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We have the following inequalities:

l1+a < e’ foraeR, (1)
b

(1+;> < eP forbeR and x > 0, (2)
12 12
— o€ < e—(1+e)|n(1—|—e)<—§e for0 <e<1 (3)
1
—562 > e—(1+e€)In(l+e¢) for -1 <e<O. (4)
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Proof of Inequality (1)

Let g(a) = e? — (1 4 a) for a € R. Then g”(a) = e? > 0 for all
a € R, while g’(0) = 0. Hence g(a) > g(0) =0 for all a € R,
which concludes the proof.
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Proof of Inequality (2)

. b . . . . h
Putting a = 2 and raising both sides of Inequality (1) to the x*
power yields (2).
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Proof of Inequality (3)

For g € {0,1} let

1 1
fale)=e—(1+€)In(1+¢€) + 562 - 6q63

and —1 < e < 1. We have:

1
fo(e) = —In(1+e€)+e— qu2
1
f(;'(e) = —1+€+1—qe
1
WO = g
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Proof of Inequalities (3) and (4) cont'd

We have the following sign variations if f; and its derivatives:

q 0 1

e<0 e€e=0 e>0]e<0 e=0 €>0
7T
f, (e) + + + + 0 -
9
fq/ €) — 0 + — 0
fq(e) + 0 + + 0 —
fq(€) — 0 + — 0 -

The sign variation of fy implies Inequality (4) and the left half
of (3). Also, from the sign variation of f; we get for 0 < e < 1:

1 1 1
—(l+e)<(14+e)<—€(2—Ze) <2
e—(14+¢)<(1+¢) € (2 66) 3¢
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Let n € N and let p1,...,pn € R with 0 < p; < 1. Define
p:Ln'J“p”and m=np and let Xq,...,X, and Y1,...,Y, be

independent, 0-1 random variables with
P(Xi=1)=p;jand P(Y;=1)=pfor1 <i<n.
We are interested in the behavior of the random variables

S = X144+ X,, and
S = Yi+--+Y,
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For S = X1 +--- + X, we have:

€2ITI

PS<(1—e)m) < e 7"

m
(1+ 1+E> for 0 < e <1,
€

and
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Proof

Lete >0and t > 0. Then

PS> (1+¢)m)
< e—t(l—l—e)met(l—l-e)mP(StS > et(1+e)m)
< eft(1+e)mE(et5)'
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Proof (cont'd)

Since Xi, ..., X, are independent, by Inequality (1) we further get:

E(etS) _ E(et(X)1+~-+Xn)) _ E(etxl . etX”)
~ TIEE™) = [T(ee + (1 p)
i=1 i=1

- H(l + pi(et — 1)) = e(Elapi(e-1)
i1

_ em(et—l).

Putting t = In(1 + ¢) yields:
P(S> (1+e)m) < (1+¢) Fmeme,
and hence

P(S > (1+¢)m) < (#)m (5)
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Proof (cont'd)

The Inequality (3)
1o
e—(1+e€)In(l+e¢) < —3¢

is equivalent to

o 2
1+ ette €70
hence ,
PS>(1+em)<e 3
for0 <e<1.
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E(e7®) = J[E(e™™
i=1

= H (p,'eit + (]. — p,'))
i=1
— H (1 — p,'(]. — e_t))

n
< [[erte
i=1
(e )Y pr o1t

Putting t = — In(1 — ¢€) yields

P(S<(1—e)m)< <<1 i ee_6>1—€>m‘
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The left part of (3):
1,
— o€ <e—(1+€)In(1+e),

for 0 < e < 1, the Inequality (4):

1
—562 —(14¢€)In(l+¢€)for -1 <e<0

for —1 < € < 0, and the continuity at e = 1 imply

_ém e "
PS<(I-egm)<e 2 < ((1+6)(1+e)>

for0<e<1
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We also have:

e (1+€)m
> +e)m) <
P(S > (1+€e)m) < (1 6)

In particular, for r < 6m we have

P(S>r)<2".
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Let S =Y1+ -+ Y, where P(Y; =1)=pfor 1 < i< n. Also,
let 0 <a< 1 a>pandt>0. Choosing € such that
(1 + €)m = an, by the previous calculations we get

P(S' > an) < e @ (pe' +(1—p))".
a(l—p
1-a

For t =1In ol

g, this becomes

which implies:

rssa< (2 (50)7) e

for0<a<landaZp.
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Introduce the notation

Sk S >k if k> pn,
= S'<k ifk<pn.

Note that the right member of Inequality (6) is invariant under a

simultaneous interchange of a with 1 — a and p with 1 — p we then
get by considering the random variabe n — §’,

rs=a < (2 (12))

for0 < a< 1.
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Since by Inequality (2) we have

].—p 1-a l—p 1-a
=|1+—— <e?P
1—a 1—a

P(S' = an) < [(g)a ra_p]n

we also have

when 0 < a < 1.
Putting na = k we obtain

k (n—np n—k np\k ,_
=< () <(5) e
P(S" = k) p P— ) e

for 0 < k < n.
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