
Pushdown Automata - III
(part III)

Prof. Dan A. Simovici

UMB

1 / 66

Outline

1 Deterministic Context-Free Languages

2 / 66

Deterministic Context-Free Languages

Definition

A deterministic pushdown automaton (dpda) is a pda
M = (A,Z ,Q, δ, q0, z0,F) that satisfies the following conditions:

1 For every z ∈ Z , q ∈ Q and a ∈ A ∪ {λ} we have |δ(z , q, a)| ≤ 1.

2 If δ(z , q, λ) 6= ∅, then δ(z , q, a) = ∅ for every a ∈ A.

A language L is deterministic context-free (dcfl) if there is some dpda M

such that L = L(M).

The second condition means that if a null transition exists when the dpda
M sees z at the top of the pushdown store and its internal state is q, then
no symbol can be read from the input tape of the automaton.
Clearly, every deterministic context-free language is also a context-free
language.

3 / 66

Deterministic Context-Free Languages

Example

L = {anbn | n ∈ N} is a deterministic context-free language. Indeed,
consider the dpda

M = ({a, b}, {z0, a}, {q0, q1, q2}, δ, q0, z0, {q2}),

where δ is defined by the table shown next. For triples (z , q, a) that do not
occur in that table we have δ(z , q, a) = ∅.

Top State Input δ(z , q, a)

z0 q0 λ (z0, q2)
z0 q2 a (z0a, q1)
a q1 a (aa, q1)
a q1 b (λ, q1)
z0 q1 λ (z0, q2)

4 / 66

Deterministic Context-Free Languages

(Example cont’d)

For the word aaabbb ∈ L we have the computation:

(z0, q0, aaabbb) ` (z0, q2, aaabbb) ` (z0a, q1, aabbb)
` (z0aa, q1, abbb) ` (z0aaa, q1, bbb) ` (z0aa, q1, bb)
(z0a, q1, b) ` (z0, q1, λ) ` (z0, q2, λ),

which shows that aaabbb ∈ L(M). Similarly, λ ∈ L(M) because

(z0, q0, λ) ` (z0, q2, λ).

Note that aab 6∈ L. The computation that begins with the word bab on
the input tape is

(z0, q0, aab) ` (z0, q2, aab) ` (z0a, q1, ab)
(z0aa, q1, b) ` (z0a, q1, λ),

and no further move is possible.
5 / 66

Deterministic Context-Free Languages

Therefore, the final state q2 cannot be reached and we may conclude that
aab 6∈ L(M). For other input words, such as bab, the dpda is unable to
read its input; indeed, in this case, we have a two-step computation

(z0, q0, bab) ` (z0, q2, bab),

and the impossibility of reading the input word implies bab 6∈ L(M).
It is easy to prove that L(M) = {anbn | n ∈ N}.

6 / 66

Deterministic Context-Free Languages

Example

The language L = {xcxR | x ∈ {a, b}∗} is deterministic. Consider the
dpda M = ({a, b, c}, {z0, a, b}, {q0, q1, q2}, δ, q0, z0, {q2}). Transition sets
not mentioned in the table are empty.

Top State Input δ(z , q, a)

z0 q0 a (z0a, q0)
z0 q0 b (z0b, q0)
z0 q0 c (z0, q1)
a q0 a (aa, q0)
a q0 b (ab, q0)
a q0 c (a, q1)
b q0 a (ba, q0)
b q0 b (bb, q0)
b q0 c (b, q1)
a q1 a (λ, q1)
b q1 b (λ, q1)
z0 q1 λ (λ, q2)

Let x = abbcbba be a word in L. The computation that leads M to accept
w is

(z0, q0, abbcbba) `
M

(z0a, q0, bbcbba) `
M

(z0ab, q0, bcbba)

`
M

(z0abb, q0, cbba) `
M

(z0abb, q1, bba) `
M

(z0ab, q1, ba)

`
M

(z0a, q1, a) `
M

(z0, q1, λ) `
M

(λ, q2, λ).

7 / 66

Deterministic Context-Free Languages

Definition

Let n be a positive natural number. The parenthetic alphabet of order n is
the set

An = {(0, . . . , (n−1,)0, . . . ,)n−1}

The parenthetic language of order n is the context-free language PARn

generated by the grammar Gn = ({S},An, S ,P) whose set of productions
is

P = {S → SS , S → λ,S → (0S)0, . . . ,S → (n−1S)n−1}.

8 / 66

Deterministic Context-Free Languages

The next result lists some elementary properties of parenthetic languages.

Lemma

The following statements concerning the language PARn hold:

1 if u, v ∈ PARn, then uv ∈ PARn;

2 if u ∈ PARn, then (iu)i ∈ PARn for 0 6 i 6 n − 1;

3 if (i)iu ∈ PARn for some i, 0 6 i 6 n − 1, then u ∈ PARn;

4 for every word w ∈ PARn − {λ} there are u, v ∈ PARn such that
w = (iu)iv for some i, 0 6 i 6 n − 1.

9 / 66

Deterministic Context-Free Languages

Example

Let An = {(0, . . . , (n−1,)0, . . . ,)n−1}. The parenthetic language PARn on
the alphabet An is a deterministic context-free language.
The dpda

M = (An, {z0} ∪ An, {q0, q1}, δ, q0, z0, {q0}),

whose transition function is given by the table contained in the next slide
(where 0 ≤ i , j ≤ n − 1) accepts the language PARn.

10 / 66

Deterministic Context-Free Languages

Top State Input Transition Function

z0 q0 (i (z0(i , q1)
(j q1 (i ((j(i , q1)
(i q1)i (λ, q1)
z0 q1 λ (z0, q0)

11 / 66

Deterministic Context-Free Languages

For a dpda, we may write δ(z , q, a) = (w , p) instead of
δ(z , q, a) = {(w , p)} in order to simplify the notation.
A dpda does not always have a next move. This may happen because

for some pair (z , q) ∈ Z × Q, such that δ(z , q, a) = ∅ for every
a ∈ A ∪ {λ}, or

because the pushdown store is empty.

12 / 66

Deterministic Context-Free Languages

However, it is possible to ensure that for each dpda there is an equivalent
dpda that always has a next move.
To do this:

Create M′ by adding a marker symbol z ′0, at the bottom of the
pushdown store and a “sink” state q̄, one that can never be left.

Any computation of M that would have emptied the stack results in
M′ having z ′0 at the top of the stack. This forces M′ into state q̄.

Also, any pair (z , q) that could block a computation is augmented to
allow a transition to q̄ for each input symbol such that δ(z , q, a) = ∅.

13 / 66

Deterministic Context-Free Languages

Theorem

For every dpda M = (A,Z ,Q, δ, q0, z0,F) there exists a dpda
M′ = (A,Z ′,Q ′, δ′, q′0, z

′
0,F

′) that is equivalent to M and satisfies the
following conditions:

1 For every z ′ ∈ Z ′, q′ ∈ Q ′ exactly one of the following cases may
occur:

1 |δ′(z ′, q′, a)| = 1 for every a ∈ A and δ′(z ′, q′, λ) = ∅, or
2 |δ′(z ′, q′, λ)| = 1, and δ′(z ′, q′, a) = ∅ for every a ∈ A.

2 For every q′, q′′ ∈ Q, if δ′(z ′0, q
′, a) = (w , q′′) for some a ∈ A ∪ {λ},

then w = z ′0u for some u ∈ Z ∗.

14 / 66

Deterministic Context-Free Languages

Proof

Let Z ′ = Z ∪ {z ′0}, Q ′ = Q ∪ {q′0, q̄}, where z ′0 6∈ Z and q′0, q̄ 6∈ Q,
F ′ = F , and let δ′ be defined as follows.

δ′(z ′0, q
′
0, λ) = (z ′0z0, q0);

δ(z ′0, q, a) = (z ′0, q̄) for q ∈ Q and a ∈ A;

if δ(z , q, a) 6= ∅, then δ′(z , q, a) = δ(z , q, a) for z ∈ Z , q ∈ Q, and
a ∈ A ∪ {λ};
if δ(z , q, λ) = ∅ and there is a ∈ A such that δ(z , q, a) = ∅, then
δ′(z , q, a) = (z , q̄);

δ′(z , q̄, a) = (z , q̄) for every z ∈ Z and a ∈ A.

15 / 66

Deterministic Context-Free Languages

Proof (cont’d)

It is easy to see, by inspecting the definition of δ′, that the conditions of

the theorem are satisfied. Furthermore, we have (z0, q0, x)
∗
`
M

(w , q, λ) if

and only if

(z ′0, q
′
0, x) `

M′
(z ′0z0, q0, x)

∗
`
M

(z ′0w , q, λ),

which implies L(M) = L(M′).
Note that the dpda M′ defined above never empties its stack (because its
initial stack symbol z ′0 always remains at the bottom of the stack); also,
M′ always has a next move, so we may assume that for every dcfl L there
exists a dpda M such that M always has a next move and L = L(M).

16 / 66

Deterministic Context-Free Languages

Example

The dpda M′ obtained from the dpda introduced in Example on Slide 4 is

M′ = ({a, b}, {z ′0, z0, a}, {q0, q1, q2, q
′
0, q̄}, δ′, q′0, z ′0, {q2}),

where the transition function is defined by the table shown next.
Triples of the form (z , q, i) such that i ∈ A ∪ {λ} and δ(z , q, i) = ∅ are
omitted from this table.

Top State Input i δ(z, q, i)

z′0 q′0 λ (z′0z0, q0)
z′0 q ∈ {q0, q1, q2} i ∈ {a, b} (z′0, q̄)
z0 q0 λ (z0, q2)
z0 q2 a (z0a, q1)
a q1 a (aa, q1)
a q1 b (λ, q1)
z0 q1 λ (z0, q2)

z ∈ {a, z′0} q0 i ∈ {a, b} (z, q̄)
z′0 q2 i ∈ {a, b} (z, q̄)
z0 q2 b (z0, q̄)
z′0 q1 i ∈ {a, b} (z, q̄)

z ∈ {z0, a, z
′
0} q̄ i ∈ {a, b} (z, q̄)

17 / 66

Deterministic Context-Free Languages

The dpda M′ can read any input word. For example, we have the
computation:

(z ′0, q
′
0, bab) ` (z ′0z0, q0, bab) ` (z ′0z0, q2, bab)

` (z ′0z0, q̄, ab) ` (z ′0z0, q̄, b) ` (z ′0z0, q̄, λ).

18 / 66

Deterministic Context-Free Languages

Definition

Let M = (A,Z ,Q, δ, q0, z0,F) be a dpda. An instantaneous description
(w , q, x) of M is looping if for every n ∈ N, n > 0, there exists an
instantaneous description (wn, qn, x) such that |wn| ≥ |w | for n > 0, and

(w , q, x) `
M

(w1, q1, x) `
M
· · · `

M
(wn, qn, x) `

M
· · ·

The set of looping instantaneous descriptions of the dpda M will be
denoted by LOOP(M).

19 / 66

Deterministic Context-Free Languages

If c = (w , q, x) ∈ LOOP(M), then the dpda can make an arbitrarily
large number of moves starting from c without ever decreasing the
length of the content of the pushdown store and without reading any
input symbol.

If M enters a looping instantaneous description while processing an
input word, then the symbols that remain to be read will never be
processed.

An instantaneous description (w , q, x) is looping if and only if
(z , q, λ) is a looping instantaneous description, where w = w ′z for
some w ′ ∈ Z ∗.

20 / 66

Deterministic Context-Free Languages

Let n(M) be the number defined by

n(M) =

{
|Q|(|Z ||Q||Z |`(M)+1−|Z |)

|Z |−1 if |Z | > 1

|Q| if |Z | = 1,

where

`(M) = max{|v | | δ(z , q, a) = (v , q′) for some z ∈ Z , q ∈ Q, a ∈ A∪{λ}}

is the length of the longest word written on the pushdown store in one
step.

21 / 66

Deterministic Context-Free Languages

Theorem

Let M = (A,Z ,Q, δ, q0, z0,F) be a dpda. We have (z , q, λ) ∈ LOOP(M)
if and only if there is an instantaneous description (w , p, λ) such that

(z , q, λ)
n(M)
`
M

(w , p, λ).

22 / 66

Deterministic Context-Free Languages

Proof

If (z , q, λ) ∈ LOOP(M), then it is clear that (z , q, λ)
n(M)
`
M

(w , p, λ).

Conversely, suppose that (z , q, λ)
n(M)
`
M

(w , p, λ). We need to consider two

cases:

Case I: There is u ∈ Z ∗ such that |u| > |Q||Z |`(M) and

(z , q, λ)
∗
`
M

(u, r , λ)
∗
`
M

(w , p, λ)

for some r ∈ Q, and

Case II: Suppose now that for every u ∈ Z ∗ such that

(z , q, λ)
∗
`
M

(u, r , λ)
∗
`
M

(w , p, λ) (1)

we have |u| ≤ |Q||Z |`(M).

23 / 66

Deterministic Context-Free Languages

Proof (cont’d)

Case I: If there is u ∈ Z ∗ such that |u| > |Q||Z |`(M) and

(z , q, λ)
∗
`
M

(u, r , λ)
∗
`
M

(w , p, λ)

for some r ∈ Q, then, since there are be more than |Q||Z | steps in the

computation (z , q, λ)
∗
`
M

(u, r , λ), there are two instantaneous descriptions

that have the same state and the same symbol at the top of the pushdown
store. In other words, we have

(z , q, λ)
∗
`
M

(vz ′, q′, λ)
∗
`
M

(vtz ′, q′, λ)
∗
`
M

(u, r , λ),

for some u, v ∈ Z ∗. Because (vz ′, q′, λ)
n
`
M

(vtz ′, q′, λ) we can write

(z , q, λ)
∗
`
M

(vz ′, q′, λ)
nj
`
M

(vt jz ′, q′, λ)

for any j ∈ N, so (z , q, λ) ∈ LOOP(M).
24 / 66

Deterministic Context-Free Languages

Proof (cont’d)

Case II:

Suppose now that for every u ∈ Z ∗ such that

(z , q, λ)
∗
`
M

(u, r , λ)
∗
`
M

(w , p, λ) (2)

we have |u| ≤ |Q||Z |`(M). Note that there are |Z |
|Q||Z |`(M)+1−|Z |
|Z |−1 nonnull

words of length less or equal to |Q||Z |`(M) on the alphabet Z , and,
therefore, there are no more than n(M) distinct instantaneous descriptions
(u, r , λ) of the dpda M that can be reached from (z , q, λ). Consequently,
in the computation (2) there are some repeated instantaneous descriptions
and this implies (z , q, λ) ∈ LOOP(M).

25 / 66

Deterministic Context-Free Languages

Theorem

Let M = (A,Z ,Q, δ, q0, z0,F) be a dpda. Then,

(z , q, λ)
∗
`
M

(w , p, λ),

where p is a final state if and only if there is a computation

(z , q, λ)
m
`
M

(w , p, λ),

where m 6 n(M).

26 / 66

Deterministic Context-Free Languages

Proof

Suppose that (z , q, λ)
∗
`
M

(w , p, λ) is the shortest computation that leads

to an instantaneous description (w , p, λ) where p is a final state. By the
argument presented previously, it follows that for every instantaneous
description (u, r , λ) such that

(z , q, λ)
∗
`
M

(u, r , λ)
∗
`
M

(w , p, λ),

we have |u| ≤ |Q||Z |`(M).

27 / 66

Deterministic Context-Free Languages

Proof (cont’d)

Since there are n(M) distinct instantaneous descriptions of the form

(u, r , λ) it follows that the length of the computation (z , q, λ)
∗
`
M

(w , p, λ)

may not exceed n(M) to avoid the presence of repeating instantaneous
descriptions (which would contradict the definition of the computation

(z , q, λ)
∗
`
M

(w , p, λ)).

Thus, we obtain (z , q, λ)
m
`
M

(w , p, λ), where m 6 n(M). The converse

implication is obvious.

28 / 66

Deterministic Context-Free Languages

Consider the sets

I (M) = {(z , q) ∈ Z × Q | (z , q, λ) ∈ LOOP(M)

and (z , q, λ)
∗
`
M

(w , p, λ) for some p ∈ F and w ∈ Z ∗}

I ′(M) = {(z , q) ∈ Z × Q | (z , q, λ) ∈ LOOP(M) and there is

no p ∈ F such that (z , q, λ)
∗
`
M

(w , p, λ)} for any w ∈ Z ∗.

The previous theorem suggests the following algorithms for computing the
sets I (M) and I (M′).

29 / 66

Deterministic Context-Free Languages

Computation of I (M) and I ′(M):
Input Data: A dpda M = (A,Z ,Q, δ, q0, z0,F);
Output Data: The sets I (M) and I ′(M);
begin
if (For an instantaneous description (z , q, λ) determine there exists an

instantaneous description (w , p, λ) such that (z , q, λ)
n(M)
`
M

(w , p, λ))

then
begin (z , q, λ) is a looping instantaneous description, so
(z , q) ∈ I (M) ∪ I ′(M)
end
if (for (z , q, λ) determine whether it is possible to reach an instantaneous
description (w , p, λ), where p is a final state in no more than n(M) steps)
then (place (z , q) in I (M))
else (place (z , q) in I (M′))
return I (M) and I ′(M);

30 / 66

Deterministic Context-Free Languages

A major result that we prove in this section is that the class of
deterministic context-free languages is closed with respect to the
complement operation.
Note that:

A dpda may not read its input tape in its entirety if it enters a
looping instantaneous description. Thus, it could happen that there is
an input word x such that x is neither in L(M) nor in L(M′).

Even if no looping instantaneous descriptions exist, after reading its
input and entering a final instantaneous descriptions a dpda may
continue its computation using null transitions and go through some
states that are final and through some states that are non-final;
correspondingly, M′ will reach non-final and final states. This implies
the existence of input words that belong to both L(M) and L(M′).

31 / 66

Deterministic Context-Free Languages

To overcome these difficulties, we need the following result.

Theorem

Let M = (A,Z ,Q, δ, q0, z0,F) be a dpda. There is a dpda M1 such that
L(M) = L(M1), and for every x ∈ A∗ there is q ∈ Q such that

(z0, q0, x)
∗
`
M

(w , q, λ),

for some w ∈ Z ∗.

32 / 66

Deterministic Context-Free Languages

Proof

Starting from the dpda M define the dpda

M1 = (A,Z ,Q ∪ {p, r}, δ1, q0, z0,F ∪ {p}),

where p, r are two new states. The transition function δ1 is defined as
follows.

for z ∈ Z , q ∈ Q and a ∈ A, δ1(z , q, a) = δ(z , q, a);

if (z , qλ) is not a looping instantaneous description in M, that is,
(z , q) 6∈ I (M) ∪ I (M′), define δ1(z , q, λ) = δ(z , q, λ);

if (z , q) ∈ I (M), then δ1(z , q, λ) = (z , p);

if (z , q) ∈ I ′(M), then δ1(z , q, λ) = (z , r);

δ1(z , p, a) = (z , r) and δ1(z , r , a) = (z , r) for every a ∈ A and z ∈ Z .

33 / 66

Deterministic Context-Free Languages

Proof (cont’d)

The dpda M1 always reads its input in its entirety. Indeed, M1 simulates
the activity of M. If no looping instantaneous description is encountered in
the computation of M, then M will read its entire input, and M1 will do
the same. Otherwise, when M enters a looping instantaneous description,
then M1 enters either the state p or the state r and the entire input word
is read.
The definition of M1 implies that L(M) ⊆ L(M1) since every accepting
computation in M can be simulated in M1.

34 / 66

Deterministic Context-Free Languages

Proof (cont’d)

Suppose now that x ∈ L(M1). There exists a computation in M1 that
ends in a state in F or in the state p.
In the first case it is clear that x ∈ L(M); in the second, M reaches a

looping instantaneous description (tz , q, y), that is, (z0, q0, x)
∗
`
M

(tz , q, y)

and (z , q) ∈ I (M). The definition of I (M) implies that there exists a final

state q′ such that (tz , q, y)
∗
`
M

(w , q′, y), so x ∈ L(M).

35 / 66

Deterministic Context-Free Languages

Theorem

Let A be an alphabet and let L ⊆ A∗ be a dcfl. Then, the language
L̄ = A∗ − L is a dcfl.

36 / 66

Deterministic Context-Free Languages

Proof

Since L is a dcfl there exists a dpda M = (A,Z ,Q, δ, q0, z0,F) such that
L = L(M). By Theorem 11 we can assume that M reads every input word
completely. Define the pushdown automaton M′ = (A,Z ,Q ′, δ′, q′, z0,F

′),
where Q ′ = Q × {0, 1, 2}. The transition function δ′ is defined by:

37 / 66

Deterministic Context-Free Languages

Proof (cont’d)

For z ∈ Z , q ∈ Q, and a ∈ A, if δ(z , q, a) = (w , p), then

δ′(z , (q, 0), a) = δ′(z , (q, 2), a) =

{
(w , (p, 0)) if p ∈ F
(w , (p, 1)) if p 6∈ F .

and δ′(z , (q, 1), λ) = (z , (q, 2)).

For z ∈ Z and q ∈ Q, if δ(z , q, λ) = (w , p), then
δ′(z , (q, 0), λ) = (w , (p, 0)), and

δ′(z , (q, 1), λ) =

{
(w , (p, 0)) if p ∈ F
(w , (p, 1)) if p 6∈ F .

38 / 66

Deterministic Context-Free Languages

The initial state q′0 is

q′0 =

{
(q0, 0) if q0 ∈ F
(q0, 1) if q0 6∈ F ,

and the set of final states is F ′ = {(q, 2) | q ∈ Q}. Note that once M′

enters a final state (q, 2), then no null transition is possible. Also, M′ can
reach a final state (q, 2) only by using a null transition from a state (q, 1).

39 / 66

Deterministic Context-Free Languages

The role of the second component of a state of M′ is to record whether M
has entered a final state after its last non-null transition.

Suppose that x ∈ L(M), that is, (z0, q0, x)
∗
`
M

(w , q, λ), where q ∈ F . If

(q0, i) is the initial state of M′, the previous computation yields

(z0, (q0, i), x)
∗
`
M′

(w , (q, 0), λ),

and M′ cannot reach a final state. Thus, x 6∈ L(M′). This shows that
L(M′) ⊆ A∗ − L(M).

40 / 66

Deterministic Context-Free Languages

Proof (cont’d)

Conversely, suppose that x ∈ A∗ − L(M). Since M reads its entire input,

we have (z0, q0, x)
∗
`
M

(wz , q, λ), where q 6∈ F and q is the state entered

by M after reading the last symbol of x . This implies the existence of the

computation (z0, (q0, i), x)
∗
`
M′

(wz , (q, 1), λ). The definition of δ′ implies

δ′((q, 1), λ) = (z , (q, 2)), so

(z0, (q0, i), x)
∗
`
M′

(wz , (q, 1), λ)
∗
`
M′

(wz , (q, 2), λ),

which shows that x ∈ L(M′). Thus, we conclude that
L(M′) = A∗ − L(M), so A∗ − L(M) is indeed a dcfl.

41 / 66

Deterministic Context-Free Languages

Example

The details of the construction presented in the proof of the previous
theorem can be followed in this example.
Consider the dpda M′ that accepts the language {anbn | n ∈ N} and is
capable of reading any input word x ∈ {a, b}∗. The dpda

M′′ = ({a, b}, {z ′0, z0, a},Q ′ × {0, 1, 2}}, δ′′, (q′0, 1), z ′0,Q
′ × {2}),

constructed according to the algorithm accepts the language
{a, b}∗ − {anbn | n ∈ N}.
Here Q ′ = {q0, q1, q2, q

′
0, q̄}. Since q0 is not a final state of M′, the initial

state of M′′ is (q′0, 1). The word bab is accepted by M′′ using the
following computation:

42 / 66

Deterministic Context-Free Languages

Example (cont’d)

Transition in M′ Instantaneous description of M′′

and transition in M′′

(z′0, (q′0, 1), bab) (initial i.d.)

δ′(z′0, q
′
0, λ) = (z′0z0, q0) δ′′(z′0, (q′0, 1), λ) = (z′0z0, (q0, 1))

(z′0z0, (q0, 1), bab)

δ′(z0, q0, λ) = (z0, q2) δ′′(z0, (q0, 1), λ) = (z0, (q2, 0)) (since q2 ∈ F)

(z′0z0, (q2, 0), bab)

δ′(z0, q2, b) = (z0, q̄) δ′′(z0, (q2, 0), b) = (z0, (q̄, 1)) (since q̄ 6∈ F)

(z′0z0, (q̄, 1), ab)

δ′(z0, q̄, a) = (z0, q̄) δ′′(z0, (q̄, 1), λ) = (z0, (q̄, 2))
δ′′(z0, (q̄, 2), a) = (z0, (q̄, 1)) (since q̄ 6∈ F)

(z′0z0, (q̄, 2), ab)
(z′0z0, (q̄, 1), b)

δ′(z0, q̄, b) = (z0, q̄) δ′′(z0, (q̄, 1), λ) = (z0, (q̄, 2))
δ′′(z0, (q̄, 2), b) = (z0, (q̄, 1)) (since q̄ 6∈ F)

(z′0z0, (q̄, 2), b)
(z′0z0, (q̄, 1), λ)

δ′′(z0, (q̄, 1), λ) = (z0, (q̄, 2))

(z′0z0, (q̄, 2), λ)

43 / 66

Deterministic Context-Free Languages

Corollary

For every dcfl L there exists a dpda that accepts L and has no null
transitions from its final states.

44 / 66

Deterministic Context-Free Languages

Example

We give an example of a context-free language that is not deterministic.

L = {anbmcp | m, n, p ∈ N and n = m or m = p}

is a context-free language that is inherently ambiguous. If L were a
deterministic context-free language, the language {a, b, c}∗ − L would be a
deterministic context-free language, and therefore, the language

K = ({a, b, c}∗ − L) ∩ {a}∗{b}∗{c}∗

= {anbmcp | n,m, p ∈ N, n 6= m and m 6= p}

would be a context-free language.

45 / 66

Deterministic Context-Free Languages

Example (cont’d)

However, we prove that K is not context-free. Indeed, suppose that K
were a context-free language generated by a context-free grammar G . Let
nG be the number that corresponds to G by Ogden’s Lemma. Then, we
have w = anG+nG !bnG cnG+nG ! ∈ K . Suppose that the set of marked
positions are the nG positions in w occupied by the bs. Then, we can
write w = xyzut such that at least one of y or u contains a marked
position, yzu no more than nG marked positions, and xynzunt ∈ L(G) for
all n ∈ N. In other words, at least one of y or u must contain a b.

46 / 66

Deterministic Context-Free Languages

Observe that neither y nor u may contain two distinct symbols. For
example, if y were to contain both as and bs then, by pumping, b could
precede as and this would conflict with the definition of K . Let |y | = k
and |u| = `. We need to consider the following cases:

1 y ∈ {b}∗ and u ∈ {b}∗;
2 y ∈ {a}∗ and u ∈ {b}∗;
3 y ∈ {b}∗ and u ∈ {c}∗.

In the first case, note that k + ` 6 nG and that there are nG − (k + `)
symbols b that do not occur in y or u. The effect of the pumping of y and
u is to increase the number of bs to
nG − (k + `) + (k + `)i = nG + (k + `)(i − 1). Note that there is an i ∈ N
such that

nG + nG ! = nG + (k + `)(i − 1)

because k + ` 6 nG . By pumping y and u a number of
i = nG !/(k + `) + 1 times we obtain a word that has the same number of
as and bs and cs; this contradicts the definition of K .

47 / 66

Deterministic Context-Free Languages

Example (cont’d)

In the second case, ` 6 nG . The effect of the pumping is to increase the
number of as and bs while the number of cs remains constant. The word
wi = xy izui t will contain ki + nG + nG !− k as, and
`i + nG − ` = nG + `(i − 1) bs. By choosing i = nG !/`+ 1, the number of
bs equals the number of cs, which contradicts the definition of K . The
third case can be treated in a similar manner.

48 / 66

Deterministic Context-Free Languages

To prove other closure properties of deterministic context-free languages
we introduce a normal form for dpdas.

Lemma

For every dpda M = (A,Z ,Q, δ, q0, z0,F) there exists an equivalent dpda
M1 = (A,Z ,Q1, δ1, q0, z0,F) such that if δ1(z , q1, a) = {(w , p1)} for some
q1, p1 ∈ Q1, then |w | 6 2.

49 / 66

Deterministic Context-Free Languages

Proof

For each transition δ(z , q, a) = {(u, p)} such that u = z0 · · · zk−1 and
k > 2 we introduce k − 2 new states r0, . . . , rk−3 and define

δ1(z , q, a) = {(z0z1, r0)}
δ1(z1, r0, λ) = {(z1z2, r1)}

...

δ1(zk−3, rk−4, λ) = {(zk−3zk−2, rk−3)}
δ1(zk−2, rk−3, λ) = {(zk−2zk−1, p)}.

For every other transitions δ1(z , q, a) = δ(z , q, a).

50 / 66

Deterministic Context-Free Languages

Proof (cont’d)

If
(uz , q, ax) `

M
(uz0 · · · zk−1, p, x),

then we have the computation

(uz , q, ax) `
M1

(uz0z1, r0, x)

`
M1

(uz0z1z1, r1, x)

...

`
M1

(uz0z1z1 · · · zk−3, rk−4, x)

`
M1

(uz0z1z1 · · · zk−3zk−2, rk−3, x)

`
M1

(uz0z1z1 · · · zk−3zk−2zk−1, p, x).

Thus, the dpda are easily seen to be equivalent and M1 is a dpda that
satisfies the condition of the lemma.

51 / 66

Deterministic Context-Free Languages

Theorem

(Normal Form Theorem for Pushdown Automata) For every dpda
M = (A,Z ,Q, δ, q0, z0,F) there exists an equivalent dpda
M′ = (A,Z ,Q ′, δ, q′0, z

′
0,F

′) such that if δ′(z , q, a) = {(w , p)}, then

w ∈ {λ, z} ∪ {zz ′ | z ′ ∈ Z}.

52 / 66

Deterministic Context-Free Languages

Proof

We can assume without loss of generality that if δ(z , q, a) = (w , p), then
|w | 6 2. Define Q ′ = Z × Q, q′0 = (z0, q0), Z ′ = Z ∪ {z ′0}, and
F ′ = Z ′ × F , where z ′0 is a new symbol, z0 6∈ Z . The transition function δ′

is given by:

1 if δ(z , q, a) = (λ, p), then δ′(z ′, (z , q), a) = (λ, (z ′, p));

2 if δ(z , q, a) = (y , p), then δ′(z ′, (z , q), a) = (z ′, (y , p));

3 if δ(z , q, a) = (yy1, p), then δ′(z ′, (z , q), a) = (z ′y , (y1, p)),

for every z , z ′ ∈ Z , q ∈ Q and a ∈ A ∪ {λ}.
In addition, δ′(z ′0, (z0, q0), λ) = (z ′0z0, (z0, q0)).

53 / 66

Deterministic Context-Free Languages

The actions of M and M′ are described succinctly in the following table:

Action of M Action of M′

M pops the stack. M′ pops the stack and
stores the popped symbol in its state.

M alters the top M′ leaves the top of the
of the stack to y . stack intact and stores y in its state.

M pushes yy1 M′ stores y1 in its state
on the stack. and pushes y on the stack.

54 / 66

Deterministic Context-Free Languages

We claim that (z0, q0, x)
∗
`
M

(zi0 · · · zim−1 , q, λ) if and only if

(z ′0, (z0, q0), x)
∗
`
M′

(z ′0zi0 · · · zim−2 , (zim−1 , q), λ).

Suppose that

(z0, q0, x)
n
`
M

(zi0 · · · zim−1 , q, λ) (3)

55 / 66

Deterministic Context-Free Languages

We prove by induction on n that

(z ′0, (z0, q0), x)
∗
`
M′

(z ′0zi0 · · · zim−2 , (zim−1 , q), λ).

In the base case, n = 0, we have m = 1 and zi0 = z0 and the implication
follows immediately. Suppose that the statement holds for computations
of length less than n and that we have the computation (3). We need to
consider three cases, depending on the action of M during the last step of
the computation.

56 / 66

Deterministic Context-Free Languages

Case I: If M popped the stack, then the computation (3) has the form:

(z0, q0, x)
n−1
`
M

(zi0 · · · zim−1z , q
′, a)

`
M

(zi0 · · · zim−1 , q, λ),

where δ(z , q′, a) = (λ, q), x = x ′a, and a ∈ A ∪ {λ}. Consequently,
δ′(z1, (z , q

′), a) = (λ, (z1, q)) for every z1 ∈ Z . By the inductive
hypothesis, we have the computation:

(z ′0, (z0, q0), x)
∗
`
M′

(z ′0zi0 · · · zim−1 , (z , q
′), a)

`
M′

(z ′0zi0 · · · zim−2 , (zim−1 , q), λ),

which completes the proof of the implication.

57 / 66

Deterministic Context-Free Languages

Case II: If M alters only the top of the stack by changing it to y , the
computation (3) can be written as

(z0, q0, x)
n−1
`
M

(zi0 · · · zim−1z , q
′, a)

`
M

(zi0 · · · zim−1y , q, λ)

and we have δ(z , q′, a) = (y , q). Thus, δ′(z1, (z , q
′), a) = (z1, (y , q)) for

every z1 ∈ Z . By the inductive hypothesis, we have the computation:

(z ′0, (z0, q0), x)
∗
`
M′

(z ′0zi0 · · · zim−1 , (z , q
′), a)

`
M′

(z ′0zi0 · · · zim−1 , (y , q), λ).

58 / 66

Deterministic Context-Free Languages

Case III: Finally, suppose that M pushes yy1 on the stack using the
transition δ(z , q′, a) = (yy1, p). In this case, the computation (3) can be
written as:

(z0, q0, x)
n−1
`
M

(zi0 · · · zim−1z , q
′, a)

`
M

(zi0 · · · zim−1yy1, p, λ),

where x = x ′a. We have δ′(z1, (z , q
′), a) = (z1y , (y1, p)) for every z1 ∈ Z .

Combining this fact with the inductive hypothesis yields the computation:

(z ′0, (z0, q0), x)
∗
`
M′

(z ′0zi0 · · · zim−1 , (z , q
′), a)

`
M′

(z ′0zi0 · · · zim−1y , (y1, p), λ).

59 / 66

Deterministic Context-Free Languages

Conversely, we can prove by induction of n that

(z ′0, (z0, q0), x)
n
`
M′

(z ′0zi0 · · · zim−2 , (zim−1 , q), λ).

implies

(z0, q0, x)
∗
`
M

(zi0 · · · zim−1 , q, λ).

The argument is similar to the one presented above and is omitted.

60 / 66

Deterministic Context-Free Languages

Example

Let Z ′ = {z0, a, b, z
′
0}, Q ′ = {z0, a, b} × {q0, q1, q2}, and let M′ be the

dpda
M′ = ({a, b, c},Z ′,Q ′, δ′, (z0, q0), z ′0,Z

′ × {q2})

whose transition function δ′ is shown in next is in normal form. The
transitions shown in the figure are valid for every z ′ ∈ Z ′; we also have
δ′(z ′0, (z0, q0), λ) = (z ′0z0, (z0, q0)).

z q a δ(z, q, a) δ(z′, (z, q), a)

z0 q0 a (z0a, q0) (z′z0, (a, q0))
z0 q0 b (z0b, q0) (z′z0, (b, q0))
z0 q0 c (z0, q1) (z′, (z0, q1))
a q0 a (aa, q0) (z′a, (a, q0))
a q0 b (ab, q0) (z′a, (b, q0))
a q0 c (a, q1) (z′, (a, q1))
b q0 a (ba, q0) (z′b, (a, q0))
b q0 b (bb, q0) (z′b, (b, q0))
b q0 c (b, q1) (z′, (b, q1))
a q1 a (λ, q1) (λ, (z′, q1))
b q1 b (λ, q1) (λ, (z′, q1))
z0 q1 λ (λ, q2) (λ, (z′, q2))

61 / 66

Deterministic Context-Free Languages

The counterpart of the computation presented previously that leads to the
acceptance of the word x = abbcbba is:

(z ′0, (z0, q0), abbcbba) ` (z ′0z0, (z0, q0), abbcbba)

` (z ′0z0, (a, q0), bbcbba)

` (z ′0z0a, (b, q0), bcbba)

` (z ′0z0ab, (b, q0), cbba)

` (z ′0z0ab, (b, q1), bba)

` (z ′0z0a, (b, q1), ba)

` (z ′0z0, (a, q1), a)

` (z ′0, (z0, q1), λ)

` (λ, (z ′0, q2)).

62 / 66

Deterministic Context-Free Languages

Theorem

If L is a deterministic context-free language and R is a regular language,
then L ∩ R is a deterministic context-free language.

63 / 66

Deterministic Context-Free Languages

Proof

Suppose that L = L(M), where M = (A,Z ,Q, δ, q0, z0,F) is a dpda that
reads its entire input, and R = L(M′), where M′ = (A,Q ′, δ′, q′0,F

′) is a
dfa. Define the dpda M1 = (A,Z ,Q × Q ′, δ1, (q0, q

′
0), z0,F × F ′) by

δ1(z , (q, q′), a) =


(v , (q1, q

′)) if a = λ and
δ(z , q, λ) = (v , q1)

(v , (q1, δ
′(q′, a))) if a ∈ A and

δ(z , q, a) = {(q1, v)},

for z ∈ Z , (q, q′) ∈ Q × Q ′ and a ∈ A ∪ {λ}.

64 / 66

Deterministic Context-Free Languages

Proof (cont’d)

We claim that (z0, (q0, q
′
0), x)

∗
`
M1

(w , (q, q′), λ) if and only if

(z0, q0, x)
∗
`
M

(w , q, λ) and δ′
∗
(q′0, x) = q′.

We prove, by induction on n, that if

(z0, (q0, q
′
0), x)

n
`
M1

(w , (q, q′), λ),

then (z0, q0, x)
n
`
M

(w , q, λ) and δ′∗(q′0, x) = q′. The base case, n = 0, is

immediate since we have q = q0, q′ = q′0, w = z0, and x = λ.

65 / 66

Deterministic Context-Free Languages

Suppose that the implication holds for computations of length n and that

(z0, (q0, q
′
0), x)

n+1
`
M1

(w , (q, q′), λ). This computation can be written as

(z0, (q0, q
′
0), x)

n
`
M1

(w1, (q1, q
′
1), a) `

M1

(w , (q, q′), λ),

where x = ya and a ∈ A ∪ {λ}. By the inductive hypothesis, we have

(z0, q0, y)
n
`
M

(w1, q1, λ) and δ′
∗
(q′0, y) = q′1.

Also, (w1, q1, a) `
M

(w , q, λ) and δ′(q′1, a) = q′. Therefore, we have

(z0, q0, x) = (z0, q0, ya)
n
`
M

(w1, q1, a) `
M

(w , q, λ),

and
δ′
∗
(q′0, x) = δ′(δ′

∗
(q′0, y), a) = δ′(q′1, a) = q′.

66 / 66

	Outline
	Deterministic Context-Free Languages

