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Some Elementary Inequalities

Theorem

We have the following inequalities:

1 + a 6 ea for a ∈ R, (1)(
1 +

b

x

)
6 eb for b ∈ R and x > 0, (2)

−1

2
ε2 6 ε− (1 + ε) ln(1 + ε) 6 −1

3
ε2 for 0 6 ε 6 1 (3)

−1

2
ε2 > ε− (1 + ε) ln(1 + ε) for −1 < ε 6 0. (4)
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Some Elementary Inequalities

Proof of Inequality (1)

Let g(a) = ea − (1 + a) for a ∈ R. Then g ′′(a) = ea > 0 for all
a ∈ R, while g ′(0) = 0. Hence g(a) > g(0) = 0 for all a ∈ R,
which concludes the proof.
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Some Elementary Inequalities

Proof of Inequality (2)

Putting a = b
x and raising both sides of Inequality (1) to the x th

power yields (2).
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Some Elementary Inequalities

Proof of Inequality (3)

For q ∈ {0, 1} let

fq(ε) = ε− (1 + ε) ln(1 + ε) +
1

2
ε2 − 1

6
qε3

and −1 < ε 6 1. We have:

f ′q(ε) = − ln(1 + ε) + ε− 1

2
qε2

f ′′q (ε) = − 1

1 + ε
+ 1− qε

f ′′′q (ε) =
1

(1 + ε)2
− q.
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Some Elementary Inequalities

Proof of Inequalities (3) and (4) cont’d

We have the following sign variations if fq and its derivatives:

q 0 1
ε < 0 ε = 0 ε > 0 ε < 0 ε = 0 ε > 0

f
′′′
q (ε) + + + + 0 −

f
′′
q (ε) − 0 + − 0 −

f
′
q (ε) + 0 + + 0 −
fq(ε) − 0 + − 0 −

The sign variation of f0 implies Inequality (4) and the left half
of (3). Also, from the sign variation of f1 we get for 0 6 ε 6 1:

ε− (1 + ε) 6 (1 + ε) 6 −ε2
(

1

2
− 1

6
ε

)
6

1

3
ε2.
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Some Elementary Inequalities

Let n ∈ N and let p1, . . . , pn ∈ R with 0 6 pi 6 1. Define
p = p1+···+pn

n and m = np and let X1, . . . ,Xn and Y1, . . . ,Yn be
independent, 0-1 random variables with

P(Xi = 1) = pi and P(Yi = 1) = p for 1 6 i 6 n.

We are interested in the behavior of the random variables

S = X1 + · · ·+ Xn, and

S ′ = Y1 + · · ·+ Yn.
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Some Elementary Inequalities

Theorem

For S = X1 + · · ·+ Xn we have:

P(S 6 (1− ε)m) 6 e−
ε2m
2

6

(
eε

(1 + ε)1+ε

)m

for 0 6 ε 6 1,

and

P(S > (1 + ε)m) 6

(
e

1 + ε

)(1+ε)m

.
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Some Elementary Inequalities

Proof

Let ε > 0 and t > 0. Then

P(S > (1 + ε)m)

6 e−t(1+ε)met(1+ε)mP(stS > et(1+ε)m)

6 e−t(1+ε)mE (etS).
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Some Elementary Inequalities

Proof (cont’d)

Since X1, . . . ,Xn are independent, by Inequality (1) we further get:

E (etS) = E (et(X )1+···+Xn)) = E (etX1 · · · etXn)

=
n∏

i=1

E (etXi ) =
n∏

i=1

(pie
t + (1− pi ))

=
n∏

i=1

(1 + pi (e
t − 1)) = e(

∑n
i=1 pi (e

t−1))

= em(et−1).

Putting t = ln(1 + ε) yields:

P(S > (1 + ε)m) 6 (1 + ε)−(1+ε)memε,

and hence

P(S > (1 + ε)m) 6

(
eε

(1 + ε)1+ε

)m

. (5)
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Some Elementary Inequalities

Proof (cont’d)

The Inequality (3)

ε− (1 + ε) ln(1 + ε) 6 −1

3
ε2

is equivalent to
eε

(1 + ε)1+ε
6 e

−ε2
3 ,

hence

P(S > (1 + ε)m) 6 e−
ε2m
3

for 0 < ε 6 1.
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Some Elementary Inequalities

E (e−tS) =
n∏

i=1

E (e−tXi )

=
n∏

i=1

(
pie
−t + (1− pi )

)
=

n∏
i=1

(
1− pi (1− e−t)

)
6

n∏
i=1

e−p(1−e
−t)

= e−(1−e
−t)

∑n
i=1 pi = e−m(1−e−t).

Putting t = − ln(1− ε) yields

P (S 6 (1− ε)m) 6

((
1

1− ε
e−ε
)1−ε

)m

.
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Some Elementary Inequalities

The left part of (3):

−1

2
ε2 6 ε− (1 + ε) ln(1 + ε),

for 0 6 ε 6 1, the Inequality (4):

−1

2
ε2 > ε− (1 + ε) ln(1 + ε) for −1 < ε 6 0

for −1 < ε 6 0, and the continuity at ε = 1 imply

P(S 6 (1− ε)m) 6 e−
ε2m
2 6

(
eε

(1 + ε)(1+ε)

)m

for 0 6 ε 6 1.

14 / 18



MACHINE LEARNING Probabilistic Inequalities - Supplement

Some Elementary Inequalities

We also have:

P(S > (1 + ε)m) 6

(
e

1 + ε

)(1+ε)m

In particular, for r 6 6m we have

P(S > r) 6 2−r .
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Sharper but More Complicated Bounds

Let S ′ = Y1 + · · ·+ Yn, where P(Yi = 1) = p for 1 6 i 6 n. Also,
let 0 < a < 1, a > p and t > 0. Choosing ε such that
(1 + ε)m = an, by the previous calculations we get

P(S ′ > an) 6 e−tan
(
pet + (1− p)

)n
.

For t = ln a(1−p)
p(1−a) , this becomes

P(S ′ > an) 6

(
p(1− a)

a(1− p)

)an (a(1− p)

1− a
+ (1− p)

)n

=

(
p(1− a)

a(1− p)

)an (1− p

1− a

)n

,

which implies:

P(S ′ > an) 6

((p
a

)a(1− p

1− a

)1−a
)n

(6)

for 0 < a < 1 and a > p.
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Sharper but More Complicated Bounds

Introduce the notation

S ′ � k =

{
S ′ > k if k > pn,

S ′ 6 k if k < pn.

Note that the right member of Inequality (6) is invariant under a
simultaneous interchange of a with 1− a and p with 1− p we then
get by considering the random variabe n − S ′,

P(S ′ � an) 6

((p
a

)a(1− p

1− a

)1−a
)n

for 0 < a < 1.
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Sharper but More Complicated Bounds

Since by Inequality (2) we have(
1− p

1− a

)1−a
=

(
1 +

1− p

1− a

)1−a
6 ea−p

we also have
P(S ′ � an) 6

[(p
a

)a
ra−p

]n
when 0 < a 6 1.
Putting na = k we obtain

P(S ′ � k) 6
(np
k

)k (n − np

n − k

)n−k
6
(np
k

)k
ek−np

for 0 < k < n.
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