}} \cdots z_{j_{\ell}}^{q_{j_{\ell-1}}q_{j_{\ell}}},$$

then the derivation can be written as

$$z^{q_iq_j} \stackrel{n}{\Rightarrow}_{G} wz^{qq_{j_\ell}} \alpha \Rightarrow_{G} waz_{j_0}^{rq_{j_0}} z_{j_1}^{q_{j_0}q_{j_1}} \cdots z_{j_\ell}^{q_{j_{k-1}}q_{j_\ell}} \alpha.$$
(1)

An Alternative Method of Language Acceptance by PDAs

This takes place if and only if w' = wa, $\alpha' = z_{j_0}^{rq_{j_0}} z_{j_1}^{q_{j_0}q_{j_1}} \cdots z_{j_\ell}^{q_{j_\ell-1}q_{j_\ell}} \alpha$. By the inductive hypothesis, the first part of the derivation takes place if and only if $z^{qq_{j_\ell}} \alpha \in H$ and

$$(z, q_i, way) \stackrel{n}{\vdash}_{\mathcal{M}} (d(z^{qq_{j_\ell}}\alpha)^R, q, y) = (d(\alpha)^R z, q, ay).$$

The last step of the derivation can be executed if and only if

$$(z_{j_\ell}\cdots z_{j_0},r)\in \delta(z,q,a),$$

by the definition of the grammar G. Thus, the derivation (1) takes place if and only if

$$(z, q_i, w'y) = (z, q_i, way) \stackrel{n}{\vdash} (d(\alpha)^R z, q, ay)$$
$$\stackrel{h}{\longrightarrow} (d(\alpha)^R z_{j_\ell} \cdots z_{j_0}, r, y)$$
$$= (d(z_{j_0}^{rq_{j_0}} z_{j_1}^{q_{j_0}q_{j_1}} \cdots z_{j_\ell}^{q_{j_\ell-1}q_{j_\ell}} \alpha)^R, r, y)$$
$$= (d(\alpha')^R, r, y).$$

• If the production applied in the last step of the derivation was $z^{qq_{j_\ell}} o a$, the derivation can be written

$$z^{q_i q_j} \stackrel{n}{\underset{G}{\Rightarrow}} w z^{q q_{j_\ell}} \alpha \stackrel{n}{\underset{G}{\Rightarrow}} w a \alpha.$$
 (2)

Thus w' = wa and $\alpha' = \alpha$. By the inductive hypothesis we have:

$$(z,q_i,w'y)=(z,q_i,way) \stackrel{n}{\mathop{\mapsto}\limits_{\mathcal{M}}} (d(z^{qq_{j_\ell}}lpha)^R,q,\mathsf{a}y)=(d(lpha)^Rz,q,\mathsf{a}y).$$

 The existence of the production z^{qq_{jℓ}} → a is equivalent to (λ, q_{jℓ}) ∈ δ(z, q, a), so the existence of the derivation (2) is equivalent to the existence of the computation

$$(z, q_0, w'y) \stackrel{n}{\vdash}_{\mathcal{M}} (d(\alpha)^R z, q, ay) \stackrel{h}{\vdash}_{\mathcal{M}} (d(\alpha)^R, q_{j_\ell}, y) = (d(\alpha')^R, q_{j_\ell}, y).$$

By taking $q_i = q_0$, $\alpha = \lambda$, $z = z_0$, $y = \lambda$, and $p = q_f$ in the initial claim, we conclude that a leftmost derivation $z^{q_0q_f} \stackrel{n}{\Rightarrow}_{G} w$ exists if and only if

$$(z_0, q_i, w) \stackrel{n}{\vdash}_{\mathcal{M}} (\lambda, q_f, \lambda).$$

This shows that $L(G) = N(\mathcal{M})$, so $N(\mathcal{M})$ is indeed a context-free language.

Theorem

Let $L \subseteq A^*$ be a language over the alphabet A. The following statements are equivalent:

- There is a pda \mathcal{M} such that $L = L(\mathcal{M})$.
- There is a pda \mathfrak{M} such that $L = N(\mathfrak{M})$.
- There is a pda \mathcal{M} (having a single final state) such that $L = \mathcal{N}(\mathcal{M}) = \mathcal{L}(\mathcal{M}).$
- There is an one-state pda \mathcal{M} such that $L = \mathcal{N}(\mathcal{M})$.
- L is a context-free language.