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Deterministic Finite Automata

Informally, a deterministic finite automaton consists of:

an input tape divided into cells;

a control device equipped with a reading head that scans the input
tape one cell at a time.

Each cell of the input tape contains a symbol a ∈ A, where A is an
alphabet, called the input alphabet. The tape can accommodate words of
arbitrary finite length. Thus, although the tape is thought of as being
infinitely long, only a finite initial segment of it contains input symbols.
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Deterministic Finite Automata

Main Components of a Finite Automaton
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Deterministic Finite Automata

How a finite automaton works

A dfa works discretely. Consider a clock that advances in discrete
units; at any time on the clock, the automaton is resting in one of its
states.

Between two successive clock times, the automaton consumes its next
available input and goes into a new state (which may happen to be
the same state it was in at the previous time).

The time scale of the automaton is the set N of natural numbers.

5 / 35



Deterministic Finite Automata

Definition

A deterministic finite automaton (dfa) is a quintuple

M = (A,Q, δ, q0,F ),

where A and Q are two finite, disjoint sets called the input alphabet of M,
and the set of states of M, respectively, δ : Q × A −→ Q is the transition
function, q0 is the initial state of M, and F ⊆ Q is the set of final states
of M.
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Deterministic Finite Automata

Example

Let M = ({a, b}, {q0, q1, q2, q3}, δ, q0, {q3}) be the dfa defined by the
following table:

State
Input q0 q1 q2 q3
a q1 q0 q3 q3
b q2 q3 q0 q3

The entry that corresponds to the input line labeled i and the state
column labeled q gives the value of δ(q, i).
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Deterministic Finite Automata

Directed Graphs and Deterministic Finite Automata

The graph of the deterministic finite automaton M = (A,Q, δ, q0,F )
is the graph G(M) whose set of vertices is the set of states Q.

The set of edges of G(M) consists of all pairs (q, q′) such that there
is a transition from q to q′; an edge (q, q′) is labeled by the symbol a
if δ(q, a) = q′.

The initial state q0 is denoted by an incoming arrow with no source,
and the final states are circled.

8 / 35



Deterministic Finite Automata

Example

The graph of the previous dfa is:
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Deterministic Finite Automata

The Work of a dfa

the symbols of a word x = ai0 · · · ain−1 are read by the automaton one
at a time;

to compute the state reached by the dfa after the application of x ,
the function δ must be extended from single symbols to a function δ∗

defined for words.
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Deterministic Finite Automata

Extending the Transition Function

Starting from a function δ : Q × A −→ Q we define the function
δ∗ : Q × A∗ −→ Q by:

δ∗(q, λ) = q

δ∗(q, xa) = δ(δ∗(q, x), a),

for every x ∈ A∗ and a ∈ A.
Note that for single character words, e.g., y = a, where a ∈ A,
δ∗(q, y) = δ(q, a). This follows from by setting x = λ and noticing that
y = λa. Thus,

δ∗(q, a) = δ(q, a) for all q ∈ Q and a ∈ A,

justifying our observation that δ∗ extends δ.
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Deterministic Finite Automata

Theorem

Let δ : Q × A −→ Q be a function, and let δ∗ be its extension to Q × A∗.
Then

δ∗(q, xy) = δ∗(δ∗(q, x), y)

for every x , y ∈ A∗.

Proof.

The argument is by induction on |y |. The basis step, |y | = 0, is immediate
since the equality of the theorem amounts to

δ∗(q, xλ) = δ∗(δ∗(q, x), λ) = δ∗(q, x).
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Deterministic Finite Automata

Proof (cont’d)

For the induction step, suppose that the equality holds for words of length
less or equal to n, and let y be a word of length n + 1, y = za, where
z ∈ A∗ and a ∈ A. We have

δ∗(q, xy) = δ∗(q, xza)

= δ(δ∗(q, xz), a) (since δ∗ extends δ)

= δ(δ∗(δ∗(q, x), z), a) (ind. hyp.)

= δ∗(δ∗(q, x), za) (since δ∗ extends δ)

= δ∗(δ∗(q, x), y).
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Deterministic Finite Automata

Dfa as Language Acceptors

Definition

The language accepted by the dfa M = (A,Q, δ, q0,F ) is the set

L(M) = {x ∈ A∗ | δ∗(q0, x) ∈ F}.

A language L ⊆ A∗ is regular if it is accepted by some finite automaton M

whose input alphabet is A.
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Deterministic Finite Automata

Example

Let M = (A,Q, δ, q0,F ) be the dfa whose graph is given below, where
A = {a, b} and Q = {q0, q1, q2}.
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Deterministic Finite Automata
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The language accepted by M consists of all words over A that contain at
least two consecutive b symbols; in other words, L(M) = A∗bbA∗.
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Deterministic Finite Automata

if x ∈ L(M), then x contains two consecutive b symbols since q2
cannot be reached otherwise from q0 using the symbols of x ;

conversely, suppose that x contains two consecutive b symbols; we
can decompose x = ubbv , where bb is the leftmost occurrence of bb
in x .

The definition of M implies that δ∗(q0, u) = q0, δ∗(q0, bb) = q2 and
δ∗(q2, v) = q2. Thus, δ∗(q0, x) = q2, and this implies x ∈ L(M). We
conclude that L(M) = A∗bbA∗.
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Deterministic Finite Automata

Counting Numbers

The dfa with n states shown in below accepts only inputs whose length is 0
(mod n), that is, an integral multiple of n.
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Deterministic Finite Automata

Example

The dfa given below accepts those words in {a, b}∗ that have 0(mod n)
a’s, regardless of how many b’s are in the input.
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Deterministic Finite Automata

Example

Next, we present a dfa that accepts words over the alphabet {0, 1} only
when their binary equivalents are multiples of a fixed integer, say m ∈ N.
Let B = {0, 1}. A word x ∈ B∗ can be regarded as a binary number as
follows. Define the function f : B∗ −→ N by

f (λ) = 0

f (xb) =

{
2f (x) + 0 if b = 0
2f (x) + 1 if b = 1,

for every x ∈ B∗ and b ∈ B. Note that f (x) is the value represented by x
regarded as a binary number.
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Deterministic Finite Automata

Let m ∈ N be a number such that m > 1. Note that for every x ∈ B∗,
there exists a number k , 0 ≤ k ≤ m − 1, such that f (x) ≡ k(mod m). Of
course, if f (x) ≡ 0(mod m), then f (x) is a multiple of m, so x will be
accepted by the automaton that we intend to define.
We design an automaton Mm that accepts the set of words x such that
f (x) is a multiple of a fixed number m. The states of Mm are defined such
that δ∗(q0, x) = qh if and only if f (x) ≡ h(mod m). In other words, if Mm

reaches the state qh after reading the symbols of x , then f (x) is congruent
to h modulo m. Therefore, after reading the symbol b, M enters the state
q`, where 2h + b ≡ `(mod m). This allows us to define the transition
function by δ(qh, b) = q`.
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Deterministic Finite Automata

The dfa M3 = (B, {q0, q1, q2}, δ, q0, {q0}) that recognizes the set of
multiples of 3 is defined by the table:

State
Input q0 q1 q2

0 q0 q2 q1
1 q1 q0 q2

Therefore, the language L = {x ∈ B∗ | f (x) ≡ 0(mod 3)} is regular.
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Deterministic Finite Automata

Example

Let A = {a, b, . . . , z , 0, . . . , 9}. The automaton

M = {A, {q0, q1, q2}, δ, q0, {q1}}
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accepts those words in A∗ that begin with a letter and contain a sequence
of letters and digits. In other words, L(M) = {a, . . . , z}A∗
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Deterministic Finite Automata

The finiteness of the set of states Q of a dfa M = (A,Q, δ, q0,F ) is
essential for the definition of regular languages. If this assumption is
dropped we obtain a weaker type of device.

Definition

A deterministic automaton (da) is a quintuple

M = (A,Q, δ, q0,F ),

where A is an alphabet, called the input alphabet; Q is a set that is disjoint
from A, called the set of states, δ : Q × A −→ Q is the transition function
of the da, q0 is the initial state, and F ⊆ Q is the set of final states.

The transition function δ can be extended to Q × A∗ in exactly the same
way as for the deterministic finite automata. Again, we denote this
extension by δ∗.
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Deterministic Finite Automata

The role of the finiteness of the set of states of a dfa is highlighted by the
next theorem.

Theorem

For every language L ⊆ A∗, there is a deterministic automaton
M = (A,Q, δ, q0,F ) such that L = L(M).

Proof.

Consider the da M = (A,Q, δ, qλ, {qu | u ∈ L}), where
Q = {qx | x ∈ A∗} and δ(qx , a) = qxa for every x ∈ A∗ and a ∈ A. It is
easy to verify that δ∗(qx , y) = qxy for every x , y ∈ A∗. Therefore,
L(M) = {y ∈ A∗ | δ∗(qλ, y) = qy and y ∈ L} = L, which means that L is
the language accepted by M.
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Deterministic Finite Automata

Definition

Let M = (A,Q, δ, q0,F ) be an automaton. The set of accessible states is
the set

acc(M) = {q ∈ Q | δ∗(q0, x) = q for some x ∈ A∗}.

The automaton M is accessible if acc(M) = Q.
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Deterministic Finite Automata

Only the set of accessible states plays a role in defining the language
accepted by the automaton.

If δ′ is the restriction of δ to acc(M)× A, then the automata M and
M′ = (A, acc(M), δ′, q0,F ∩ acc(M)) accept the same language.

If x ∈ L(M), then δ∗(q0, x) ∈ F and δ∗(q0, y) ∈ acc(M) for every
prefix y of x (including x). Therefore, (δ′)∗(q0, x) = δ∗(q0, x) ∈ F , so
x ∈ L(M′).

it is immediate that x ∈ L(M′) implies x ∈ L(M), so L(M) = L(M′).

M′ is denoted by ACC(M) and we refer to it as the accessible component
of M.
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Deterministic Finite Automata

Example

Consider an automaton M = ({a},Q, δ, q0,F ) having a one-symbol input
alphabet. We have acc(M) = {δ(q0, a

n) | n ∈ N}. Therefore, the
subgraph of the accessible states in the graph of M consists of a path
attached to a circuit, as shown:
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Deterministic Finite Automata

Theorem

Let M = (A,Q, δ, q0,F ) be an accessible automaton. For every state
q ∈ Q there is a word x ∈ A∗ such that |x | < |Q| and δ∗(q0, x) = q.

Proof.

Since M is an accessible automaton, for every state q ∈ Q there is a word
y such that δ∗(q0, y) = q. Let x be a word of minimal length that allows
M to reach the state q. We claim that |x | < |Q|. Let x = ai0 · · · aip , and
let q1, . . . , qp+1 be the sequence of states reached while processing x , i.e.,

q1 = δ(q0, ai0)
...

qp+1 = δ(qp, aip) = q,

that is, the sequence of states assumed by M when the symbols of x are
applied starting from the state q0.
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Deterministic Finite Automata

Proof (cont’d)

If p + 1 ≥ |Q|, then the sequence (q0, q1, . . . , qp+1) must contain two
equal states because its length exceeds the number of elements of Q. If,
say, qc = qd , we can write x = uvw , where δ∗(q0, u) = qc , δ∗(qc , v) = qd ,
δ∗(qd ,w) = qp+1 and |v | > 0. Since qd = qc , we have
δ∗(q0, uw) = qp+1 = q, and this contradicts the minimality of x .
Therefore, |x | < |Q|.
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Deterministic Finite Automata

Computing The Accessible States

Input: A dfa M = (A,Q, δ, q0,F ).
Output: The set acc(M).
Method: Define the sequence Q0,Q1, . . . ,Qn, . . . by
Q0 = {q0} and Qi+1 = Qi ∪ {s = δ(q, a) | q ∈ Qi and a ∈ A}.
acc(M) = Qk , where k is the least number such that Qk = Qk+1.
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Deterministic Finite Automata

Proof of Correctness

Since Q0, . . . ,Qi , . . . is an increasing sequence and all sets Qi are subsets
of the finite set Q, there is a number k such that
Q0 ⊂ Q1 ⊂ · · · ⊂ Qk = Qk+1 = · · · .
We claim that

Qi = {q ∈ Q | δ∗(q0, x) = q, for some x ∈ A∗, |x | ≤ i},

for every i ∈ N. The argument is by induction on i and is left to the
reader. Thus, every state in Qk belongs to acc(M). Conversely, if
q ∈ acc(M) there is a word x such that |x | < |Q| and δ∗(q0, x) = q.
Therefore, q ∈ Q|x | ⊆ Qk . We conclude that acc(M) = Qk .
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Deterministic Finite Automata

Let M = ({a, b}, {qi | 0 ≤ i ≤ 7}, δ, q0, {q5, q6}) be the dfa whose graph
is shown:
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Deterministic Finite Automata

Q0 = {q0}
Q1 = {q0, q1, q2}
Q2 = {q0, q1, q2, q4, q5}
Q3 = {q0, q1, q2, q4, q5}

Thus, ACC(M) is the dfa M′ = ({a, b}, {q0, q1, q2, q4, q5}, δ′, q0, {q5})
whose graph is given next.
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Deterministic Finite Automata
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