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BASIC PROBABILITIES

Probability Spaces

Suppose that (Ω, E ,P) is a probability space, E is a family of
subsets of Ω known as events, and P is a probability. The elements
of Ω are elementary events.
In many cases, E consists of all subsets of Ω, and we will make this
assumption unless a special statement says otherwise.

3 / 28



BASIC PROBABILITIES

Probability Spaces

Example

Roling two dice is described by a finite probability space that
consists of 36 elementary events: (1, 1), (1, 2), . . . , (6, 6).

1 2 3 4 5 6

1
2
3
4
5
6
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BASIC PROBABILITIES

Probability Spaces

An event in the previous example is a subset of
{1, . . . , 6} × {1, . . . , 6}, that is, a subset of the set of pairs
{(u, v) | 1 6 u 6 6, 1 6 v 6 6}.

Example

throws that have the same number of both dice:

S = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}

throws such that the sum of the numbers is greater than 8:

B = {(2, 6), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6), (5, 3), (5, 4), (5, 6), (6, 6), (6, 2), (5, 3), (6, 3), (5, 4), (6, 4), (3, 5), (4, 5), (6, 5)}
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BASIC PROBABILITIES

Probability Spaces

Note that Ω consists of 36 elementary events and there are
236 ≈ 1012 events in this very simple probability space
Probability of an event V in this context is the number P(V )
given by

P(V ) =
|V |
|Ω|

.

Example

We have

P(S) =
6

36
=

1

6
,

and

P(B) =
18

36
=

1

2
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BASIC PROBABILITIES

Random Variables

Informally, Borel sets of R are the sets that can be constructed
from open or closed sets by repeatedly taking countable unions and
intersections.

Definition

Let (Ω, E ,P) be a probability space. A function X : Ω −→ R is a
random variable if X−1(U) ∈ E for every Borel subset of R.
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BASIC PROBABILITIES

Random Variables

Definition

A simple random variable is defined by a table:

X :

(
x1 x2 · · · xn
p1 p2 · · · pn

)
,

where x1, . . . , xn are the values assummed by X and
pi = P(X = xi ) for 1 6 i 6 n. We always have p1 + · · ·+ pn = 1.

The expected value of X is

E [X ] = x1p1 + x2p2 + · · ·+ xnpn.
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BASIC PROBABILITIES

Random Variables

Example

A random variable X whose distribution is:

X :

(
0 1
q p

)
,

where p + q = 1 is said to have a Bernoulli distribution with
parameter p. Note that

E [X ] = p and var(X ) = pq.
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BASIC PROBABILITIES

Random Variables

Example

Let p, q ∈ [0, 1] be two numbers such that p + q = 1. Consider the
random variable defined by

X :

(
0 1 · · · k · · · n
qn

(n
1

)
qn−1p · · ·

(n
k

)
qn−kpk · · · pn

)
,

We refer to a random variable with this distribution as a binomial
random variable. Note that

qn +

(
n

1

)
qn−1p + · · ·+

(
n

k

)
qn−kpk + · · ·+ pn = (q + p)n = 1.
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BASIC PROBABILITIES

Random Variables

Example cont’d

The expectation of a binomial variable is

E [X ] = np.

The variance of a random variable X is

var(X ) = E [(X − E (X ))2] = E [X 2]− (E [X ])2.

In the case of a binomial variable the variance is var(X ) = npq.
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BASIC PROBABILITIES

Random Variables

The Characteristic Function of an Event

If A is an event, then the function 1A : Ω −→ {0, 1} defined by

1A(ω) =

{
1 if ω ∈ A,

0 otherwise,

is a random variable,

1A :

(
0 1

1− P(A) P(A)

)
Note that E (1A) = P(A) and var(1A) = P(A)(1− P(A)).
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BASIC PROBABILITIES

Random Variables

The event A ∧ B takes place when both A and B occur; the event
A ∨ B takes place when at least one of A and B occur.

Example

The event S ∧ B takes place when the result of throwing the dice
results in a pair of numbers (n, n) whose sum is greater than 8 and
consists of the pairs:

(4, 4), (5, 5), (6, 6)

Therefore, P(S ∧ B) = 3
36 = 1

12 .
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BASIC PROBABILITIES

Conditional Probabilities

Definition

If B is an event such that P(B) > 0 one can define the probability
of an event A conditioned on B as

P(A|B) =
P(A ∩ B)

P(B)
.

Example

The probability of the event S conditioned on B is

P(S |B) =
P(S ∧ B)

P(B)
=

1
12
1
2

=
1

6
,

and

P(B|S) =
P(S ∧ B)

P(S)
=

1
12
1
6

=
1

2
.
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BASIC PROBABILITIES

Conditional Probabilities

Definition

Two events A,B are independent if P(A ∧ B) = P(A)P(B).

If A,B are independent events, then

P(A|B) =
P(A ∧ B)

P(B)
=

P(A)P(B)

P(B)
= P(A)

and

P(B|A) =
P(B ∧ A)

P(A)
=

P(B)P(A)

P(A)
= P(B).

Note that B and S are independent events because
P(B ∧ S) = 1

12 = P(B)P(S).
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BASIC PROBABILITIES

Conditional Probabilities

The product rule or the Bayes theorem:

P(A ∧ B) = P(A|B)P(B) = P(B|A)P(A).

The sum rule:

P(A ∨ B) = P(A) + P(B)− P(A ∧ B).

The total probability rule: if A1, . . . ,An are mutually exclusive
and

∑n
i=1 P(Ai ) = 1, then

P(B) =
n∑

i=1

P(B|Ai )P(Ai ).
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BASIC PROBABILITIES

ML and Conditional Probabilities

In ML we are often interested in determining the best hypothesis
from some space H given the observed data S .
“Best” means in this context, the most probable hypothesis given

the data S , and

any initial knowledge of prior probabilities of hypotheses in H.
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BASIC PROBABILITIES

ML and Conditional Probabilities

“Prior probabilities” (or a priori probabilities) mean
probabilities of hypotheses before seeing the data S .

“Posterior probabilities” mean probabilities of hypotheses
after seeing the data S .

If no prior knowledge exist all hypotheses have the same probability.
In ML we are interested to compute P(h|S) that h holds given the
observed training data S .
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BASIC PROBABILITIES

ML and Conditional Probabilities

Bayes’ Theorem in ML

For a sample S and a hypothesis h we have

P(h|S) =
P(S |h)P(h)

P(S)

Note that:

P(h|S) increases with P(h) and with P(S |h).

P(h|S) decreases with P(S) because the more probable is
that S will be observed independent of h, the less evidence S
provides for h.
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BASIC PROBABILITIES

ML and Conditional Probabilities

Learning Scenario

Consider some set of candidate hypotheses H and seek the most
probable hypothesis given the observed data S .
Any such maximally probabile hypothesis is called a maximum a
posteriori hypothesis, MAP.
hMAP is

hMAP = argmaxh∈HP(h|S)

= argmaxh∈H
P(S |h)P(h)

P(S)

= argmaxh∈HP(S |h)P(h)

because P(S) is a constant.
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BASIC PROBABILITIES

ML and Conditional Probabilities

Maximum Likelihood Hypothesis

In some cases we assume that every hypothesis of H is apriori
equally probable, that is, P(hi ) = P(hj) for all hi , hj ∈ H.
Now,

hMAP = argmaxh∈HP(S |h).

P(S |h) is known as the likelihood of S given h.
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BASIC PROBABILITIES

ML and Conditional Probabilities

Example

A medical diagnosis problem:
The hypothesis space contains two hypotheses:

h0: patient has no cancer;

h1: patient has cancer.

An imperfect diagnosis test that has two outcomes; ⊕ and 	.

P(⊕|h1) = 0.98 P(⊕|h0) = 0.03
P(	|h1) = 0.02 P(	|h0) = 0.97

.

Prior knowlege: Only 0.08% of population has cancer; 99.2% does
not.
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BASIC PROBABILITIES

ML and Conditional Probabilities

Example (cont’d)

The test returns ⊕. Should we conclude that the patient has
cancer?
The MAP hypothesis is obtained as

hMAP = argmaxh∈HP(S |h)P(h).

P(⊕|h1)P(h1) = 0.98 ∗ 0.008 = 0.0078,

P(⊕|h0)P(h0) = 0.03 ∗ 0.992 = 0.0298.

The MAP hypothesis is h0; the patient has no cancer.

23 / 28



BASIC PROBABILITIES

Bayes Theorem and Concept Learning

Brute-Force Bayes Concept Learning

For each hypothesis h ∈ H calculate the posterior probablity:

P(h|S) =
P(D|h)P(h)

P(S)

Output the hypothesis hMAP with

hMAP = argmaxh∈HP(h|S).
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BASIC PROBABILITIES

Bayes Theorem and Concept Learning

Assumption for the Brute-Force Bayes Concept Learning:

Training data is S = {(x1, y1), . . . , (xm, ym)}, where yi = f (xi )
for 1 6 i 6 m and it is noise-free.

The target hypothesis is contained in H.

We have no apriori reason to believe that any hypothesis is
more probable than the other
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BASIC PROBABILITIES

Bayes Theorem and Concept Learning

Consequences

P(h) = 1
|H| ;

The probability of S given h is 1 if S is consistent with h and
0 otherwise:

P(S |h) =

{
1 if yi = h(xi ) for 1 6 i 6 m

0 otherwise;

26 / 28



BASIC PROBABILITIES

Bayes Theorem and Concept Learning

Let VSH,S be the subset of hypotheses of H that is consistent with
S .

If S is inconsistent with h then P(h|S) = 0·P(h)
P(S) = 0.

If S is consistent with h then

P(h|S) =
1 · 1
|H|

P(S)
=

1 · 1
|H|

|VSH,S|
|H|

=
1

|VSH,S |
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BASIC PROBABILITIES

Bayes Theorem and Concept Learning

Since the hypotheses are mutually exclusive (that is,
P(hi ∧ hj) = 0 if i 6= j), by the total probability law:

P(S) =
∑
hi∈H

P(S |hi )P(hi )

=
∑

h∈VSH,S

1 · 1

|H|
+

∑
h 6∈VSH,S

0 · 1

|H|

=
∑

h∈VSH,S

1 · 1

|H|
=
|VSH,S |
|H|

.

Note that under this setting every consistent hypothesis is a MAP
hypothesis.

28 / 28


	Outline
	Probability Spaces
	Random Variables
	Conditional Probabilities
	ML and Conditional Probabilities
	Bayes Theorem and Concept Learning

