Words and Languages (part III)

Prof. Dan A. Simovici

UMB

Substitutions and Morphisms

Let A, B be two alphabets. A substitution from A to B is a mapping $s : A \longrightarrow \mathcal{P}(B^*)$.

In other words, a substitution from A to B maps every symbol of A to a language over B.

Extension of Substitutions

A substitution s from A to B is extended inductively to the mapping $s^*:A^*\longrightarrow \mathcal{P}(B^*)$ by

$$s^*(\lambda) = \{\lambda\}$$

 $s^*(xa) = s^*(x)s(a)$

for every word $x \in A^*$.

By taking $x = \lambda$, the second equality gives $s^*(a) = s(a)$, so s^* is indeed an extension of s. Further, we can verify by induction on the length of the word y that $s^*(xy) = s^*(x)s^*(y)$ for all words $x, y \in A^*$.

Example

Let $A = \{a_0, a_1\}$, $B = \{b_0, b_1, b_2\}$. Define the substitution *s* by $s(a_0) = \{b_1\}^+$ and $s(a_1) = b_0\{b_2\}^+b_0$. The image of the word $a_0a_1a_0$ under *s*^{*} is the language $\{b_1\}^+b_0\{b_2\}^+b_0\{b_1\}^+$.

Further Extending Substitutions

When there is no risk of confusion, we frequently denote the extension of a substitution s simply by s rather than s^* . A substitution $s : A \longrightarrow \mathcal{P}(B^*)$ can be further extended to a mapping between languages over A and B by taking

$$s(L) = \bigcup \{ s(x) \mid x \in L \}$$

for every language $L \subseteq A^*$. Then, we have the following result.

Theorem

For any languages L_1, L_2

$$egin{array}{rcl} s(L_1\cup L_2)&=&s(L_1)\cup s(L_2)\ s(L_1L_2)&=&s(L_1)s(L_2)\ s(L_1^*)&=&(s(L_1))^* \end{array}$$

A morphism between A^* and B^* is a mapping $h : A^* \longrightarrow B^*$ such that h(xy) = h(x)h(y) for every $x, y \in A^*$.

If $h: A^* \longrightarrow B^*$ is a morphism, then $h(\lambda) = \lambda$. Indeed, since $h(x) = h(x\lambda) = h(x)h(\lambda)$ the equality $h(\lambda) = \lambda$ follows immediately.

A morphism $h: A^* \longrightarrow B^*$ is

- λ -free if $h(x) = \lambda$ implies $x = \lambda$;
- fine if $h(a) \in B \cup \{\lambda\}$ for every $a \in A$;
- very fine if $h(a) \in B$ for every $a \in A$.

If $h: A^* \longrightarrow B^*$ is a morphism and $K \subseteq B^*$, we denote by $h^{-1}(K)$ the set $\{x \in A^* \mid h(x) \in K\}$. We refer to $h^{-1}(K)$ as the inverse image of K under h.

Example

Suppose, for instance, that $A = \{a_0, a_1\}$ and $B = \{b\}$ are two disjoint alphabets and $h: (A \cup B)^* \longrightarrow A^*$ is a morphism such that h(a) = a for every $a \in A$ and $h(b) = \lambda$. Then, we have

$$h^{-1}(\{a_0^na_1^n \mid n \in \mathbb{N}\}) \cap \{ba_0\}^*\{a_1b\}^* = \{(ba_0)^n(a_1b)^n \mid n \in \mathbb{N}\}$$

- A morphism h : A^{*} → B^{*} is completely and uniquely defined by its values on the symbols of A.
- Morphisms may be regarded as a special case of substitutions, where for each letter in A the corresponding language has only one element.

Let A be an alphabet and let G, K be two languages over A. The shuffle of G and K is the language

$$\mathsf{shuffle}(G, K) = \{x_0y_0x_1y_1\cdots x_{n-1}y_{n-1} \mid x_0x_1\cdots x_{n-1} \in G \\ \mathsf{and} \ y_0y_1\cdots y_{n-1} \in K\}.$$

Theorem

There is an alphabet B and there exist three morphisms g, k, h from B^* to A^* such that h is a very fine morphism, g, k are fine morphisms and shuffle $(G, K) = h(g^{-1}(G) \cap k^{-1}(K))$.

Proof

Let $B = A \cup A'$, where $A' = \{a' \mid a \in A\}$. Define the morphisms h, g, k by h(a) = h(a') = a, $g(a) = a, g(a') = \lambda$ $k(a) = \lambda$, and k(a') = a. Let $w \in h(g^{-1}(G) \cap k^{-1}(K))$. There is $y \in g^{-1}(G) \cap k^{-1}(K)$ such that h(y) = w. In addition, $g(y) \in G$ and $k(y) \in K$. Note that g erases all primed symbols in y while k erases all non-primed symbols in y. Since y is a mix of primed and non-primed symbols we can write $y = u_0 v'_0 u_1 v'_1 \dots u_{n-1} v'_{n-1}$, where u_0, u_1, \dots, u_{n-1} are the non-primed infixes of y and $v'_0, v'_1, \ldots, v'_{n-1}$ are the primed infixes of y. Therefore, $g(y) = u_0 u_1 \cdots u_{n-1} \in G, \ k(y) = v_0 v_1 \cdots v_{n-1} \in K$, and $w = h(y) = u_0 v_0 u_1 v_1 \cdots u_{n-1} v_{n-1}$. Thus, $w \in \text{shuffle}(G, K)$.

Proof (cont'd)

Conversely, if $w \in \text{shuffle}(G, K)$ we can write $w = u_0v_0u_1v_1\cdots u_{n-1}v_{n-1}$, where $u_0u_1\cdots u_{n-1} \in G$ and $v_0v_1\cdots v_{n-1} \in K$. Let y be the word $y = u_0v'_0u_1v'_1\cdots u_{n-1}v'_{n-1}$, where v'_i is the primed version of v_i for $0 \le i \le n-1$. It is easy to see that h(y) = w and that

$$g(y) = u_0 u_1 \cdots u_{n-1} \in G$$

$$k(y) = v_0 v_1 \cdots v_{n-1} \in K.$$

Therefore, $y \in g^{-1}(G) \cap k^{-1}(K)$, so $w \in h(g^{-1}(G) \cap k^{-1}(K))$, which concludes our argument.