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Languages

The main objects of study of the theory of formal languages are languages,
which are defined as sets of certain sequences of symbols.

Definition

Let A be an alphabet. A language over A is a subset of A∗.

In other words, a language over A is any set of words over this alphabet.
For instance, {a, ab, abba} is a finite language over the alphabet {a, b}.
Similarly, L = {an | n ∈ N} is an infinite language over the same alphabet.
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Languages

By identifying words of length 1 with the symbols of A, the set A
itself is a language over A.

Other special languages over A:

the empty language ∅,
the full language A∗, and
the null language {λ}.

Since A∗ is a countably infinite set, the set of languages over A, P(A∗) is
not countable.
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Languages

If L is a language over an alphabet A and A ⊆ A′, then L is also a
language over the alphabet A′. Therefore, if {L0, . . . , Ln−1} is a finite
collection of languages over the alphabets {A0, . . . ,An−1}, respectively,
then for 0 ≤ i ≤ n − 1, each Li is a language over A =

⋃
1≤i≤n Ai .

We denote by AL the alphabet that consists of those symbols that occur in
at least one word in L. If L is a language over A, then AL ⊆ A.
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Languages

Definition

A language L is λ-free if λ 6∈ L.
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Languages

The set of all prefixes of the words of a language L is denoted by PREF(L).
Similarly, the sets of infixes and suffixes of the words of L are denoted by
INFIX(L) and SUFF(L), respectively.
Note that L ⊆ L′ implies Ω(L) ⊆ Ω(L′), where Ω is any of PREF,SUFF, or
INFIX. Also, INFIX(L),PREF(L), SUFF(L) contain the null word and
include L.
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Languages

The sets of proper prefixes, proper suffixes and proper infixes of a language
L are denoted by PREFpr(L), INFIXpr(L), and SUFFpr(L), respectively.
Since languages are sets of words, we can apply to them set-theoretical
operations such as union, intersection, difference, etc.
If L ⊆ A∗, the complement of L with respect to the alphabet A is
LA = A∗ − L. If A is understood from the context, we may denote the
complement LA simply by L.
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Languages

Language Products

Definition

The product of two languages L and K over an alphabet A is the language
LK defined by

LK = {xy | x ∈ L and y ∈ K}.
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Languages

Definition

Let L ⊆ A∗ be a language over the alphabet A. The nth power of L is the
language Ln given by

L0 = {λ}
Ln+1 = LnL

for every language L and natural number n.

Note that L1 = L. In general, Ln is the set of all words that can be written
as products of n words of L. For n = 0, we regard λ as the product of zero
words of L.

10 / 32



Languages

Example

Let L = {ab, a} be a language over the alphabet A = {a, b}. We have

L0 = {λ}
L1 = {ab, a}
L2 = {abab, aba, aab, aa}

...
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Languages

Definition

Let L be a language. The language L∗, the star closure or Kleene closure
of L, is the set

L∗ =
⋃
{Ln | n ∈ N}.

The language L+, the positive closure of L, is the set of words

L+ =
⋃
{Ln | n ∈ P}.
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Languages

L∗ is the set of all words that can be written as a product of zero or
more words of L.

L+ is the set of all words that can be written as a product of one or
more words of L.

Since L∗ includes the product of zero words of L, the null word λ is a
member of L∗ for any language L.

L ⊆ L+ ⊆ L∗ and LL∗ = L∗L = L+. Furthermore, if u, v ∈ L∗, then
uv ∈ L∗. Also, note that λ ∈ L+ if and only if λ ∈ L.
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Languages

Example

Let L = {a, bab} be a language over the alphabet A = {a, b}. L∗

comprises the words λ, a, bab, abab, baba, babbab, aa, etc., and L+

consists of the same words except for λ.
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Languages

We have the following properties for any language L:

L∗L∗ = L∗, (L∗)∗ = L∗,
L∗L = LL∗, (L+)+ = L+,
L+L = LL+

Also, note that L ⊆ H implies L∗ ⊆ H∗.
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Languages

Theorem

Let A be an alphabet. We have:

1 L0 ∪ (L1 ∪ L2) = (L0 ∪ L1) ∪ L2,

2 L0(L1L2) = (L0L1)L2,

3 L0 ∪ L1 = L1 ∪ L0,

4 L0(L1 ∪ L2) = (L0L1) ∪ (L0L2),

5 (L0 ∪ L1)L2 = (L0L2) ∪ (L1L2),

6 L ∪ L = L,

for every L, L0, L1, L2 ∈ P(A∗).
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Languages

Theorem

For every language L we have:

1 {λ}L = L{λ} = L,

2 ∅L = L∅ = ∅,
3 L ∪ ∅ = ∅ ∪ L = L,

4 L∗ = {λ} ∪ L∗L,

5 L∗ = ({λ} ∪ L)∗,

6 ∅∗ = {λ},
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Languages

Theorem

Let A be an alphabet and let L be a language over A. We have

L∗ = {λ} ∪ L ∪ L2 ∪ · · · ∪ Lk ∪ Lk+1L∗,

for every k ∈ N.
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Languages

Proof

It is clear that

{λ} ∪ L ∪ L2 ∪ · · · ∪ Lk ∪ Lk+1L∗ ⊆ L∗,

for every k ∈ N.
Conversely, let x ∈ L∗. We have either x = λ or x ∈ Ln for some n ≥ 1. If
n ≤ k , then x ∈ {λ} ∪ L ∪ L2 ∪ · · · ∪ Lk ∪ Lk+1L∗. If n > k, then
Ln = Lk+1Ln−(k+1) ⊆ Lk+1L∗, so again
x ∈ {λ} ∪ L ∪ L2 ∪ · · · ∪ Lk ∪ Lk+1L∗. Thus,
{λ} ∪ L ∪ L2 ∪ · · · ∪ Lk ∪ Lk+1L∗ ⊆ L∗.
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Languages

Corollary

For every language L we have:

L∗ = {λ} ∪ LL∗.

Proof.

The equality of the corollary follows from Theorem ?? by taking k = 0.
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Languages

Definition

The reversal of a language L ⊆ A∗ is the language LR given by

LR = {xR | x ∈ L}.

It is easy to see that (LR)
R

= L for every language L.
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Languages

Definition

Let L,K be two languages over the alphabet A. The right quotient LK−1

and the left quotient K−1L are the languages:

LK−1 = {x ∈ A∗ | xy ∈ L for some y ∈ K}
K−1L = {x ∈ A∗ | yx ∈ L for some y ∈ K}.
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Languages

Example

Let A = {a, b, c} be an alphabet and L = {λ, a, ab, abc} be a language
over A. Consider the languages K0 = {c}, K1 = {b, c}, and K2 = {b, c}∗
over the same alphabet. Then, we have

LK−10 = {ab},
LK−11 = {a, ab},
LK−12 = {λ, a, ab, abc}.
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Languages

The left quotient of two languages can be expressed through the right
quotient of related languages by the equality

K−1L =
(
LR(KR)−1

)R
and

LK−1 =
(

(KR)−1LR
)R

.
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Languages

Proof

Consider the following equivalent statements.

1 x ∈ K−1L;

2 yx ∈ L for some y ∈ K ;

3 xRz ∈ LR for some z ∈ KR ;

4 xR ∈ LR(KR)−1;

5 x ∈
(
LR(KR)−1

)R
.
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Languages

Example

Let L be a language over an alphabet A. It is easy to see that the set
PREF(L) of prefixes of a language L is L(A∗)−1, while the set SUFF(L) of
suffixes of L is (A∗)−1L.
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Languages

Theorem

Let L0, L1,K be languages over the alphabet A. We have

(L0 ∪ L1)K−1 = L0K
−1 ∪ L1K

−1

(L0 ∪ L1)−1K = L−10 K ∪ L−11 K

(L0 ∩ L1)K−1 ⊆ L0K
−1 ∩ L1K

−1

(L0 ∩ L1)−1K ⊆ L−10 K ∩ L−11 K

L0K
−1 − L1K

−1 ⊆ (L0 − L1)K−1

K−1(L0 ∪ L1) = K−1L0 ∪ K−1L1

K−1(L0 ∩ L1) ⊆ K−1L0 ∩ K−1L1

K−1L0 − K−1L1 ⊆ K−1(L0 − L1).
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Languages

Theorem

For the languages L, L0, L1 ⊆ A∗ and a ∈ A we have:

{a}−1(L0L1) =

{
({a}−1L0)L1 if λ 6∈ L0
({a}−1L0)L1 ∪ {a}−1L1 if λ ∈ L0

{a}−1L∗1 = ({a}−1L1)L∗1.

Note that the first equality can also be written as:

{a}−1(L0L1) = ({a}−1L0)L1 ∪ ({λ} ∩ L0){a}−1L1.

The proof is a direct application of the definition.
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Languages

If K is a singleton, K = {u}, we denote the languages {u}−1L and
L{u}−1 by u−1L and Lu−1, respectively. These languages are referred to
as the left derivative of L with respect to u and the right derivative of L
with respect to u, respectively.
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Languages

We have:

(L0 ∪ L1)u−1 = L0u
−1 ∪ L1u

−1

(L0 ∩ L1)u−1 = L0u
−1 ∩ L1u

−1

L0u
−1 − L1u

−1 = (L0 − L1)u−1

u−1(L0 ∪ L1) = u−1L0 ∪ u−1L1

u−1(L0 ∩ L1) = u−1L0 ∩ u−1L1

u−1L0 − u−1L1 = u−1(L0 − L1)

u−1(v−1L) = (vu)−1L

(Lu−1)v−1 = L(vu)−1,

for all words u, v .
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Induction on Words

Theorem

(Induction Principle for Words) Let L ⊆ A∗ be a set of words such that
λ ∈ L, and x ∈ L implies xa ∈ L for every a ∈ A. Then, L = A∗.
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Induction on Words

Example

Let A be an alphabet, x ∈ A∗, and a ∈ A. We prove, by applying the
Induction Principle for Words, that for every x ∈ A∗, if xa = ax , then
x = am for some m ∈ N. Let

L = {x ∈ A∗ | xa = ax implies x = am for some m ∈ N}.

Since λa = aλ = a and λ = a0, we have λ ∈ L. Suppose that x ∈ L and
consider the word y = xa. If ya 6= ay , then the implication in the definition
of L holds and y ∈ L. Therefore, assume that ya = ay . This implies
xaa = axa, so xa = ax , which implies x = am because we assumed x ∈ L.
Thus, y = xa = am+1, so y ∈ L. By the Induction Principle for Words we
have L = A∗.
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