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Probabilistic Inequalities - I

Markov and Chebyshev Inequalities

Two types of radom variable exist:

discrete: Discrete variables have the form

X :

(
x1 x2 · · · xn
p1 p2 · · · pn

)
,

where x1 < x2 < · · · < xn. Suppose further that

continuous: Continuous variables are described by probability
densities. A probability distribution of a probability density
function for a random variable X is a function f (x) such that
for any a, b ∈ R with a 6 b we have

P(a 6 X 6 b) =

∫ b

a
f (x) dx .
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Probabilistic Inequalities - I

Markov and Chebyshev Inequalities

Expectations

In the discrete case the expectation is:

E (X ) =
n∑

i=1

xipi .

In the continuous case the expectation is:

E (X ) =

∫ ∞
−∞

xf (x) dx .
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Probabilistic Inequalities - I

Markov and Chebyshev Inequalities

Definition

The variance is the expectation of the squared deviation of a
random variable, where the deviation of a random variable X is
X − E (X ). Thus, the variance of X is var(X ) = E ((X − E (X ))2).

It is immediate that

var(X ) = E (X 2)− (E (X ))2.
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Probabilistic Inequalities - I

Markov and Chebyshev Inequalities

Example

A fair six-sided die can be modeled as a discrete random variable,
X , with outcomes 1 through 6, each with equal probability 1/6.
The expected value of X is E (X ) = 1

6 (1 + 2 + 3 + 4 + 5 + 6) = 7/2.
The variance is

var(X ) =
6∑

i=1

1

6

(
i − 7

2

)2

≈ 2.92.

6 / 29



Probabilistic Inequalities - I

Markov and Chebyshev Inequalities

Markov Inequality

Theorem

Let X be a non-negative random variable. For every a > 0 we have

P(X > a) 6
E (X )

a
.

7 / 29



Probabilistic Inequalities - I

Markov and Chebyshev Inequalities

Proof in the discrete case

Suppose that

X :

(
x1 x2 · · · xn
p1 p2 · · · pn

)
,

where x1 < x2 < · · · < xn. Suppose further that

x1 < x2 < · · · xk < a 6 xk+1 < · · · < xn.

Then P(X > a) = pk+1 + · · ·+ pn.
Since

E (X ) = x1p1 + · · ·+ xkpk + xk+1pk+1 + · · ·+ xnpn

> xk+1pk+1 + · · ·+ xnpn > a(pk+1 + · · ·+ pn)

= aP(X > a),

we obtain Markov Inequality.
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Markov and Chebyshev Inequalities

Chebyshev Inequality

Recall that the variance of a random variable X is the number
var(X ) = E [(X − E (X ))2]. Equivalently,
var(X ) = E (X 2)− (E (X ))2.

Theorem

We have

P(|X − E (X )| > a) 6
var(X )

a2
.
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Probabilistic Inequalities - I

Markov and Chebyshev Inequalities

Proof

The Markov Inequality applied to the random variable
Y = (X − E (X ))2 and to a2 is:

P(Y > a2) 6
E (Y )

a2
.

This amounts to:

P((X − E (X ))2 > a2) 6
E ((X − E (X ))2)

a2
.

This is equivalent to

P(|X − E (X )| > a) 6
var(X )

a2
,

which is the Chebyshev’s Inequality.
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Probabilistic Inequalities - I

Markov and Chebyshev Inequalities

Example

If X is a binomial variable,

X :

(
0 1 · · · k · · · n
qn

(n
1

)
qn−1p · · ·

(n
k

)
qn−kpk · · · pn

)
,

we have
P(|X − np| > a) 6

npq

a2
,

which can be written also as

P((X > np + a) ∨ (X < np − a)) 6
npq

a2
.

Since the distribution is symmetric relative to np this is equivalent
to

P(X > np + a) 6
npq

2a2
and P(X < np − a) 6

npq

2a2
.
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Probabilistic Inequalities - I

Markov and Chebyshev Inequalities

The probability distribution of a binomial variable:
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Probabilistic Inequalities - I

Hoeffding’s Inequality

Lemma

Let L be the function defined as

L(x) = −xp + log(1− p + pex).

We have L(x) 6 x2

8 for x > 0.
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Probabilistic Inequalities - I

Hoeffding’s Inequality

Proof

We need to show that f (x) = x2

8 − L(x) > 0. Since L(0) = 0 we
have f (0) = 0. Note that:

f ′(x) =
x

4
− p +

pex

1− p + pex

=
x

4
− p + 1 +

p − 1

1− p + pex

f ′′(x) =
1

4
− (p − 1)pex

(1− p + pex)2

=
(1− p − pex)2

4(1− p + pex)2
.

Note that f ′′(x) > 0 and f ′(0) = 0.
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Probabilistic Inequalities - I

Hoeffding’s Inequality

Proof (cont’d)

Therefore, f ′ is increasing and f ′(x) > 0 for x > 0.
Since f ′(x) > 0 and f (0) = 0, it follows that x > 0 implies
f (x) > 0, which we need to prove.
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Probabilistic Inequalities - I

Hoeffding’s Inequality

Lemma

Let X be a random variable that takes values in the interval [a, b]
such that E [X ] = 0. Then, for every λ > 0 we have

E [eλX ] 6 e
λ2(b−a)2

8 .
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Probabilistic Inequalities - I

Hoeffding’s Inequality

Proof

Since f (x) = eλx is a convex function, we have that for every
t ∈ [0, 1] and x ∈ [a, b],

f (x) 6 (1− t)f (a) + tf (b).

For t = x−a
b−a ∈ [0, 1] we have eλx 6 b−x

b−a e
λa + x−a

b−ae
λb.

Applying the expectation we obtain:

E (eλX ) 6
b − E (X )

b − a
eλa +

E (X )− a

b − a
eλb

=
b

b − a
eλa − a

b − a
eλb,

because E (X ) = 0.
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Probabilistic Inequalities - I

Hoeffding’s Inequality

Proof (cont’d)

If h = λ(b − a), p = −a
b−a and L(h) = −hp + log(1− p + peh),

then −hp = λa, 1− p = 1 + a
b−a = b

b−a , and

eL(h) = e−hp(1− p + peh)

= eλa
(

b

b − a
− a

a− b
eλ(b−a)

)
=

b

b − a
eλa − a

a− b
eλb.

This implies

b

b − a
eλa − a

b − a
eλb = eL(h) 6 e

λ2(b−a)2

8

because we have shown that L(h) 6 h2

8 = λ2(b−a)2

8 . This gives the
desired inequality.
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Probabilistic Inequalities - I

Hoeffding’s Inequality

Hoeffding’s Theorem

Theorem

Let (Z1, . . . ,Zm) be a sequence of iid random variables and let

Z̃ =
1

m

m∑
i=1

Zi .

Assume that

E (Z̃ ) = µ and that P(a 6 Zi 6 b) = 1

for 1 6 i 6 m. Then, for every ε > 0 we have

P(|Z̃ − µ| > ε) 6 2e
− 2mε2

(b−a)2 .
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Probabilistic Inequalities - I

Hoeffding’s Inequality

Proof

Let Xi = Zi − E (Zi ) = Zi − µ and X̃ = 1
m

∑m
i=1 Xi .

Note that E (Xi ) = 0 for 1 6 i 6 m, which implies E (X̃ ) = 0.
Thus,

Z̃ − µ =

(
1

m

m∑
i=1

Zi

)
− µ =

1

m

m∑
i=1

(Zi − µ)

=
1

m

m∑
i=1

Xi = X̃

and

P(|Z̃ − µ| > ε) = P(|X̃ | > ε)

= P(X̃ > ε) + P(X̃ < −ε).
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Hoeffding’s Inequality

Proof (cont’d)

Let ε and λ be two positive numbers. Note that
P(X̃ > ε) = P(eλX̃ > eλε). By Markov Inequality,

P(eλX̃ > eλε) 6
E (eλX̃ )

eλε
.

Since X1, . . . ,Xm are independent, we have

E (eλX̃ ) = E

(
m∏
i=1

e
λXi
m

)
=

m∏
i=1

E (e
λXi
m ).
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Hoeffding’s Inequality

Proof (cont’d)

By Lemma 2, for every i we have

E
(
e

λXi
m

)
6 e

λ2(b−a)2

8m2 .

Therefore,

P(X̃ > ε) 6 e−λε
m∏
i=1

e
λ2(b−a)2

8m2 = e−λεe
λ2(b−a)2

8m .

Choosing λ = 4mε
(b−a)2 yields

P(X̃ > ε) 6 e
− 2mε2

(b−a)2 .

The same arguments applied to −X̃ yield P(X̃ 6 −ε) 6 e
− 2mε2

(b−a)2 .
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Hoeffding’s Inequality

By applying the union property of probabilities we have

P(|X̃ | > ε) = P(X̃ > ε) + P(X̃ < −ε)

6 2e
− 2mε2

(b−a)2 .
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Hoeffding’s Inequality

A special case of Hoeffding’s Theorem

Theorem

Let X1, . . . ,Xm be m independent and identially distributed
Bernoulli random variables with P(Xi = 1) = p for 1 6 i 6 m. Let
S = X1 + · · ·+ Xm be the binomial variable indicating the total
number of succeses, so E [S ] = pm. For ε ∈ [0, 1] we have:

P ((S > m(p + ε)) ∨ (S < m(p − ε)) 6 2e−2mε2
.
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Hoeffding’s Inequality

Proof

Note that E [S ] = mp. Since Z̃ = S
m it follows that E [Z ] = p.

Then, for ε > 0, a = 0, and b = 1 we have

P(|Z̃ − p| > ε) 6 2e−2mε2
,

or
P(|S −mp| > mε) 6 2e−2mε2

,

Thus,

P ((S > m(p + ε)) ∨ (S < m(p − ε)) 6 2e−2mε2
.
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Hoeffding’s Inequality

In new of the symmetry of S with respect to mp, the previous
inequality amounts to

P(S > m(p + ε)) 6 e−2mε2
,

and
P(S < m(p − ε)) 6 e−2mε2

.
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Computation of Expectation and Variance of Binomial Distribution

Let

X :

(
0 1 · · · k · · · n
qn

(n
1

)
qn−1p · · ·

(n
k

)
qn−kpk · · · pn

)
,

be a binomial variable, where 0 6 p, q 6 1 and p + q = 1.
To compute E (X ) consider the polynomial
U(x) = (px + q)n =

∑n
k=0

(n
k

)
pkxkqn−k .

We have

U ′(x) = np(px + q)n−1 =
n∑

k=0

k

(
n

k

)
pkxk−1qn−k .

Taking x = 1 in the above equality yields

np =
n∑

k=0

k

(
n

k

)
pkqn−k ,

which shows that E (X ) = np.
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Computation of Expectation and Variance of Binomial Distribution

The variance of X is var(X ) = (E (X ))2 − E (X 2), where

E (X 2) =
n∑

k=0

k2

(
n

k

)
pkqn−k .

We have

U ′′(x) = n(n − 1)p2(px + q)n−2 =
n∑

k=0

k(k − 1)

(
n

k

)
pkxk−2qn−k .

Choosing x = 1 in this equality implies

n(n − 1)p2 =
n∑

k=0

k(k − 1)

(
n

k

)
pkqn−k

=
n∑

k=0

k2

(
n

k

)
pkqn−k − sumn

k=0k

(
n

k

)
pkqn−k

= E (X 2)− np.
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Computation of Expectation and Variance of Binomial Distribution

Therefore,
E (X 2) = n2p2 − np2 + np.

Consequently,

var(X ) = E (X 2)− (E (X ))2

= n2p2 − np2 + np − n2p2

= np − np2 = np(1− p) = npq.
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