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Deterministic Finite Automata

Informally, a deterministic finite automaton consists of:
@ an input tape divided into cells;
@ a control device equipped with a reading head that scans the input
tape one cell at a time.

Each cell of the input tape contains a symbol a € A, where A is an
alphabet, called the input alphabet. The tape can accommodate words of
arbitrary finite length. Thus, although the tape is thought of as being
infinitely long, only a finite initial segment of it contains input symbols.
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Deterministic Finite Automata

Main Components of a Finite Automaton

Control
device

Read head

é),’0 aj aj, 3;3 aj,

input tape
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Deterministic Finite Automata

How a finite automaton works

@ A dfa works discretely. Consider a clock that advances in discrete
units; at any time on the clock, the automaton is resting in one of its
states.

@ Between two successive clock times, the automaton consumes its next
available input and goes into a new state (which may happen to be
the same state it was in at the previous time).

@ The time scale of the automaton is the set N of natural numbers.
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Deterministic Finite Automata

Definition
A deterministic finite automaton (dfa) is a quintuple

M= (A7 Q757 9o, F)a

where A and Q@ are two finite, disjoint sets called the input alphabet of M,
and the set of states of M, respectively, § : @ x A —> Q@ is the transition
function, qo is the initial state of M, and F C Q is the set of final states
of M.
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Deterministic Finite Automata

Example

Let M = ({a, b},{q0, 91,92, 93}, 0, qo, {g3}) be the dfa defined by the

following table:

The entry that corresponds to the input line labeled i and the state

State
Input || go | g1 | q2 | 93
a gi1qo|q3]|49s3
b llg|as|q|as

column labeled g gives the value of d(q, i).
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Deterministic Finite Automata

Directed Graphs and Deterministic Finite Automata

@ The graph of the deterministic finite automaton M = (A, Q, d, qo, F)
is the graph G(MM) whose set of vertices is the set of states Q.

@ The set of edges of (M) consists of all pairs (g, g') such that there
is a transition from g to ¢’; an edge (g, ¢') is labeled by the symbol a

if 0(g,a) =4
@ The initial state qg is denoted by an incoming arrow with no source,
and the final states are circled.
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Deterministic Finite Automata

Example

The graph of the previous dfa is:

a1
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The Work of a dfa

@ the symbols of a word x = aj; -- - a;,_, are read by the automaton one
at a time;

@ to compute the state reached by the dfa after the application of x,
the function é must be extended from single symbols to a function §*
defined for words.
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Deterministic Finite Automata

Extending the Transition Function

Starting from a function § : @ x A —> @ we define the function
0 Q X A* — Q by:

*(q,A) = q
6*(q,xa) = 6(6"(q,x),a),

for every x € A* and a € A.
Note that for single character words, e.g., y = a, where a € A,

0*(q,y) = d(q, a). This follows from by setting x = A and noticing that
y = Aa. Thus,

0*(g,a) = d(q, a) for all g € Q and a € A,

justifying our observation that §* extends 9.

11/35



Deterministic Finite Automata

Theorem

Let 6 : @ x A — @ be a function, and let 6* be its extension to @ x A*.
Then
0*(g,xy) = 6*(6"(q,x),y)

for every x,y € A*.

Proof.

The argument is by induction on |y|. The basis step, |y| = 0, is immediate
since the equality of the theorem amounts to

6"(q,xA) = 67(0%(q, x), A) = 6%(q, x).
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Proof (cont'd)

For the induction step, suppose that the equality holds for words of length
less or equal to n, and let y be a word of length n+ 1, y = za, where
z€ A" and a € A. We have

0*(q,xy) = 0%(q,xza)
0(6%(qg,xz), a) (since 6* extends 0)

6(6"(67(q,x), 2),a) (ind. hyp.)
0%(0*(q, x), za) (since §* extends ¢)

= 67(6%(a,x),y)-
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Deterministic Finite Automata

Dfa as Language Acceptors

Definition
The language accepted by the dfa M = (A, Q, 0, qo, F) is the set

LOM) = {x € A* | 6*(qo,x) € F)}.

A language L C A* is regular if it is accepted by some finite automaton M
whose input alphabet is A.

v
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Deterministic Finite Automata

Example

Let M = (A, Q,J, qo, F) be the dfa whose graph is given below, where
A= {3, b} and Q = {Cl07 qi, CI2}
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Deterministic Finite Automata

The language accepted by M consists of all words over A that contain at
least two consecutive b symbols; in other words, L(M) = A*bbA*.
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Deterministic Finite Automata

e if x € L(M), then x contains two consecutive b symbols since g
cannot be reached otherwise from gg using the symbols of x;
@ conversely, suppose that x contains two consecutive b symbols; we
can decompose x = ubbv, where bb is the leftmost occurrence of bb
in x.
The definition of M implies that §*(qo, u) = qo, 6*(qo, bb) = g2 and
0*(g2,v) = g2. Thus, §*(qo, x) = g2, and this implies x € L(M). We
conclude that L(M) = A*bbA*.
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Deterministic Finite Automata

Counting Numbers

The dfa with n states shown in below accepts only inputs whose length is 0
(mod n), that is, an integral multiple of n.

a
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Deterministic Finite Automata

Example

The dfa given below accepts those words in {a, b}* that have 0O(mod n)
a's, regardless of how many b's are in the input.

b b
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Deterministic Finite Automata

Example

Next, we present a dfa that accepts words over the alphabet {0,1} only
when their binary equivalents are multiples of a fixed integer, say m € N.
Let B ={0,1}. A word x € B* can be regarded as a binary number as
follows. Define the function f : B* — N by

f(A) = 0
[ 2f(x)+0 ifb=0
fxb) = {2f(x)+1 if b=1,

for every x € B* and b € B. Note that f(x) is the value represented by x
regarded as a binary number.
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Deterministic Finite Automata

Let m € N be a number such that m > 1. Note that for every x € B*,
there exists a number k, 0 < kK < m — 1, such that f(x) = k(mod m). Of
course, if f(x) = 0(mod m), then f(x) is a multiple of m, so x will be
accepted by the automaton that we intend to define.

We design an automaton M, that accepts the set of words x such that
f(x) is a multiple of a fixed number m. The states of M, are defined such
that 6*(qo, x) = qp if and only if f(x) = h(mod m). In other words, if M,
reaches the state gy, after reading the symbols of x, then f(x) is congruent
to h modulo m. Therefore, after reading the symbol b, M enters the state
qe, where 2h + b = ¢(mod m). This allows us to define the transition
function by d(qn, b) = qs.
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Deterministic Finite Automata

The dfa M3 = (B, {qo, 91, 92}, 9, 90, {qo}) that recognizes the set of

multiples of 3 is defined by the table:

State
Input || g0 | 91 | @2
0 ||g|q| a1
1 g1 | qo | g2

Therefore, the language L = {x € B* | f(x) = 0(mod 3)} is regular.
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Deterministic Finite Automata

Example

Let A={a,b,...,2,0,...,9}. The automaton

M = {A {q0,q1,92},9,q90,{a1}}

accepts those words in A* that begin with a letter and contain a sequence
of letters and digits. In other words, L(M) = {a,...,z}A*
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Deterministic Finite Automata

The finiteness of the set of states Q of a dfa M = (A, Q, 9, qo, F) is
essential for the definition of regular languages. If this assumption is
dropped we obtain a weaker type of device.

Definition
A deterministic automaton (da) is a quintuple

M= (A7 Qvéa qo, F)a

where A is an alphabet, called the input alphabet; Q is a set that is disjoint
from A, called the set of states, § : Q x A — Q@ is the transition function
of the da, qq is the initial state, and F C Q is the set of final states.

The transition function 0 can be extended to @ x A* in exactly the same
way as for the deterministic finite automata. Again, we denote this
extension by §*.
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Deterministic Finite Automata

The role of the finiteness of the set of states of a dfa is highlighted by the
next theorem.

Theorem

For every language L C A*, there is a deterministic automaton
M= (A, Q,0d,qo, F) such that L = L(M).

Proof.

Consider the da M = (A, Q, 9, qx, {qu | v € L}), where

Q ={gx | x € A*} and §(qx, a) = gxa for every x € A* and a € A. It is
easy to verify that 6*(qx, y) = gy, for every x,y € A*. Therefore,

L(M) ={y € A* | 6*(gr,¥) =qy and y € L} = L, which means that L is
the language accepted by M. O

v
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Deterministic Finite Automata

Definition
Let M = (A, Q, 6, qo, F) be an automaton. The set of accessible states is
the set

acc(M) = {q € Q | 0*(qo,x) = g for some x € A*}.

The automaton M is accessible if acc(M) = Q.
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Deterministic Finite Automata

Only the set of accessible states plays a role in defining the language
accepted by the automaton.

o If & is the restriction of ¢ to acc(M) x A, then the automata M and
M = (A, acc(M), ¢, qo, F Nacc(M)) accept the same language.
o If x € L(M), then §*(qo, x) € F and 6*(qo, y) € acc(M) for every
prefix y of x (including x). Therefore, (6')*(qo,x) = 6*(qo,x) € F, so
x € L(M).
e it is immediate that x € L(M') implies x € L(M), so L(M) = L(M').
M’ is denoted by ACC(M) and we refer to it as the accessible component
of M.
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Deterministic Finite Automata

Example

Consider an automaton M = ({a}, Q, d, go, F) having a one-symbol input
alphabet. We have acc(M) = {4(qo, a") | n € N}. Therefore, the
subgraph of the accessible states in the graph of M consists of a path
attached to a circuit, as shown:

BN
@ \/
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Deterministic Finite Automata

Theorem

Let M = (A, Q, 9, qo, F) be an accessible automaton. For every state
q € Q there is a word x € A* such that |x| < |Q| and §*(qo, x) = q.

Proof.

Since M is an accessible automaton, for every state g € Q there is a word
y such that 6*(qo,y) = g. Let x be a word of minimal length that allows
M to reach the state g. We claim that |x| < |Q|. Let x = aj,--- aj,, and

let g1,...,qp+1 be the sequence of states reached while processing x, i.e.,
g = 94(qo,ai)
o1 = 0(gp,ai,) = q;

that is, the sequence of states assumed by M when the symbols of x are
applied starting from the state qo. O

v
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Proof (cont'd)

If p+1>|Q)| then the sequence (qo, g1, .., Gp+1) Must contain two
equal states because its length exceeds the number of elements of Q. If,
say, gc = g4, we can write x = uvw, where §*(qo, v) = qc, 0*(qc, v) = qq,
0*(qd, w) = gp+1 and |v| > 0. Since q4 = qc, we have

0*(qo, uw) = gp+1 = g, and this contradicts the minimality of x.
Therefore, |x| < |Q|.
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Computing The Accessible States

Input: A dfa M = (A, Q, 6, qo, F).

Output: The set acc(M).

Method: Define the sequence Qq, @1,..., Qn,... by

Qo = {qo} and Qiy1 = QiU {S = (5(q, a) ’ ge Qiand a € A}.
acc(M) = Qx, where k is the least number such that Qx = Qxy1.
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Deterministic Finite Automata

Proof of Correctness

Since Qo, ..., Q;,... is an increasing sequence and all sets Q; are subsets
of the finite set @, there is a number k such that

QCC  CQ=Qs1=""".

We claim that

Qi={q€ Q| 6(qo,x) = q, for some x € A*, |x| < i},

for every i € N. The argument is by induction on i and is left to the
reader. Thus, every state in Qx belongs to acc(M). Conversely, if

q € acc(M) there is a word x such that |x| < |Q| and §*(qo,x) = g.
Therefore, g € Q)| € Qk. We conclude that acc(M) = Q.
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Deterministic Finite Automata

Let M = ({a,b},{qi | 0<i<T7},d,90,{gs5,96}) be the dfa whose graph
is shown:
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Deterministic Finite Automata

Q = {90}

Q = {q0,91,92}

Q = {90,91,92,94,95}
Qs = {90,91,92,94,95}

Thus, ACC(M) is the dfa M’ = ({37 b}7 {q07 a1, q2, 44, q5}7 6,7 qo, {q5})
whose graph is given next.
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Deterministic Finite Automata
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