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The Probably Approximately Correct (PAC) Learning

The Formal Model

Problem framework: Suppose that you wish to determine if a fruit
is good for eating and you base this decision of its color and
softness.
Also, suppose that you tasted a sample of fruits and you got the
following results:

F# color softness good to eat
1 green hard 0
2 dark green mushy 1
3 green soft 1
4 yellow hard 0
5 orange soft 1
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The Probably Approximately Correct (PAC) Learning

The Formal Model

A learning algorithm A starts with a hypothesis class H and a
sample S , under certain conditions, it returns a hypothesis h that
has a small true error. A specific definition is given next.
We assume that the data set X is equipped with a probability
distribution D.
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The Formal Model

What is the PAC Model?

Definition

A hypothesis class H is PAC learnable if there exists a function
mH : (0, 1)2 −→ N and a learning algorithm A such that for every
ε, δ ∈ (0, 1), every distribution D over X , and for every labeling
function f : X −→ {0, 1}, if realizability assumption holds with
respect to H,D, f , then when running the algorithm A on a sample
S that consists of m > mH(ε, δ) generated by D and labeled by f ,
A returns a hypothesis h such that, with probability at least 1− δ
(over the choice of examples), we have for the true error L(D,f )(h):

P(L(D,f )(h) 6 ε) > 1− δ.

ε is the accuracy parameter and δ is the confidence parameter
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The Formal Model

Approximation Parameters

the accuracy parameter ε determines how far the output
classifier can be from the optimal one, and

the confidence parameter δ indicates how likely is the classifier
is to meet that accuracy requirement.
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The Agnostic PAC Learning

What is Agnostic PAC Learning?

The realizability assumption, the existence of a hypothesis
h∗ ∈ H such that Px∼D(h∗(x) = f (x)) = 1 is not practical in
many cases.

Agnostic learning replaces the realizability assumption and the
targeted labeling function f , with a distribution D defined on
pairs (data, labels), that is, with a distribution D on X × Y.
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The Agnostic PAC Learning

When the probability distribution D was defined on X , the
generalization error of a hypothesis was defined as:

LD,f (h) = D({x | h(x) 6= f (x)}).

For agnostic learning D is defined over X × Y, so we redefine
the generalization error as:

LD(h) = D({(x , y) | h(x) 6= y}).

We seek a predictor for which LD(h) is minimal.

The definition of the empirical risk remains the same:

LS(h) =
|{i | h(xi ) 6= yi for 1 6 i 6 m}|

m
.
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The Agnostic PAC Learning

The Bayes Classifier and Its Optimality

Let D be any probability distribution over X × Y, where
Y = {0, 1}.
Let X be a random variable ranging over X and Y be a random
variable ranging over Y = {0, 1}.
The Bayes predictor is the function fD defined as

fD(x) =

{
1 if P(Y = 1|X = x) > 1

2

0 otherwise.
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The Agnostic PAC Learning

Theorem

Given any probability distribution D over X × {0, 1} the best label
predicting function f : X −→ {0, 1} is the Bayes predictor fD.

In other words, we need to prove that for hypothesis
g : X −→ {0, 1} we have LD(fD) 6 LD(g).
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The Agnostic PAC Learning

Proof

Let X be a random variable ranging over X , Y be a random
variable ranging over Y = {0, 1}, and let αx be the probability of a
having a label 1 given x , that is, αx = P(Y = 1|X = x).
With this notation the Bayes predictor is

fD(x) =

{
1 if αx > 1

2

0 if αx <
1
2 .
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The Agnostic PAC Learning

Proof (cont’d)

We have:

LD(fD) = P(fD(X ) 6= y |X = x)

= P(fD(x) = 1|X = x)P(Y = 0|X = x)

+P(fD(x) = 0|X = x)P(Y = 1|X = x)

= P

(
αx >

1

2

)
P(Y = 0|X = x)

+P

(
αx <

1

2

)
P(Y = 1|X = x)

Note: when we write P(fD(X ) 6= y |X = x) we mean the
probability that a pair (x , y) is such that fD(X ) 6= y assuming that
X = x . Similar conventions apply to all probabilities listed above.
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The Agnostic PAC Learning

Proof (cont’d)

If αx > 1
2 , then

min{αx , 1− αx} = 1− αx ,P

(
αx >

1

2

)
= 1,P

(
αx <

1

2

)
= 0,

and

P

(
αx >

1

2

)
(1− αx) + P

(
αx <

1

2

)
αx

= 1− αx = min{1− αx , αx}.

If αx <
1
2 , then min{αx , 1− αx} = αx , P

(
αx > 1

2

)
= 0,

P
(
αx <

1
2

)
= 1 and

P

(
αx >

1

2

)
(1− αx) + P

(
αx <

1

2

)
αx

= αx = min{1− αx , αx}.
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The Agnostic PAC Learning

Proof (cont’d)

Let g be any other classifier. We have:

P(g(X ) 6= Y |X = x) = P(g(X ) = 0|X = x)P(Y = 1|X = x)

+P(g(X ) = 1|X = x)P(Y = 0|X = x)

= P(g(X ) = 0|X = x)αx

+P(g(X ) = 1|X = x)(1− αx)

> P(g(X ) = 0|X = x) min{αx , 1− αx}
+P(g(X ) = 1|X = x) min{αx , 1− αx}

> (P(g(X ) = 0|X = x) + P(g(X ) = 1|X = x))

·min{αx , 1− αx}
= min{αx , 1− αx} = P(fD(X ) 6= y |X = x).
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The Agnostic PAC Learning

Agnostic PAC-Learnability

Definition

A hypothesis class H is agnostic PAC learnable if there exists a
function mH : (0, 1)2 −→ N and a learning algorithm A with the
following property:
For every

ε, δ ∈ (0, 1) and

for every distribution D over X × Y,

when running A on m > mH(ε, δ) iid examples generated by D, A
returns a hypothesis h such that with probability at least 1− δ
(over the choice of the m training examples) we have

LD(h) 6 min
h′∈H

LD(h′) + ε.
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The Agnostic PAC Learning

If the realizability assumption holds, agnostic PAC learning
provides the same guarantees as PAC learning.

When the realizability assumption does not hold, no learner
can guarantee an arbitrary small error.

A learner A can declare success if the error is not much larger
than the smallest error achievable by a hypothesis from H.
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The Scope of Learning Problems

Multiclass Classification

Example

Let X be a set of document features, and Y a set of topics
(sports, politics, health, etc.).
By document features we mean counts of certain key words, size,
or origin of the document.
The loss function will be the probability of the event that occurs
when the predictor suggest a wrong label.
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The Scope of Learning Problems

Regression

Example

In regression we seek to find a functional relationship h between
the X and Y components of the data.
For example, to predict the weight of a baby at birth X can be a
set of triplets in R3

(head circumference, abdominal circumference, femur length)
and Y is is the weight at birth. We seek h that will minimize the
loss LD(h) = E(x ,y)∼D(h(x)− y)2.
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The Scope of Learning Problems

Generalized Loss Functions

Definition

Given a set of hypotheses H, a domain Z , a loss function is a
function ` : H× Z −→ R+.

For prediction problems we have Z = X × Y.

Definition

The risk function is the expected loss of the classifier h ∈ H with
respect to a probability distribution D over Z , namely

LD(h) = Ez∼D(`(h, z)).

The empirical risk is the expected loss over the sample
S = (z1, . . . , sm) ∈ Zm as

LS(h) =
1

m

m∑
i=1

`(h, zi ). 19 / 22
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The Scope of Learning Problems

0-1 Loss

The random variable z ranges over X × Y and the loss function is

`0−1(h, (x , y)) =

{
0 if h(x) = y ,

1 if h(x) 6= y .

This is used in binary or multiclass classification problems.
For the 0/1 loss the definition of LD(h) = Ez∼D(`(h, z)) coincides
with the previous definition in the agnostic PAC,
LD(h) = D({(x , y) | h(x) 6= y}).
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The Scope of Learning Problems

Square Loss

The random variable z ranges over X × Y and the loss function is

`sq(h, (x , y)) = (h(x)− y)2.
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The Scope of Learning Problems

Agnostic PAC Learnability for General Loss Functions

Definition

A hypothesis class H is agnostic PAC learnable with respect to a
set Z and a loss function ` : H× Z −→ R+ if there exists a
function mH : (0, 1)2 −→ N and a learning algorithm A with the
following property:
For every ε, δ ∈ (0, 1) and for every distribution D over Z , when
running A on m > mH(ε, δ) iid examples generated by D, A
returns a hypothesis h such that with probability at least 1− δ
(over the choice of the m training examples) we have

LD(h) 6 min
h′∈H

LD(h′) + ε,

where LD(h) = Ez∼D(`(h, z)).
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