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Two types of radom variable exist:

m discrete: Discrete variables have the form

pPr P2 - Pn
where x; < xp < --- < X,. Suppose further that

m continuous: Continuous variables are described by probability
densities. A probability distribution of a probability density
function for a random variable X is a function f(x) such that
for any a, b € R with a < b we have
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Expectations

m In the discrete case the expectation is:
n
E(X) = ZX,'p,'.
i=1
m In the continuous case the expectation is:

E(X) = / " (x) dx.

—0o0
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Definition

The variance is the expectation of the squared deviation of a
random variable, where the deviation of a random variable X is
X — E(X). Thus, the variance of X is var(X) = E((X — E(X))?).

It is immediate that

var(X) = E(X?) — (E(X))2.
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Example

A fair six-sided die can be modeled as a discrete random variable,
X, with outcomes 1 through 6, each with equal probability 1/6.
The expected value of X is E(X) = 3(1+2+3+4+5+6) =7/2.
The variance is

6 1 7 2
var(X) = > c (i - 5) ~ 2.92.

i=1
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Markov Inequality

Let X be a non-negative random variable. For every a > 0 we have

=49

P(X > a) < 5
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Proof in the discrete case

Suppose that
X X .. X
X : 1 2 n ,
p1 p2 -+ Pn
where x; < xp < --- < x. Suppose further that
X1 <X < - X <aL Xpp1 <o < X

Then P(X > a) = pxt1+ -+ + pn-
Since

E(X) X1p1 4 -+ XkPk + Xk+1Pk+1 + -+ XnPn
> Xkp1Pk41+ o+ XoPn = a(pry1 + -+ pn)

aP(X = a),

we obtain Markov Inequality.
8/29



Probabilistic Inequalities - |

L Markov and Chebyshev Inequalities

Chebyshev Inequality

Recall that the variance of a random variable X is the number
var(X) = E[(X — E(X))?]. Equivalently,
var(X) = E(X2) — (E(X))z.

We have
var(X)

32

P(IX = E(X)| > a) <
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Proof

The Markov Inequality applied to the random variable
Y = (X — E(X))? and to a2 is:

E(Y)
2

This amounts to:

22
This is equivalent to
X
PUX — E(X)| > 2) < 2,

which is the Chebyshev's Inequality.
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If X is a binomial variable,

X-(O 1 k n)

: qn (;)qn—lp (Z)qn—kpk pn )

we have "
P(IX = npl > a) < 75,

which can be written also as

npq

P((X >np+a)V(X <np—a))< 2

Since the distribution is symmetric relative to np this is equivalent

to
npq

P(X > np+ a) < Z and P(X < np—a) < EYL
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The probability distribution of a binomial variable:

Binomial and Normal pdfs
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Binomial Distribution
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Lemma

Let L be the function defined as
L(x) = —xp + log(1 — p + pe).

We have L(x) < %2 for x > 0.

13/29



Probabilistic Inequalities - |
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Proof

We need to show that f(x) = %2 — L(x) > 0. Since L(0) =0 we
have f(0) = 0. Note that:

X

pe

X
f = —— —
(*) 4 p+1—p+pex
X p—1
= = _ 14 —= -
4 Pt +1—p+pex
1 —1)peX
fl(x) = - — (p )pe 5
4 (1—p+peX)
(1—p— pe)?

4(1— p+ pe¥)?’
Note that f”/(x) > 0 and f'(0) = 0.
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L Hoeffding's Inequality

Proof (cont'd)

Therefore, f’ is increasing and f/(x) > 0 for x > 0.
Since f'(x) > 0 and £(0) = 0, it follows that x > 0 implies
f(x) > 0, which we need to prove.
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Lemma

Let X be a random variable that takes values in the interval [a, b]
such that E[X] = 0. Then, for every A > 0 we have

R o2
E[eM] < e 5
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Proof

Since f(x) = ™ is a convex function, we have that for every
t €10,1] and x € [a, b],

f(x) < (1—t)f(a)+ tf(b).

For t = X=2 € [0,1] we have e’ < 2=Xeta | x=302b
Applying the expectation we obtain:
b— E(X) E(X)—a
E(e™) < Aa Ab
(e™) b—a y b—a ¢
_ b e a2
T b_at b_at

because E(X) = 0.

17/29



Probabilistic Inequalities - |

L Hoeffding's Inequality

Proof (cont'd)

If h=A(b—a), p= 7= and L(h) = —hp + log(1 — p + pe"),
then —hp=Xa, 1 —p=1+ 3% = b and

~ b—a’

el = e=hP(1 — p+ peh)

b a
— Aa o A(b—a)
y (b— a a_b° )

b i, a b,

b—ae a—»b

This implies

b . a

b—ae b—a

A2(b—2a)?
b — ol(h) < 5

because we have shown that L(h) < %2 = M

desired inequality.

. This gives the
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L Hoeffding's Inequality

Hoeffding's Theorem

Let (Zy,...,Zm) be a sequence of iid random variables and let

. 1 Z
Z:;ZZ,-.

i=1

Assume that
E(Z) = ju and that P(a< Z; < b) =1

for1 < i < m. Then, for every e > 0 we have

2me2

P(|Z — p| > €) < 2e -7,
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Proof

Let Xi=Z — E(Z)=Z —pand X =L S7 X

Note that E(X;) = 0 for 1 < i < m, which implies E(X) = 0.

Thus,
7—p = 1iz- — —1i(z-—)
no= m £ i n= m £ i M
1 & .
= => X=X
m 4
i=1
and

P(IZ=ul>e) = P(X|>e)
P(X > ¢) + P(X < —¢).
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Proof (cont'd)

Let~e and A be two positive numbers. Note that
P(X =€) = P(e** > e%). By Markov Inequality,

E(e)\f()

P(e)\X > e)\e) < e

Since Xi, ..., X, are independent, we have

’\X)— ( em > :ﬁE(eAX
i=1

21/29



Probabilistic Inequalities - |

L Hoeffding's Inequality

Proof (cont'd)

By Lemma 2, for every i we have

AX; A2(b—2a)?
E (e m ) <e s |

Therefore,

b a)2

2
P(X > *)‘GHe o e

4m

Choosing A\ = (=g 6) yields

~ _ 2me?

P(X >¢€)<e -2,

~ 2me2

The same arguments applied to —X yield P(X < —¢) < e (-7
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By applying the union property of probabilities we have
P(X|>¢€) = P(X>e)+PX< —e)
2me

2
< 2e (-2,
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A special case of Hoeffding’s Theorem

Theorem

Let Xi,...,Xm be m independent and identially distributed
Bernoulli random variables with P(X; =1) = p for1 < i< m. Let
S =Xy + -+ X, be the binomial variable indicating the total
number of succeses, so E[S] = pm. For € € [0, 1] we have:

P(S>m(p+e€)V(S<mip—e¢))< De—2me®
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L Hoeffding's Inequality

Proof

Note that E[S] = mp. Since Z = 2 it follows that E[Z] = p.
Then, for e >0, a=0, and b =1 we have

2

P(\Z —p| >¢€) < 2e72me”

or
2

P(|S — mp| > me) < 2e72m
Thus,

2

P(S>m(p+¢€)V(S<mp—re¢))< De—2me*
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In new of the symmetry of S with respect to mp, the previous
inequality amounts to

2

P(S > m(p +¢)) < e 2™,

and ,
P(S < m(p —€)) < e 2™,
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LComputation of Expectation and Variance of Binomial Distribution

X - (0 1 k n>
: qn (;) qnflp . (Z) qnfkpk . pn ’
be a binomial variable, where 0 < p,g<land p+g=1.
To compute E(X) consider the polynomial

U(x) = (px+ )" = Yi_o (1) PFx*q" %,
We have

U'(x) = np(px + q)"~ Zk<> Kxk—1gnk.

Taking x = 1 in the above equality yields
n
_ k k _n—k
np ; <k>p q"k,

which shows that £(X) = np.
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LComputation of Expectation and Variance of Binomial Distribution

The variance of X is var(X) = (E(X))? — E(X?), where

n
EX2 — 2 n k n—k'
(X*)=> k <k>pq
k=0
We have

n

V() = n(n— )p(px + )" 2 = 3" k(k 1) (k) P2,
k=0

Choosing x = 1 in this equality implies

Zk _1() knk
_ Zkz( ) kgn=k _ syumn k(”) k n—k
= k=0"\ P q

= E(X?)—np.

n(n—1)p?
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Therefore,
E(X?) = n?p? — np? + np.

Consequently,
var(X) = E(X?)— (E(X))?
— m2p? —np? + np — n?p?
= np—np’ = np(1 - p) = npq.

29/29



	Outline
	Markov and Chebyshev Inequalities
	Hoeffding's Inequality
	Computation of Expectation and Variance of Binomial Distribution

