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BASIC PROBABILITIES
LProba bility Spaces

Suppose that (2, &, P) is a probability space, £ is a family of
subsets of {2 known as events, and P is a probability. The elements
of Q are elementary events.

In many cases, £ consists of all subsets of €2, and we will make this
assumption unless a special statement says otherwise.
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BASIC PROBABILITIES
LProba bility Spaces

Roling two dice is described by a finite probability space that
consists of 36 elementary events: (1,1),(1,2),...,(6,6).
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BASIC PROBABILITIES
LProba bility Spaces

An event in the previous example is a subset of
{1,...,6} x{1,...,6}, that is, a subset of the set of pairs
{(u,v) | 1<u<6,1<v <6}

m throws that have the same number of both dice:

S =1{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}

m throws such that the sum of the numbers is greater than 8:

B =1{(2,6),(3,5),(3,6),(4,4),(4,5),(4,6),(5,3),(5,4),(5,6), (6,6
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BASIC PROBABILITIES
LProba bility Spaces

Note that 2 consists of 36 elementary events and there are
236 ~ 10'2 events in this very simple probability space
Probability of an event V in this context is the number P(V)

given by
4
P(V)=-—.
12|
We have 6 1
P(S)=—=-
O)=3=%
and 8 1
P(B)= — =~
(B) 36 2
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BASIC PROBABILITIES
L_Random Variables

Informally, Borel sets of R are the sets that can be constructed
from open or closed sets by repeatedly taking countable unions and
intersections.

Definition
Let (2, &, P) be a probability space. A function X : Q — R is a
random variable if X~1(U) € & for every Borel subset of R.
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BASIC PROBABILITIES
L_Random Variables

A simple random variable is defined by a table:

X X .. X
X : 1 2 n ,
PL P2 - Pn
where xi, ..., X, are the values assummed by X and

pi = P(X = x;) for 1 <i < n. We always have p; + -+ p, = 1.

The expected value of X is

E[X] = x1p1 + x2p2 + - - - + XaPp.
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BASIC PROBABILITIES
L_Random Variables

Example

A random variable X whose distribution is:

X:(o 1>’
q p

where p 4+ g = 1 is said to have a Bernoulli distribution with
parameter p. Note that

E[X] = p and var(X) = pq.
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BASIC PROBABILITIES
L_Random Variables

Let p,q € [0, 1] be two numbers such that p+ g = 1. Consider the
random variable defined by

X - (0 1 k n)
: qn (f17) qn—lp . (Z) qn—kpk . pn ’
We refer to a random variable with this distribution as a binomial
random variable. Note that

n n
q"+ <1>q”‘1p+---+ (k)q”‘kpk+---+P”=(q+P)”=1-
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BASIC PROBABILITIES
L_Random Variables

Example cont'd

The expectation of a binomial variable is
E[X] = np.
The variance of a random variable X is
var(X) = E[(X — E(X))?] = E[X?] — (E[X])%.

In the case of a binomial variable the variance is var(X) = npgq.
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BASIC PROBABILITIES
L_Random Variables

The Characteristic Function of an Event

If A'is an event, then the function 14 : Q — {0,1} defined by

1 fweA
1 = ’
Alw) {0 otherwise,

is a random variable,

0 1
Wi (i by rin)
Note that E(14) = P(A) and var(14) = P(A)(1 — P(A)).

12/28



BASIC PROBABILITIES
L_Random Variables

The event A A B takes place when both A and B occur; the event
AV B takes place when at least one of A and B occur.

Example

The event S A B takes place when the result of throwing the dice
results in a pair of numbers (n, n) whose sum is greater than 8 and
consists of the pairs:

(4,4),(5,5),(6,6)

Therefore, P(SAB) = 2 = 5.
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BASIC PROBABILITIES
L Conditional Probabilities

If B is an event such that P(B) > 0 one can define the probability
of an event A conditioned on B as
P(AN B)

P(B)

P(A|B) =

The probability of the event S conditioned on B is

1

p(sig) = A 5E) f(gf)—?—g,

n P(SAB T
6
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BASIC PROBABILITIES
L Conditional Probabilities

Definition
Two events A, B are independent if P(AA B) = P(A)P(B).

If A, B are independent events, then

P(AAB)  P(A)P(B)
P(B) —  P(B)

P(A|B) = = P(A)

and P(BAA)  P(B)P(A)

= = P(B).
Pa) P P
Note that B and S are independent events because
P(BAS) = % = P(B)P(S).

P(B|A) =
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BASIC PROBABILITIES
L Conditional Probabilities

m The product rule or the Bayes theorem:
P(AN B) = P(AB)P(B) = P(B|A)P(A).
m The sum rule:
P(Av B) = P(A)+ P(B) — P(AA B).

m The total probability rule: if A1,..., A, are mutually exclusive
and X7 ; P(A;) =1, then

P(B) = P(B|A;)P(A)).
i=1
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BASIC PROBABILITIES
LML and Conditional Probabilities

In ML we are often interested in determining the best hypothesis
from some space H given the observed data S.
“Best” means in this context, the most probable hypothesis given

m the data S, and
m any initial knowledge of prior probabilities of hypotheses in H.
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BASIC PROBABILITIES
LML and Conditional Probabilities

m "Prior probabilities” (or a priori probabilities) mean
probabilities of hypotheses before seeing the data S.

m “Posterior probabilities” mean probabilities of hypotheses
after seeing the data S.

If no prior knowledge exist all hypotheses have the same probability.
In ML we are interested to compute P(h|S) that h holds given the
observed training data S.
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BASIC PROBABILITIES
LML and Conditional Probabilities

Bayes' Theorem in ML

For a sample S and a hypothesis h we have

P(S[h)P(h)
P(h|S) =
(h1S) = “ 7
Note that:
m P(h|S) increases with P(h) and with P(S|h).
m P(h|S) decreases with P(S) because the more probable is

that S will be observed independent of h, the less evidence S
provides for h.
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BASIC PROBABILITIES
LML and Conditional Probabilities

Learning Scenario

Consider some set of candidate hypotheses H and seek the most
probable hypothesis given the observed data S.

Any such maximally probabile hypothesis is called a maximum a
posteriori hypothesis, MAP.

hmap is

hwap = argmax,cyP(h|S)

P(S|h)P(h)
P(S)

= argmax,cyP(S|h)P(h)

= argmaxheH

because P(S) is a constant.
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BASIC PROBABILITIES
LML and Conditional Probabilities

Maximum Likelihood Hypothesis

In some cases we assume that every hypothesis of H is apriori
equally probable, that is, P(h;) = P(hj) for all h;, h; € H.
Now,

hmap = argmax,c, P(S|h).

P(S|h) is known as the likelihood of S given h.

21/28



BASIC PROBABILITIES
LML and Conditional Probabilities

Example

A medical diagnosis problem:
The hypothesis space contains two hypotheses:

B hg: patient has no cancer;
m h;: patient has cancer.

An imperfect diagnosis test that has two outcomes; & and S.

P(®|h) = 0.98 P(|ho) = 0.03
P(e]h) = 0.02 P(S|hg) =0.97 °

Prior knowlege: Only 0.08% of population has cancer; 99.2% does
not.
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BASIC PROBABILITIES
LML and Conditional Probabilities

Example (cont'd)

The test returns @. Should we conclude that the patient has
cancer?
The MAP hypothesis is obtained as

hmap = argmax,cy P(S|h)P(h).

P(®|h)P(hy) = 0.98%0.008 = 0.0078,
P(®]ho)P(ho) = 0.030.992 = 0.0298.

The MAP hypothesis is hg; the patient has no cancer.
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BASIC PROBABILITIES
LBayes Theorem and Concept Learning

Brute-Force Bayes Concept Learning

m For each hypothesis h € H calculate the posterior probablity:

P(D|h)P(h)

P(IS) = =5 g,

m Qutput the hypothesis hyap with

hmap = argmax,cy, P(h|S).
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BASIC PROBABILITIES
LBayes Theorem and Concept Learning

Assumption for the Brute-Force Bayes Concept Learning:

m Training data is S = {(x1,y1), ..., (Xm, Ym)}, where y; = f(x;)
for 1 <7 < m and it is noise-free.

m The target hypothesis is contained in H.

m We have no apriori reason to believe that any hypothesis is
more probable than the other
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BASIC PROBABILITIES
LBayes Theorem and Concept Learning

Consequences

m P(h)= |H|
m The probability of S given his 1 if S is consistent with h and
0 otherwise:

P(S|h):{1 if y; = h(x;)) for 1< i< m

0 otherwise;
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BASIC PROBABILITIES
LBayes Theorem and Concept Learning

Let VSH s be the subset of hypotheses of H that is consistent with

S.
m If S is inconsistent with h then P(h|S) = Ob’z(si)') =0.

m If S is consistent with h then

1 1

P(S) |V|5TH‘5| VS s]

P(h|S) =
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BASIC PROBABILITIES
LBayes Theorem and Concept Learning

Since the hypotheses are mutually exclusive (that is,
P(hi A hj) = 0 if i # j), by the total probability law:

P(S) = ) P(S|h)P(h

h;eH
= > b W+ > 0 ﬁ
hEVSH s hgVSy. s
1
= 17: 2
he%: |H| |H|
H,S

Note that under this setting every consistent hypothesis is a MAP
hypothesis.
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