Pushdown Automata - III (part III)

Prof. Dan A. Simovici

UMB

1 Deterministic Context-Free Languages

Definition

A deterministic pushdown automaton (dpda) is a pda
M = (A, Z, Q, δ, q₀, z₀, F) that satisfies the following conditions:
Por every z ∈ Z, q ∈ Q and a ∈ A ∪ {λ} we have |δ(z, q, a)| ≤ 1.
If δ(z, q, λ) ≠ Ø, then δ(z, q, a) = Ø for every a ∈ A.
A language L is deterministic context-free (dcfl) if there is some dpda M such that L = L(M).

The second condition means that if a null transition exists when the dpda \mathcal{M} sees z at the top of the pushdown store and its internal state is q, then no symbol can be read from the input tape of the automaton. Clearly, every deterministic context-free language is also a context-free language.

Example

 $L = \{a^n b^n \mid n \in \mathbb{N}\}$ is a deterministic context-free language. Indeed, consider the dpda

$$\mathcal{M} = (\{a, b\}, \{z_0, a\}, \{q_0, q_1, q_2\}, \delta, q_0, z_0, \{q_2\}),$$

where δ is defined by the table shown next. For triples (z, q, a) that do not occur in that table we have $\delta(z, q, a) = \emptyset$.

Тор	State	Input	$\delta(z,q,a)$
<i>z</i> 0	q_0	λ	(z_0, q_2)
<i>z</i> 0	q_2	а	(z_0a, q_1)
а	q_1	а	(aa, q_1)
а	q_1	Ь	(λ, q_1)
<i>z</i> 0	q_1	λ	(z_0, q_2)

(Example cont'd)

For the word $aaabbb \in L$ we have the computation:

$$(z_0, q_0, aaabbb) \vdash (z_0, q_2, aaabbb) \vdash (z_0a, q_1, aabbb) \mapsto (z_0aa, q_1, abbb) \vdash (z_0aaa, q_1, bbb) \vdash (z_0aa, q_1, bb) \mapsto (z_0a, q_1, b) \vdash (z_0, q_1, \lambda) \vdash (z_0, q_2, \lambda),$$

which shows that $aaabbb \in L(\mathcal{M})$. Similarly, $\lambda \in L(\mathcal{M})$ because

$$(z_0, q_0, \lambda) \vdash (z_0, q_2, \lambda).$$

Note that $aab \notin L$. The computation that begins with the word bab on the input tape is

$$(z_0, q_0, aab) \vdash (z_0, q_2, aab) \vdash (z_0a, q_1, ab) (z_0aa, q_1, b) \vdash (z_0a, q_1, \lambda),$$

and no further move is possible.

Therefore, the final state q_2 cannot be reached and we may conclude that $aab \notin L(\mathcal{M})$. For other input words, such as *bab*, the dpda is unable to read its input; indeed, in this case, we have a two-step computation

$$(z_0,q_0,bab)\vdash(z_0,q_2,bab),$$

and the impossibility of reading the input word implies $bab \notin L(\mathcal{M})$. It is easy to prove that $L(\mathcal{M}) = \{a^n b^n \mid n \in \mathbb{N}\}$.

Example

The language $L = \{xcx^R \mid x \in \{a, b\}^*\}$ is deterministic. Consider the dpda $\mathcal{M} = (\{a, b, c\}, \{z_0, a, b\}, \{q_0, q_1, q_2\}, \delta, q_0, z_0, \{q_2\})$. Transition sets not mentioned in the table are empty.

Тор	State	Input	$\delta(z,q,a)$
<i>z</i> 0	q_0	а	$(z_0 a, q_0)$
<i>z</i> 0	q_0	Ь	(z_0b,q_0)
<i>z</i> 0	q_0	С	(z_0, q_1)
а	q_0	а	(aa, q_0)
а	q_0	Ь	(ab, q_0)
а	q_0	с	(a, q_1)
b	q_0	а	(ba, q_0)
b	q_0	Ь	(bb, q_0)
b	q_0	С	(b, q_1)
а	q_1	а	(λ, q_1)
b	q_1	Ь	(λ, q_1)
Z_0	<i>q</i> ₁	λ	(λ, q_2)

Definition

Let n be a positive natural number. The *parenthetic alphabet of order* n is the set

$$A_n = \{(_0, \ldots, (_{n-1},)_0, \ldots,)_{n-1}\}$$

The parenthetic language of order n is the context-free language PAR_n generated by the grammar $G_n = (\{S\}, A_n, S, P)$ whose set of productions is

$$\mathsf{P} = \{\mathsf{S} \to \mathsf{S}\mathsf{S}, \mathsf{S} \to \lambda, \mathsf{S} \to (_0\mathsf{S})_0, \dots, \mathsf{S} \to (_{n-1}\mathsf{S})_{n-1}\}.$$

The next result lists some elementary properties of parenthetic languages.

Lemma

The following statements concerning the language PAR_n hold:

• if
$$u, v \in PAR_n$$
, then $uv \in PAR_n$;

② *if* $u \in PAR_n$, *then* $(_iu)_i \in PAR_n$ *for* 0 ≤ i ≤ n - 1;

- ◎ if $(_i)_i u \in PAR_n$ for some i, $0 \leq i \leq n-1$, then $u \in PAR_n$;
- for every word w ∈ PAR_n − {λ} there are u, v ∈ PAR_n such that w = (_iu)_iv for some i, 0 ≤ i ≤ n − 1.

Example

Let $A_n = \{(0, \dots, (n-1, 0), \dots, 0)\}$. The parenthetic language PAR_n on the alphabet A_n is a deterministic context-free language. The dpda

$$\mathcal{M} = (A_n, \{z_0\} \cup A_n, \{q_0, q_1\}, \delta, q_0, z_0, \{q_0\}),$$

whose transition function is given by the table contained in the next slide (where $0 \le i, j \le n-1$) accepts the language PAR_n.

Тор	State	Input	Transition Function
<i>z</i> 0	q_0	(i	$(z_0(i, q_1))$
(j	q_1	(i	$((_{i}(_{i}, q_{1})$
(i	q_1),	(λ, q_1)
<i>z</i> 0	q_1	λ	(z_0, q_0)

- For a dpda, we may write $\delta(z, q, a) = (w, p)$ instead of $\delta(z, q, a) = \{(w, p)\}$ in order to simplify the notation. A dpda does not always have a next move. This may happen because
 - for some pair $(z,q) \in Z \times Q$, such that $\delta(z,q,a) = \emptyset$ for every $a \in A \cup \{\lambda\}$, or
 - because the pushdown store is empty.

However, it is possible to ensure that for each dpda there is an equivalent dpda that always has a next move.

To do this:

- Create M' by adding a marker symbol z₀, at the bottom of the pushdown store and a "sink" state q

 , one that can never be left.
- Any computation of M that would have emptied the stack results in M' having z₀ at the top of the stack. This forces M' into state q
 .
- Also, any pair (z, q) that could block a computation is augmented to allow a transition to q
 for each input symbol such that δ(z, q, a) = ∅.

Theorem

For every dpda $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ there exists a dpda $\mathcal{M}' = (A, Z', Q', \delta', q'_0, z'_0, F')$ that is equivalent to \mathcal{M} and satisfies the following conditions:

Sor every z' ∈ Z', q' ∈ Q' exactly one of the following cases may occur:

•
$$|\delta'(z',q',a)| = 1$$
 for every $a \in A$ and $\delta'(z',q',\lambda) = \emptyset$, or
• $|\delta'(z',q',\lambda)| = 1$, and $\delta'(z',q',a) = \emptyset$ for every $a \in A$.

Sor every q', q'' ∈ Q, if δ'(z'₀, q', a) = (w, q'') for some a ∈ A ∪ {λ}, then w = z'₀u for some u ∈ Z*.

Proof

Let $Z' = Z \cup \{z'_0\}$, $Q' = Q \cup \{q'_0, \bar{q}\}$, where $z'_0 \notin Z$ and $q'_0, \bar{q} \notin Q$, F' = F, and let δ' be defined as follows.

•
$$\delta'(z'_0, q'_0, \lambda) = (z'_0 z_0, q_0);$$

- $\delta(z_0',q,a)=(z_0',ar{q})$ for $q\in Q$ and $a\in A$;
- if $\delta(z, q, a) \neq \emptyset$, then $\delta'(z, q, a) = \delta(z, q, a)$ for $z \in Z$, $q \in Q$, and $a \in A \cup \{\lambda\}$;
- if $\delta(z, q, \lambda) = \emptyset$ and there is $a \in A$ such that $\delta(z, q, a) = \emptyset$, then $\delta'(z, q, a) = (z, \overline{q})$;
- $\delta'(z, \overline{q}, a) = (z, \overline{q})$ for every $z \in Z$ and $a \in A$.

Proof (cont'd)

It is easy to see, by inspecting the definition of δ' , that the conditions of the theorem are satisfied. Furthermore, we have $(z_0, q_0, x) \stackrel{*}{\underset{M}{\mapsto}} (w, q, \lambda)$ if and only if

$$(z'_0,q'_0,x) \stackrel{\vdash}{\underset{\mathcal{M}'}{\vdash}} (z'_0z_0,q_0,x) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (z'_0w,q,\lambda),$$

which implies $L(\mathcal{M}) = L(\mathcal{M}')$.

Note that the dpda \mathcal{M}' defined above never empties its stack (because its initial stack symbol z'_0 always remains at the bottom of the stack); also, \mathcal{M}' always has a next move, so we may assume that for every dcfl L there exists a dpda \mathcal{M} such that \mathcal{M} always has a next move and $L = L(\mathcal{M})$.

Example

The dpda \mathcal{M}^\prime obtained from the dpda introduced in Example on Slide 4 is

$$\mathcal{M}' = (\{a,b\},\{z'_0,z_0,a\},\{q_0,q_1,q_2,q'_0,ar{q}\},\delta',q'_0,z'_0,\{q_2\}),$$

where the transition function is defined by the table shown next. Triples of the form (z, q, i) such that $i \in A \cup \{\lambda\}$ and $\delta(z, q, i) = \emptyset$ are omitted from this table.

Тор	State	Input i	$\delta(z, q, i)$
z ₀	q_0'	λ	$(z_0'z_0, q_0)$
z'	$q \in \{q_0, q_1, q_2\}$	$i \in \{a, b\}$	(z'_0, \bar{q})
z ₀	90	λ	(z_0, q_2)
<i>z</i> 0	<i>q</i> ₂	а	$(z_0 a, q_1)$
а	<i>q</i> 1	а	(aa, q_1)
а	<i>q</i> 1	Ь	(λ, q_1)
z ₀	q ₁	λ	(z_0, q_2)
$z \in \{a, z'_0\}$	<i>q</i> 0	$i \in \{a, b\}$	(z, \bar{q})
z ₀	q ₂	$i \in \{a, b\}$	(z, \bar{q})
z ₀	q ₂	Ь	(z_0, \bar{q})
z ₀	q ₁	$i \in \{a, b\}$	(z, \bar{q})
$z \in \{z_0, a, z'_0\}$		$i \in \{a, b\}$	(z, \bar{q})

The dpda $\ensuremath{\mathfrak{M}}'$ can read any input word. For example, we have the computation:

$$(z'_0, q'_0, bab) \vdash (z'_0 z_0, q_0, bab) \vdash (z'_0 z_0, q_2, bab) \\ \vdash (z'_0 z_0, \bar{q}, ab) \vdash (z'_0 z_0, \bar{q}, b) \vdash (z'_0 z_0, \bar{q}, \lambda).$$

Definition

Let $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ be a dpda. An instantaneous description (w, q, x) of \mathcal{M} is *looping* if for every $n \in \mathbb{N}$, n > 0, there exists an instantaneous description (w_n, q_n, x) such that $|w_n| \ge |w|$ for n > 0, and

$$(w, q, x) \vdash_{\mathcal{M}} (w_1, q_1, x) \vdash_{\mathcal{M}} \cdots \vdash_{\mathcal{M}} (w_n, q_n, x) \vdash_{\mathcal{M}} \cdots$$

The set of looping instantaneous descriptions of the dpda \mathcal{M} will be denoted by LOOP(\mathcal{M}).

- If c = (w, q, x) ∈ LOOP(M), then the dpda can make an arbitrarily large number of moves starting from c without ever decreasing the length of the content of the pushdown store and without reading any input symbol.
- If \mathcal{M} enters a looping instantaneous description while processing an input word, then the symbols that remain to be read will never be processed.
- An instantaneous description (w, q, x) is looping if and only if (z, q, λ) is a looping instantaneous description, where w = w'z for some $w' \in Z^*$.

Let $n(\mathcal{M})$ be the number defined by

$$n(\mathcal{M}) = \begin{cases} \frac{|Q|(|Z|^{|Q||Z|\ell(\mathcal{M})+1}-|Z|)}{|Z|-1} & \text{if } |Z| > 1\\ |Q| & \text{if } |Z| = 1, \end{cases}$$

where

 $\ell(\mathcal{M}) = \max\{|v| \ | \ \delta(z,q,a) = (v,q') \text{ for some } z \in Z, q \in Q, a \in A \cup \{\lambda\}\}$

is the length of the longest word written on the pushdown store in one step.

Theorem

Let $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ be a dpda. We have $(z, q, \lambda) \in \text{LOOP}(\mathcal{M})$ if and only if there is an instantaneous description (w, p, λ) such that $(z, q, \lambda) \stackrel{n(\mathcal{M})}{\vdash}_{\mathcal{M}} (w, p, \lambda).$

Proof

If $(z, q, \lambda) \in \text{LOOP}(\mathcal{M})$, then it is clear that $(z, q, \lambda) \stackrel{n(\mathcal{M})}{\vdash}_{\mathcal{M}} (w, p, \lambda)$.

Conversely, suppose that $(z, q, \lambda) \stackrel{n(\mathcal{M})}{\underset{\mathcal{M}}{\vdash}} (w, p, \lambda)$. We need to consider two cases:

• Case I: There is $u\in Z^*$ such that $|u|>|Q||Z|\ell({\mathfrak M})$ and

$$(z,q,\lambda) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (u,r,\lambda) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (w,p,\lambda)$$

for some $r \in Q$, and

• Case II: Suppose now that for every $u \in Z^*$ such that

$$(z,q,\lambda) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (u,r,\lambda) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (w,p,\lambda)$$
(1)

we have $|u| \leq |Q||Z|\ell(\mathcal{M})$.

Proof (cont'd)

Case I: If there is $u\in Z^*$ such that $|u|>|Q||Z|\ell(\mathcal{M})$ and

$$(z,q,\lambda) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (u,r,\lambda) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (w,p,\lambda)$$

for some $r \in Q$, then, since there are be more than |Q||Z| steps in the computation $(z, q, \lambda) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (u, r, \lambda)$, there are two instantaneous descriptions that have the same state and the same symbol at the top of the pushdown store. In other words, we have

$$(z,q,\lambda) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (vz',q',\lambda) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (vtz',q',\lambda) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (u,r,\lambda),$$

for some $u, v \in Z^*$. Because $(vz', q', \lambda) \stackrel{n}{\underset{\mathcal{M}}{\vdash}} (vtz', q', \lambda)$ we can write

$$(z,q,\lambda) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (vz',q',\lambda) \stackrel{nj}{\underset{\mathcal{M}}{\vdash}} (vt^{j}z',q',\lambda)$$

for any $j \in \mathbb{N}$, so $(z, q, \lambda) \in \mathsf{LOOP}(\mathcal{M})$.

Proof (cont'd)

Case II: Suppose now that for every $u \in Z^*$ such that

$$(z,q,\lambda) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (u,r,\lambda) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (w,p,\lambda)$$
(2)

we have $|u| \leq |Q||Z|\ell(\mathcal{M})$. Note that there are $\frac{|Z|^{|Q||Z|\ell(\mathcal{M})+1}-|Z|}{|Z|-1}$ nonnull words of length less or equal to $|Q||Z|\ell(\mathcal{M})$ on the alphabet Z, and, therefore, there are no more than $n(\mathcal{M})$ distinct instantaneous descriptions (u, r, λ) of the dpda \mathcal{M} that can be reached from (z, q, λ) . Consequently, in the computation (2) there are some repeated instantaneous descriptions and this implies $(z, q, \lambda) \in \text{LOOP}(\mathcal{M})$.

Theorem

Let $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ be a dpda. Then,

$$(z,q,\lambda) \stackrel{*}{\stackrel{\mapsto}{\vdash}} (w,p,\lambda),$$

where p is a final state if and only if there is a computation

$$(z,q,\lambda) \stackrel{m}{\vdash}_{\mathcal{M}} (w,p,\lambda),$$

where $m \leq n(\mathcal{M})$.

Proof

Suppose that $(z, q, \lambda) \stackrel{*}{\vdash}_{\mathcal{M}} (w, p, \lambda)$ is the shortest computation that leads to an instantaneous description (w, p, λ) where p is a final state. By the argument presented previously, it follows that for every instantaneous description (u, r, λ) such that

$$(z,q,\lambda) \stackrel{*}{\stackrel{}{\mapsto}}_{\mathcal{M}} (u,r,\lambda) \stackrel{*}{\stackrel{}{\mapsto}}_{\mathcal{M}} (w,p,\lambda),$$

we have $|u| \leq |Q||Z|\ell(\mathcal{M})$.

Proof (cont'd)

Since there are $n(\mathcal{M})$ distinct instantaneous descriptions of the form (u, r, λ) it follows that the length of the computation $(z, q, \lambda) \stackrel{*}{\vdash}_{\mathcal{M}} (w, p, \lambda)$ may not exceed $n(\mathcal{M})$ to avoid the presence of repeating instantaneous descriptions (which would contradict the definition of the computation $(z, q, \lambda) \stackrel{*}{\vdash}_{\mathcal{M}} (w, p, \lambda)$). Thus, we obtain $(z, q, \lambda) \stackrel{m}{\vdash}_{\mathcal{M}} (w, p, \lambda)$, where $m \leq n(\mathcal{M})$. The converse

implication is obvious.

Consider the sets

$$\begin{split} I(\mathcal{M}) &= \{(z,q) \in Z \times Q \mid (z,q,\lambda) \in \mathsf{LOOP}(\mathcal{M}) \\ & \text{and } (z,q,\lambda) \stackrel{*}{\vdash}_{\mathcal{M}} (w,p,\lambda) \text{ for some } p \in F \text{ and } w \in Z^* \} \\ I'(\mathcal{M}) &= \{(z,q) \in Z \times Q \mid (z,q,\lambda) \in \mathsf{LOOP}(\mathcal{M}) \text{ and there is} \\ & \text{no } p \in F \text{ such that } (z,q,\lambda) \stackrel{*}{\vdash}_{\mathcal{M}} (w,p,\lambda) \} \text{ for any } w \in Z^*. \end{split}$$

The previous theorem suggests the following algorithms for computing the sets $I(\mathcal{M})$ and $I(\mathcal{M}')$.

Computation of $I(\mathcal{M})$ and $I'(\mathcal{M})$:

Input Data: A dpda $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$; **Output Data:** The sets $I(\mathcal{M})$ and $I'(\mathcal{M})$; **begin**

if (For an instantaneous description (z, q, λ) determine there exists an instantaneous description (w, p, λ) such that $(z, q, \lambda) \stackrel{n(\mathcal{M})}{\vdash} (w, p, \lambda)$)

then

begin (z, q, λ) is a looping instantaneous description, so $(z, q) \in I(\mathcal{M}) \cup I'(\mathcal{M})$

end

if (for (z, q, λ) determine whether it is possible to reach an instantaneous description (w, p, λ) , where p is a final state in no more than $n(\mathcal{M})$ steps) then (place (z, q) in $I(\mathcal{M})$) else (place (z, q) in $I(\mathcal{M}')$) return $I(\mathcal{M})$ and $I'(\mathcal{M})$;

A major result that we prove in this section is that the class of deterministic context-free languages is closed with respect to the complement operation.

Note that:

- A dpda may not read its input tape in its entirety if it enters a looping instantaneous description. Thus, it could happen that there is an input word x such that x is neither in L(M) nor in L(M').
- Even if no looping instantaneous descriptions exist, after reading its input and entering a final instantaneous descriptions a dpda may continue its computation using null transitions and go through some states that are final and through some states that are non-final; correspondingly, M' will reach non-final and final states. This implies the existence of input words that belong to both L(M) and L(M').

To overcome these difficulties, we need the following result.

Theorem

Let $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ be a dpda. There is a dpda \mathcal{M}_1 such that $L(\mathcal{M}) = L(\mathcal{M}_1)$, and for every $x \in A^*$ there is $q \in Q$ such that

$$(z_0, q_0, x) \stackrel{*}{\vdash}_{\mathcal{M}} (w, q, \lambda),$$

for some $w \in Z^*$.

Proof

Starting from the dpda $\ensuremath{\mathcal{M}}$ define the dpda

$$\mathcal{M}_1 = (A, Z, Q \cup \{p, r\}, \delta_1, q_0, z_0, F \cup \{p\}),$$

where p, r are two new states. The transition function δ_1 is defined as follows.

- for $z \in Z$, $q \in Q$ and $a \in A$, $\delta_1(z,q,a) = \delta(z,q,a)$;
- if $(z, q\lambda)$ is not a looping instantaneous description in \mathcal{M} , that is, $(z, q) \notin I(\mathcal{M}) \cup I(\mathcal{M}')$, define $\delta_1(z, q, \lambda) = \delta(z, q, \lambda)$;
- if $(z,q) \in I(\mathcal{M})$, then $\delta_1(z,q,\lambda) = (z,p)$;
- if $(z,q)\in I'(\mathfrak{M})$, then $\delta_1(z,q,\lambda)=(z,r);$
- $\delta_1(z, p, a) = (z, r)$ and $\delta_1(z, r, a) = (z, r)$ for every $a \in A$ and $z \in Z$.

Proof (cont'd)

The dpda \mathcal{M}_1 always reads its input in its entirety. Indeed, \mathcal{M}_1 simulates the activity of \mathcal{M} . If no looping instantaneous description is encountered in the computation of \mathcal{M} , then \mathcal{M} will read its entire input, and \mathcal{M}_1 will do the same. Otherwise, when \mathcal{M} enters a looping instantaneous description, then \mathcal{M}_1 enters either the state p or the state r and the entire input word is read.

The definition of \mathcal{M}_1 implies that $L(\mathcal{M}) \subseteq L(\mathcal{M}_1)$ since every accepting computation in \mathcal{M} can be simulated in \mathcal{M}_1 .

Proof (cont'd)

Suppose now that $x \in L(\mathcal{M}_1)$. There exists a computation in \mathcal{M}_1 that ends in a state in F or in the state p. In the first case it is clear that $x \in L(\mathcal{M})$; in the second, \mathcal{M} reaches a looping instantaneous description (tz, q, y), that is, $(z_0, q_0, x) \stackrel{*}{\underset{\mathcal{M}}{\mapsto}} (tz, q, y)$ and $(z, q) \in I(\mathcal{M})$. The definition of $I(\mathcal{M})$ implies that there exists a final state q' such that $(tz, q, y) \stackrel{*}{\underset{\mathcal{M}}{\mapsto}} (w, q', y)$, so $x \in L(\mathcal{M})$.

Theorem

Let A be an alphabet and let $L \subseteq A^*$ be a dcfl. Then, the language $\overline{L} = A^* - L$ is a dcfl.

Proof

Since *L* is a dcfl there exists a dpda $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ such that $L = L(\mathcal{M})$. By Theorem 11 we can assume that \mathcal{M} reads every input word completely. Define the pushdown automaton $\mathcal{M}' = (A, Z, Q', \delta', q', z_0, F')$, where $Q' = Q \times \{0, 1, 2\}$. The transition function δ' is defined by:

Proof (cont'd)

• For $z \in Z$, $q \in Q$, and $a \in A$, if $\delta(z, q, a) = (w, p)$, then

$$\delta'(z,(q,0),a) = \delta'(z,(q,2),a) = \left\{ egin{array}{c} (w,(p,0)) & ext{if } p \in F \ (w,(p,1)) & ext{if } p
ot\in F. \end{array}
ight.$$

and $\delta'(z, (q, 1), \lambda) = (z, (q, 2)).$

• For $z \in Z$ and $q \in Q$, if $\delta(z, q, \lambda) = (w, p)$, then $\delta'(z, (q, 0), \lambda) = (w, (p, 0))$, and

$$\delta'(z,(q,1),\lambda) = \begin{cases} (w,(p,0)) & \text{if } p \in F \\ (w,(p,1)) & \text{if } p \notin F. \end{cases}$$

The initial state q'_0 is

$$q_0'= \left\{ egin{array}{cc} (q_0,0) & ext{if} \; q_0\in F\ (q_0,1) & ext{if} \; q_0
ot\in F, \end{array}
ight.$$

and the set of final states is $F' = \{(q, 2) \mid q \in Q\}$. Note that once \mathcal{M}' enters a final state (q, 2), then no null transition is possible. Also, \mathcal{M}' can reach a final state (q, 2) only by using a null transition from a state (q, 1).

The role of the second component of a state of \mathcal{M}' is to record whether \mathcal{M} has entered a final state after its last non-null transition.

Suppose that $x \in L(\mathcal{M})$, that is, $(z_0, q_0, x) \vdash_{\mathcal{M}} (w, q, \lambda)$, where $q \in F$. If (q_0, i) is the initial state of \mathcal{M}' , the previous computation yields

$$(z_0,(q_0,i),x) \stackrel{*}{\vdash}_{\mathcal{M}'} (w,(q,0),\lambda),$$

and \mathcal{M}' cannot reach a final state. Thus, $x \notin L(\mathcal{M}')$. This shows that $L(\mathcal{M}') \subseteq A^* - L(\mathcal{M})$.

Proof (cont'd)

Conversely, suppose that $x \in A^* - L(\mathcal{M})$. Since \mathcal{M} reads its entire input, we have $(z_0, q_0, x) \stackrel{*}{\underset{\mathcal{M}}{\mapsto}} (wz, q, \lambda)$, where $q \notin F$ and q is the state entered by \mathcal{M} after reading the last symbol of x. This implies the existence of the computation $(z_0, (q_0, i), x) \stackrel{*}{\underset{\mathcal{M}'}{\mapsto}} (wz, (q, 1), \lambda)$. The definition of δ' implies $\delta'((q, 1), \lambda) = (z, (q, 2))$, so

$$(z_0,(q_0,i),x) \stackrel{*}{\underset{\mathcal{M}'}{\vdash}} (wz,(q,1),\lambda) \stackrel{*}{\underset{\mathcal{M}'}{\vdash}} (wz,(q,2),\lambda),$$

which shows that $x \in L(\mathcal{M}')$. Thus, we conclude that $L(\mathcal{M}') = A^* - L(\mathcal{M})$, so $A^* - L(\mathcal{M})$ is indeed a dcfl.

Example

The details of the construction presented in the proof of the previous theorem can be followed in this example.

Consider the dpda \mathcal{M}' that accepts the language $\{a^n b^n \mid n \in \mathbb{N}\}$ and is capable of reading any input word $x \in \{a, b\}^*$. The dpda

$$\mathcal{M}'' = (\{a, b\}, \{z'_0, z_0, a\}, Q' \times \{0, 1, 2\}\}, \delta'', (q'_0, 1), z'_0, Q' \times \{2\}),$$

constructed according to the algorithm accepts the language $\{a, b\}^* - \{a^n b^n \mid n \in \mathbb{N}\}$. Here $Q' = \{q_0, q_1, q_2, q'_0, \bar{q}\}$. Since q_0 is not a final state of \mathcal{M}' , the initial state of \mathcal{M}'' is $(q'_0, 1)$. The word *bab* is accepted by \mathcal{M}'' using the following computation:

Example (cont'd)

Transition in M'	Instantaneous description of $\mathcal{M}^{\prime\prime}$		
	and transition in $\mathcal{M}^{\prime\prime}$		
	$(z'_0, (q'_0, 1), bab)$ (initial i.d.)		
$\delta'(z'_0, q'_0, \lambda) = (z'_0 z_0, q_0)$	$\delta''(z'_0, (q'_0, 1), \lambda) = (z'_0 z_0, (q_0, 1))$		
	$(z'_0 z_0, (q_0, 1), bab)$		
$\delta'(z_0, q_0, \lambda) = (z_0, q_2)$	$\delta''(z_0, (q_0, 1), \lambda) = (z_0, (q_2, 0)) \text{ (since } q_2 \in F)$		
	$(z'_0 z_0, (q_2, 0), bab)$		
$\delta'(z_0, q_2, b) = (z_0, \bar{q})$	$\delta''(z_0, (q_2, 0), b) = (z_0, (\bar{q}, 1)) \text{ (since } \bar{q} \notin F)$		
	$(z'_0 z_0, (\bar{q}, 1), ab)$		
$\delta'(z_0, \bar{q}, a) = (z_0, \bar{q})$	$\delta''(z_0, (\bar{q}, 1), \lambda) = (z_0, (\bar{q}, 2))$		
	$\delta^{\prime\prime}(z_0,(ar{q},2),a)=(z_0,(ar{q},1)) ext{ (since }ar{q} ot\in F)$		
	$(z'_0 z_0, (\bar{q}, 2), ab)$		
	$(z_0'z_0, (\bar{q}, 1), b)$		
$\delta'(z_0,\bar{q},b)=(z_0,\bar{q})$	$\delta''(z_0, (\bar{q}, 1), \lambda) = (z_0, (\bar{q}, 2))$		
	$\delta''(z_0, (\bar{q}, 2), b) = (z_0, (\bar{q}, 1)) \text{ (since } \bar{q} \not\in F)$		
	$(z'_0 z_0, (\bar{q}, 2), b)$		
	$(z'_0 z_0, (\bar{q}, 1), \lambda)$		
	$\delta''(z_0, (\bar{q}, 1), \lambda) = (z_0, (\bar{q}, 2))$		
	$(z'_0 z_0, (\bar{q}, 2), \lambda)$		

Corollary

For every dcfl L there exists a dpda that accepts L and has no null transitions from its final states.

Example

We give an example of a context-free language that is not deterministic.

$$L = \{a^n b^m c^p \mid m, n, p \in \mathbb{N} \text{ and } n = m \text{ or } m = p\}$$

is a context-free language that is inherently ambiguous. If L were a deterministic context-free language, the language $\{a, b, c\}^* - L$ would be a deterministic context-free language, and therefore, the language

$$\begin{split} \mathcal{K} &= (\{a, b, c\}^* - L) \cap \{a\}^* \{b\}^* \{c\}^* \\ &= \{a^n b^m c^p \mid n, m, p \in \mathbb{N}, n \neq m \text{ and } m \neq p\} \end{split}$$

would be a context-free language.

Example (cont'd)

However, we prove that K is not context-free. Indeed, suppose that K were a context-free language generated by a context-free grammar G. Let n_G be the number that corresponds to G by Ogden's Lemma. Then, we have $w = a^{n_G+n_G!}b^{n_G}c^{n_G+n_G!} \in K$. Suppose that the set of marked positions are the n_G positions in w occupied by the bs. Then, we can write w = xyzut such that at least one of y or u contains a marked position, yzu no more than n_G marked positions, and $xy^nzu^nt \in L(G)$ for all $n \in \mathbb{N}$. In other words, at least one of y or u must contain a b.

Observe that neither y nor u may contain two distinct symbols. For example, if y were to contain both as and bs then, by pumping, b could precede as and this would conflict with the definition of K. Let |y| = k and $|u| = \ell$. We need to consider the following cases:

1
$$y \in \{b\}^*$$
 and $u \in \{b\}^*$;

2
$$y \in \{a\}^*$$
 and $u \in \{b\}^*$;

3
$$y \in \{b\}^*$$
 and $u \in \{c\}^*$.

In the first case, note that $k + \ell \leq n_G$ and that there are $n_G - (k + \ell)$ symbols *b* that do not occur in *y* or *u*. The effect of the pumping of *y* and *u* is to increase the number of *b*s to

 $n_G - (k + \ell) + (k + \ell)i = n_G + (k + \ell)(i - 1)$. Note that there is an $i \in \mathbb{N}$ such that

$$n_G + n_G! = n_G + (k + \ell)(i - 1)$$

because $k + \ell \leq n_G$. By pumping y and u a number of $i = n_G!/(k + \ell) + 1$ times we obtain a word that has the same number of as and bs and cs; this contradicts the definition of K.

Example (cont'd)

In the second case, $\ell \leq n_G$. The effect of the pumping is to increase the number of *a*s and *b*s while the number of *c*s remains constant. The word $w_i = xy^i zu^i t$ will contain $ki + n_G + n_G! - k$ as, and $\ell i + n_G - \ell = n_G + \ell(i-1)$ bs. By choosing $i = n_G!/\ell + 1$, the number of *b*s equals the number of *c*s, which contradicts the definition of *K*. The third case can be treated in a similar manner.

To prove other closure properties of deterministic context-free languages we introduce a normal form for dpdas.

Lemma

For every dpda $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ there exists an equivalent dpda $\mathcal{M}_1 = (A, Z, Q_1, \delta_1, q_0, z_0, F)$ such that if $\delta_1(z, q_1, a) = \{(w, p_1)\}$ for some $q_1, p_1 \in Q_1$, then $|w| \leq 2$.

Proof

For each transition $\delta(z, q, a) = \{(u, p)\}$ such that $u = z_0 \cdots z_{k-1}$ and k > 2 we introduce k - 2 new states r_0, \ldots, r_{k-3} and define

$$\begin{split} \delta_1(z, q, a) &= \{(z_0 z_1, r_0)\} \\ \delta_1(z_1, r_0, \lambda) &= \{(z_1 z_2, r_1)\} \\ &\vdots \\ \delta_1(z_{k-3}, r_{k-4}, \lambda) &= \{(z_{k-3} z_{k-2}, r_{k-3})\} \\ \delta_1(z_{k-2}, r_{k-3}, \lambda) &= \{(z_{k-2} z_{k-1}, p)\}. \end{split}$$

For every other transitions $\delta_1(z, q, a) = \delta(z, q, a)$.

Proof (cont'd)

lf

$$(uz, q, ax) \vdash_{\mathcal{M}} (uz_0 \cdots z_{k-1}, p, x),$$

then we have the computation

$$\begin{array}{cccc} (uz, q, ax) & \vdash & (uz_0z_1, r_0, x) \\ & \vdash & (uz_0z_1z_1, r_1, x) \\ & \vdots & \\ & \vdash & (uz_0z_1z_1 \cdots z_{k-3}, r_{k-4}, x) \\ & \vdash & (uz_0z_1z_1 \cdots z_{k-3}z_{k-2}, r_{k-3}, x) \\ & \vdash & (uz_0z_1z_1 \cdots z_{k-3}z_{k-2}z_{k-1}, p, x). \end{array}$$

Thus, the dpda are easily seen to be equivalent and \mathcal{M}_1 is a dpda that satisfies the condition of the lemma.

Theorem

(Normal Form Theorem for Pushdown Automata) For every dpda $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ there exists an equivalent dpda $\mathcal{M}' = (A, Z, Q', \delta, q'_0, z'_0, F')$ such that if $\delta'(z, q, a) = \{(w, p)\}$, then $w \in \{\lambda, z\} \cup \{zz' \mid z' \in Z\}.$

Proof

We can assume without loss of generality that if $\delta(z, q, a) = (w, p)$, then $|w| \leq 2$. Define $Q' = Z \times Q$, $q'_0 = (z_0, q_0)$, $Z' = Z \cup \{z'_0\}$, and $F' = Z' \times F$, where z'_0 is a new symbol, $z_0 \notin Z$. The transition function δ' is given by:

• if $\delta(z, q, a) = (\lambda, p)$, then $\delta'(z', (z, q), a) = (\lambda, (z', p))$; • if $\delta(z, q, a) = (y, p)$, then $\delta'(z', (z, q), a) = (z', (y, p))$; • if $\delta(z, q, a) = (yy_1, p)$, then $\delta'(z', (z, q), a) = (z'y, (y_1, p))$, for every $z, z' \in Z$, $q \in Q$ and $a \in A \cup \{\lambda\}$. In addition, $\delta'(z'_0, (z_0, q_0), \lambda) = (z'_0 z_0, (z_0, q_0))$. The actions of ${\mathfrak M}$ and ${\mathfrak M}'$ are described succinctly in the following table:

Action of ${\mathcal M}$	Action of \mathcal{M}'		
${\mathcal M}$ pops the stack.	\mathcal{M}' pops the stack and		
	stores the popped symbol in its state.		
$\ensuremath{\mathcal{M}}$ alters the top	${\mathfrak M}'$ leaves the top of the		
of the stack to y .	stack intact and stores y in its state.		
$\mathcal M$ pushes yy_1	\mathcal{M}' stores y_1 in its state		
on the stack.	and pushes y on the stack.		

We claim that
$$(z_0, q_0, x) \stackrel{*}{\vdash}_{\mathcal{M}} (z_{i_0} \cdots z_{i_{m-1}}, q, \lambda)$$
 if and only if

$$(z'_0,(z_0,q_0),x) \stackrel{*}{\underset{\mathcal{M}'}{\vdash}} (z'_0 z_{i_0} \cdots z_{i_{m-2}},(z_{i_{m-1}},q),\lambda).$$

Suppose that

$$(z_0, q_0, x) \stackrel{n}{\vdash}_{\mathcal{M}} (z_{i_0} \cdots z_{i_{m-1}}, q, \lambda)$$
(3)

We prove by induction on n that

$$(z_0',(z_0,q_0),x) \stackrel{*}{\stackrel{\mapsto}{\mapsto}}_{\mathcal{M}'} (z_0'z_{i_0}\cdots z_{i_{m-2}},(z_{i_{m-1}},q),\lambda).$$

In the base case, n = 0, we have m = 1 and $z_{i_0} = z_0$ and the implication follows immediately. Suppose that the statement holds for computations of length less than n and that we have the computation (3). We need to consider three cases, depending on the action of \mathcal{M} during the last step of the computation.

Case I: If \mathcal{M} popped the stack, then the computation (3) has the form:

$$(z_0, q_0, x)$$
 $\stackrel{n-1}{\vdash}_{\mathcal{M}}$ $(z_{i_0} \cdots z_{i_{m-1}} z, q', a)$
 $\vdash_{\mathcal{M}}$ $(z_{i_0} \cdots z_{i_{m-1}}, q, \lambda),$

where $\delta(z, q', a) = (\lambda, q)$, x = x'a, and $a \in A \cup \{\lambda\}$. Consequently, $\delta'(z_1, (z, q'), a) = (\lambda, (z_1, q))$ for every $z_1 \in Z$. By the inductive hypothesis, we have the computation:

$$(z'_0, (z_0, q_0), x) \stackrel{*}{\mapsto}_{\mathcal{M}'} (z'_0 z_{i_0} \cdots z_{i_{m-1}}, (z, q'), a) \ \mapsto_{\mathcal{M}'} (z'_0 z_{i_0} \cdots z_{i_{m-2}}, (z_{i_{m-1}}, q), \lambda),$$

which completes the proof of the implication.

Case II: If \mathcal{M} alters only the top of the stack by changing it to y, the computation (3) can be written as

$$(z_0, q_0, x) \stackrel{n-1}{\underset{\mathcal{M}}{\vdash}} (z_{i_0} \cdots z_{i_{m-1}} z, q', a) \ \stackrel{h}{\underset{\mathcal{M}}{\vdash}} (z_{i_0} \cdots z_{i_{m-1}} y, q, \lambda)$$

and we have $\delta(z, q', a) = (y, q)$. Thus, $\delta'(z_1, (z, q'), a) = (z_1, (y, q))$ for every $z_1 \in Z$. By the inductive hypothesis, we have the computation:

$$(z'_0, (z_0, q_0), x) \stackrel{*}{\vdash}_{\mathcal{M}'} (z'_0 z_{i_0} \cdots z_{i_{m-1}}, (z, q'), a) \\ \vdash_{\mathcal{M}'} (z'_0 z_{i_0} \cdots z_{i_{m-1}}, (y, q), \lambda).$$

Case III: Finally, suppose that \mathcal{M} pushes yy_1 on the stack using the transition $\delta(z, q', a) = (yy_1, p)$. In this case, the computation (3) can be written as:

$$\begin{array}{ccc} (z_0,q_0,x) & \stackrel{n-1}{\vdash} & (z_{i_0}\cdots z_{i_{m-1}}z,q',a) \\ & \stackrel{\vdash}{\scriptstyle\mathcal{M}} & (z_{i_0}\cdots z_{i_{m-1}}yy_1,p,\lambda), \end{array}$$

where x = x'a. We have $\delta'(z_1, (z, q'), a) = (z_1y, (y_1, p))$ for every $z_1 \in Z$. Combining this fact with the inductive hypothesis yields the computation:

$$(z'_0, (z_0, q_0), x) \stackrel{*}{\mapsto}_{\mathcal{M}'} (z'_0 z_{i_0} \cdots z_{i_{m-1}}, (z, q'), a) \\ \stackrel{\vdash}{\mapsto}_{\mathcal{M}'} (z'_0 z_{i_0} \cdots z_{i_{m-1}} y, (y_1, p), \lambda)$$

Conversely, we can prove by induction of n that

$$(z_0',(z_0,q_0),x) \stackrel{n}{\underset{\mathcal{M}'}{\vdash}} (z_0'z_{i_0}\cdots z_{i_{m-2}},(z_{i_{m-1}},q),\lambda).$$

implies

$$(z_0,q_0,x) \stackrel{*}{\vdash}_{\mathcal{M}} (z_{i_0}\cdots z_{i_{m-1}},q,\lambda).$$

The argument is similar to the one presented above and is omitted.

Example

Let $Z' = \{z_0, a, b, z'_0\}$, $Q' = \{z_0, a, b\} \times \{q_0, q_1, q_2\}$, and let \mathcal{M}' be the dpda

$$\mathcal{M}' = (\{a, b, c\}, Z', Q', \delta', (z_0, q_0), z_0', Z' imes \{q_2\})$$

whose transition function δ' is shown in next is in normal form. The transitions shown in the figure are valid for every $z' \in Z'$; we also have $\delta'(z'_0, (z_0, q_0), \lambda) = (z'_0 z_0, (z_0, q_0)).$

z	q	а	$\delta(z, q, a)$	$\delta(z',(z,q),a)$
z ₀	<i>q</i> 0	а	$(z_0 a, q_0)$	$(z'z_0, (a, q_0))$
<i>z</i> 0	<i>q</i> 0	Ь	$(z_0 b, q_0)$	$(z'z_0, (b, q_0))$
<i>z</i> 0	q_0	c	(z_0, q_1)	$(z', (z_0, q_1))$
а	<i>q</i> 0	a	(aa, q ₀)	$(z'_{a}, (a, q_{0}))$
а	q_0	Ь	(ab, q ₀)	$(z'a, (b, q_0))$
а	q_0	с	(a, q_1)	$(z', (a, q_1))$
Ь	<i>q</i> 0	а	(ba, q ₀)	$(z'b, (a, q_0))$
Ь	<i>q</i> 0	Ь	(bb, q_0)	$(z'b, (b, q_0))$
Ь	q_0	c	(b, q_1)	$(z', (b, q_1))$
а	q_1	а	(λ, q_1)	$(\lambda, (z', q_1))$
Ь	q_1	Ь	(λ, q_1)	$(\lambda, (z', q_1))$
z ₀	q_1	λ	(λ, q_2)	$(\lambda, (z', q_2))$

The counterpart of the computation presented previously that leads to the acceptance of the word x = abbcbba is:

$$egin{array}{rll} (z_0',(z_0,q_0),abbcbba)‐ &(z_0'z_0,(z_0,q_0),abbcbba)\ ‐ &(z_0'z_0,(a,q_0),bbcbba)\ ‐ &(z_0'z_0a,(b,q_0),bcbba)\ ‐ &(z_0'z_0ab,(b,q_0),cbba)\ ‐ &(z_0'z_0ab,(b,q_1),bba)\ ‐ &(z_0'z_0a,(b,q_1),ba)\ ‐ &(z_0'z_0a,(b,q_1),ba)\ ‐ &(z_0'z_0,(a,q_1),a)\ ‐ &(z_0',(z_0,q_1),\lambda)\ ‐ &(\lambda,(z_0',q_2)). \end{array}$$

Theorem

If L is a deterministic context-free language and R is a regular language, then $L \cap R$ is a deterministic context-free language.

Proof

Suppose that $L = L(\mathcal{M})$, where $\mathcal{M} = (A, Z, Q, \delta, q_0, z_0, F)$ is a dpda that reads its entire input, and $R = L(\mathcal{M}')$, where $\mathcal{M}' = (A, Q', \delta', q'_0, F')$ is a dfa. Define the dpda $\mathcal{M}_1 = (A, Z, Q \times Q', \delta_1, (q_0, q'_0), z_0, F \times F')$ by

$$\delta_1(z,(q,q'),a) = \begin{cases} (v,(q_1,q')) & \text{if } a = \lambda \text{ and} \\ \delta(z,q,\lambda) = (v,q_1) \\ (v,(q_1,\delta'(q',a))) & \text{if } a \in A \text{ and} \\ \delta(z,q,a) = \{(q_1,v)\}, \end{cases}$$

 $\text{ for } z \in Z, (q,q') \in Q \times Q' \text{ and } a \in A \cup \{\lambda\}.$

Proof (cont'd)

We claim that $(z_0, (q_0, q_0'), x) \stackrel{*}{\vdash}_{\mathcal{M}_1} (w, (q, q'), \lambda)$ if and only if

$$(z_0, q_0, x) \stackrel{*}{\underset{\mathcal{M}}{\vdash}} (w, q, \lambda) \text{ and } \delta'^*(q'_0, x) = q'.$$

We prove, by induction on n, that if

$$(z_0,(q_0,q_0'),x) \stackrel{n}{\vdash}_{\mathcal{M}_1} (w,(q,q'),\lambda),$$

then $(z_0, q_0, x) \stackrel{n}{\vdash} (w, q, \lambda)$ and $\delta'^*(q'_0, x) = q'$. The base case, n = 0, is immediate since we have $q = q_0$, $q' = q'_0$, $w = z_0$, and $x = \lambda$.

Suppose that the implication holds for computations of length n and that $(z_0, (q_0, q'_0), x) \stackrel{n+1}{\vdash}_{\mathcal{M}_1} (w, (q, q'), \lambda)$. This computation can be written as

$$(z_0,(q_0,q_0'),x) \stackrel{''}{\vdash}_{\mathcal{M}_1} (w_1,(q_1,q_1'),a) \stackrel{\vdash}{\mapsto}_{\mathcal{M}_1} (w,(q,q'),\lambda),$$

where x = ya and $a \in A \cup \{\lambda\}$. By the inductive hypothesis, we have

$$(z_0,q_0,y)\stackrel{n}{\vdash}_{\mathcal{M}}(w_1,q_1,\lambda) ext{ and } {\delta'}^*(q_0',y)=q_1'.$$

Also, $(w_1,q_1,a) \stackrel{\vdash}{_{\mathcal{M}}} (w,q,\lambda)$ and $\delta'(q_1',a) = q'.$ Therefore, we have

$$(z_0,q_0,x)=(z_0,q_0,ya) \stackrel{n}{\mathop{\vdash}}_{\mathcal{M}} (w_1,q_1,a) \stackrel{\vdash}{_{\mathcal{M}}} (w,q,\lambda),$$

and

$${\delta'}^*(q_0',x) = {\delta'}({\delta'}^*(q_0',y),a) = {\delta'}(q_1',a) = q'.$$