MACHINE LEARNING Probabilistic Inequalities - Supplement

Prof. Dan A. Simovici

UMB

(日)

1/18

Outline

1 Some Elementary Inequalities

2 Sharper but More Complicated Bounds

Theorem

We have the following inequalities:

1 \

$$1+a \leqslant e^a \text{ for } a \in \mathbb{R},$$
 (1)

$$\left(1+\frac{b}{x}\right) \leqslant e^{b} \text{ for } b \in \mathbb{R} \text{ and } x > 0,$$
 (2)

$$-\frac{1}{2}\epsilon^2 \leqslant \epsilon - (1+\epsilon)\ln(1+\epsilon) \leqslant -\frac{1}{3}\epsilon^2 \text{ for } 0 \leqslant \epsilon \leqslant 1$$
 (3)

$$-rac{1}{2}\epsilon^2 \hspace{0.2cm} \geqslant \hspace{0.2cm} \epsilon-(1+\epsilon)\ln(1+\epsilon) \hspace{0.2cm} \textit{for} \hspace{0.2cm} -1<\epsilon\leqslant 0. \hspace{1.5cm} (4)$$

<ロト < 回 > < 巨 > < 巨 > < 巨 > 三 の < で 3/18

MACHINE LEARNING Probabilistic Inequalities - Supplement

Some Elementary Inequalities

Proof of Inequality (1)

Let $g(a) = e^a - (1 + a)$ for $a \in \mathbb{R}$. Then $g''(a) = e^a > 0$ for all $a \in \mathbb{R}$, while g'(0) = 0. Hence $g(a) \ge g(0) = 0$ for all $a \in \mathbb{R}$, which concludes the proof.

MACHINE LEARNING Probabilistic Inequalities - Supplement

Some Elementary Inequalities

Proof of Inequality (2)

Putting $a = \frac{b}{x}$ and raising both sides of Inequality (1) to the x^{th} power yields (2).

Proof of Inequality (3)

For $q \in \{0,1\}$ let

$$f_q(\epsilon) = \epsilon - (1 + \epsilon) \ln(1 + \epsilon) + \frac{1}{2}\epsilon^2 - \frac{1}{6}q\epsilon^3$$

and $-1 < \epsilon \leqslant 1$. We have:

$$\begin{array}{lll} f_q'(\epsilon) &=& -\ln(1+\epsilon) + \epsilon - \frac{1}{2}q\epsilon^2 \\ f_q''(\epsilon) &=& -\frac{1}{1+\epsilon} + 1 - q\epsilon \\ f_q'''(\epsilon) &=& \frac{1}{(1+\epsilon)^2} - q. \end{array}$$

<ロト < 団ト < 巨ト < 巨ト < 巨ト 三 の Q (* 6/18

Proof of Inequalities (3) and (4) cont'd

We have the following sign variations if f_q and its derivatives:

q		0			1	
	$\epsilon < 0$	$\epsilon = 0$	$\epsilon > 0$	$\epsilon < 0$	$\epsilon = 0$	$\epsilon > 0$
$f_{q_{i}}^{\prime\prime\prime}(\epsilon)$	+	+	+	+	0	-
$f_q''(\epsilon)$	-	0	+	_	0	_
$f'_q(\epsilon)$	+	0	+	+	0	_
$f'_q(\epsilon)$	-	0	+	-	0	-

The sign variation of f_0 implies Inequality (4) and the left half of (3). Also, from the sign variation of f_1 we get for $0 \le \epsilon \le 1$:

$$\epsilon - (1 + \epsilon) \leqslant (1 + \epsilon) \leqslant -\epsilon^2 \left(rac{1}{2} - rac{1}{6}\epsilon
ight) \leqslant rac{1}{3}\epsilon^2.$$

Let $n \in \mathbb{N}$ and let $p_1, \ldots, p_n \in \mathbb{R}$ with $0 \leq p_i \leq 1$. Define $p = \frac{p_1 + \cdots + p_n}{n}$ and m = np and let X_1, \ldots, X_n and Y_1, \ldots, Y_n be independent, 0-1 random variables with

$$P(X_i = 1) = p_i$$
 and $P(Y_i = 1) = p$ for $1 \leq i \leq n$.

We are interested in the behavior of the random variables

$$S = X_1 + \dots + X_n$$
, and
 $S' = Y_1 + \dots + Y_n$.

Theorem

For $S = X_1 + \cdots + X_n$ we have:

$$egin{aligned} & \mathcal{P}(S \leqslant (1-\epsilon)m) & \leqslant & \mathrm{e}^{-rac{\epsilon^2 m}{2}} \ & \leqslant & \left(rac{\mathrm{e}^\epsilon}{(1+\epsilon)^{1+\epsilon}}
ight)^m ext{ for } \mathsf{0} \leqslant \epsilon \leqslant 1, \end{aligned}$$

and

$$P(S \geqslant (1+\epsilon)m) \leqslant \left(rac{\mathsf{e}}{1+\epsilon}
ight)^{(1+\epsilon)m}$$

<ロト < 団 > < 臣 > < 臣 > 王 のQで 9/18

Proof

Let $\epsilon \ge 0$ and $t \ge 0$. Then

$$\begin{array}{l} \mathsf{P}(S \geqslant (1+\epsilon)m) \\ \leqslant \ e^{-t(1+\epsilon)m} e^{t(1+\epsilon)m} \mathsf{P}(s^{tS} \geqslant e^{t(1+\epsilon)m}) \\ \leqslant \ e^{-t(1+\epsilon)m} \mathsf{E}(e^{tS}). \end{array}$$

Proof (cont'd)

Since $X_1, ..., X_n$ are independent, by Inequality (1) we further get: $E(e^{tS}) = E(e^{t(X)1+...+X_n}) = E(e^{tX_1} ... e^{tX_n})$ $= \prod_{i=1}^n E(e^{tX_i}) = \prod_{i=1}^n (p_i e^t + (1-p_i))$ $= \prod_{i=1}^n (1+p_i(e^t-1)) = e^{(\sum_{i=1}^n p_i(e^t-1))}$ $= e^{m(e^t-1)}.$

Putting $t = \ln(1 + \epsilon)$ yields:

$$\mathsf{P}(S \geqslant (1+\epsilon)m) \leqslant (1+\epsilon)^{-(1+\epsilon)m} e^{m\epsilon},$$

and hence

$$P(S \ge (1+\epsilon)m) \leqslant \left(\frac{e^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\right)^{m} \stackrel{m}{\Leftrightarrow} (5) \underset{11/18}{\Leftrightarrow} (5)$$

Proof (cont'd)

The Inequality (3)

$$\epsilon - (1 + \epsilon) \ln(1 + \epsilon) \leqslant -\frac{1}{3}\epsilon^2$$

is equivalent to

$$rac{{ extbf{e}}^{\epsilon}}{(1+\epsilon)^{1+\epsilon}}\leqslant e^{rac{-\epsilon^2}{3}},$$

hence

$$P(S \ge (1+\epsilon)m) \le e^{-\frac{\epsilon^2 m}{3}}$$

for $0 < \epsilon \leq 1$.

$$E(e^{-tS}) = \prod_{i=1}^{n} E(e^{-tX_i})$$

= $\prod_{i=1}^{n} (p_i e^{-t} + (1-p_i))$
= $\prod_{i=1}^{n} (1-p_i(1-e^{-t}))$
 $\leqslant \prod_{i=1}^{n} e^{-p(1-e^{-t})}$
= $e^{-(1-e^{-t})\sum_{i=1}^{n} p_i} = e^{-m(1-e^{-t})}.$

Putting $t = -\ln(1-\epsilon)$ yields

$$P(S \leq (1-\epsilon)m) \leq \left(\left(\frac{1}{1-\epsilon}e^{-\epsilon}\right)^{1-\epsilon} \right)^{m} \cdot \frac{1}{1-\epsilon} = 0$$

The left part of (3):

$$-rac{1}{2}\epsilon^2\leqslant\epsilon-(1+\epsilon)\ln(1+\epsilon),$$

for $0 \leq \epsilon \leq 1$, the Inequality (4):

$$-rac{1}{2}\epsilon^2 \geqslant \epsilon - (1+\epsilon)\ln(1+\epsilon)$$
 for $-1 < \epsilon \leqslant 0$

for $-1 < \epsilon \leqslant 0$, and the continuity at $\epsilon = 1$ imply

$$P(S \leqslant (1-\epsilon)m) \leqslant e^{-rac{\epsilon^2 m}{2}} \leqslant \left(rac{e^{\epsilon}}{(1+\epsilon)^{(1+\epsilon)}}
ight)^m$$

for $0 \leq \epsilon \leq 1$.

We also have:

$$P(S \ge (1+\epsilon)m) \le \left(\frac{e}{1+\epsilon}\right)^{(1+\epsilon)m}$$

In particular, for $r \leq 6m$ we have

$$P(S \ge r) \le 2^{-r}.$$

<ロ > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 画 > < 15 / 18

Sharper but More Complicated Bounds

Let $S' = Y_1 + \cdots + Y_n$, where $P(Y_i = 1) = p$ for $1 \le i \le n$. Also, let 0 < a < 1, $a \ge p$ and $t \ge 0$. Choosing ϵ such that $(1 + \epsilon)m = an$, by the previous calculations we get

$${{P}({S'} \geqslant {\mathit{an}})} \leqslant {e^{ - t{\mathit{an}}}} \left({{
m p}{e^t} + (1 - {
m p})}
ight)^n$$
 .

For $t = \ln \frac{a(1-p)}{p(1-a)}$, this becomes

$$P(S' \ge an) \leqslant \left(\frac{p(1-a)}{a(1-p)}\right)^{an} \left(\frac{a(1-p)}{1-a} + (1-p)\right)^{n}$$
$$= \left(\frac{p(1-a)}{a(1-p)}\right)^{an} \left(\frac{1-p}{1-a}\right)^{n},$$

which implies:

$$P(S' \ge an) \le \left(\left(\frac{p}{a}\right)^a \left(\frac{1-p}{1-a}\right)^{1-a} \right)^n \tag{6}$$

for 0 < a < 1 and $a \ge p$.

16/18

Sharper but More Complicated Bounds

Introduce the notation

$$S' \succeq k = \begin{cases} S' \ge k & \text{if } k \ge pn, \\ S' \leqslant k & \text{if } k < pn. \end{cases}$$

Note that the right member of Inequality (6) is invariant under a simultaneous interchange of a with 1 - a and p with 1 - p we then get by considering the random variabe n - S',

$$P(S' \succeq an) \leqslant \left(\left(\frac{p}{a} \right)^a \left(\frac{1-p}{1-a} \right)^{1-a} \right)^n$$

for 0 < a < 1.

Sharper but More Complicated Bounds

Since by Inequality (2) we have

$$\left(rac{1-p}{1-a}
ight)^{1-a}=\left(1+rac{1-p}{1-a}
ight)^{1-a}\leqslant e^{a-p}$$

we also have

$$P(S' \succeq an) \leqslant \left[\left(rac{p}{a}
ight)^a r^{a-p}
ight]^n$$

when $0 < a \leq 1$. Putting na = k we obtain

$$P(S' \succeq k) \leqslant \left(\frac{np}{k}\right)^k \left(\frac{n-np}{n-k}\right)^{n-k} \leqslant \left(\frac{np}{k}\right)^k e^{k-np}$$

for 0 < k < n.