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Nondeterministic Automata

Definition

A nondeterministic finite automaton (ndfa) is a quintuple
M = (A,Q, δ, q0,F ), where A is the input alphabet of M, Q is a finite set
of states, δ : Q × A −→ P(Q) is the transition function, q0 ∈ Q is the
initial state, and F ⊆ Q is the set of final states of M. We assume
A ∩ Q = ∅.
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Nondeterministic Automata

Example

Consider the ndfa

M = ({a, b}, {q0, q1, q2, q3, q4}, δ, q0, {q1, q3}),

whose transition function is defined by the table:

State
Input q0 q1 q2 q3 q4
a {q1, q2} ∅ {q3} ∅ ∅
b {q0} {q3} {q4} ∅ ∅

Note the presence of pairs (q, a) such that δ(q, a) = ∅. We refer to such
pairs as blocking situations of M. For instance, (q1, a) is a blocking
situation of M.
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Nondeterministic Automata

Extending the transition function for an ndfa

As in the case of the dfa, we can extend the ndfa’s transition function δ,
defined on single characters, to δ∗, defined on words.
Starting from the transition function δ, we define the function
δ∗ : Q × A∗ −→ P(Q) as follows:

δ∗(q, λ) = {q}
δ∗(q, xa) =

⋃
q′∈δ∗(q,x)

δ(q′, a)
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Nondeterministic Automata

Graphs of ndfas

If M = (A,Q, δ, q0,F ) is an ndfa, then the graph of M is the marked,
directed multigraph G(M), whose set of vertices is the set of states Q.

The set of edges of G(M) consists of all pairs (q, q′) such that
q′ ∈ δ(q, a) for some a ∈ A; an edge (q, q′) is labeled by the input
symbol a, where q′ ∈ δ(q, a).

The initial state q0 is denoted by an incoming arrow with no source,
and the final states are circled.

If q′ ∈ δ∗(q, x), then there is a path in the graph G(M) labeled by x that
leads from q to q′.
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Nondeterministic Automata
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Nondeterministic Automata

Comparing dfas and ndfas

In the graph of a dfa M = (A,Q, δ, q0,F ) you must have exactly one
edge emerging from every state q and for every input symbol a ∈ A.

r>:z~q
a
b
c

d
In the graph of an ndfa M = (A,Q, δ, q0,F ) you may have states
where no arrow emerges, or states where several arrow labeled with
the same symbol emerge. Also, not every symbol needs to appear as
a label of an emerging edge.

r
No arrow
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Nondeterministic Automata

Definition

The language accepted by the ndfa M = (A,Q, δ, q0,F ) is

L(M) = {x ∈ A∗ | δ∗(q0, x) ∩ F 6= ∅}.

In other words, x ∈ L(M) if there exists a path in the graph of M labeled
by x that leads from the initial state into one of the final states. Note that
it is not necessary that all paths labeled by x lead to a final state; the
existence of one such path suffices to put x into the language L(M).
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Nondeterministic Automata

Example
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Note that ab ∈ L(M) because of the existence of the path (q0, q1, q3)
labeled by this word and the fact that q3 is a final state. On the other
hand, (q0, q2, q4) is another path labeled by x but q4 6∈ F .
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Nondeterministic Automata

Example (cont’d)

This ndfa is simple enough to allow an easy identification of all types of
words in L(M):

1 The final state q1 can be reached by applying an arbitrary number of
bs followed by an a.

2 The final state q3 can be reached by a path of the form
(q0, . . . , q0, q1, q3), that is by a word of the form bkab for k ∈ N.

3 The same final state q3 can be reached via q2. Input words that allow
this transition have the form bkaa for k ∈ N.

Thus, we have

L(M) = {b}∗a ∪ {b}∗ab ∪ {b}∗aa = {b}∗{a, ab, aa}.
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Nondeterministic Automata

Example

Consider an alphabet A = {a0, . . . , an−1} and a binary relation ρ ⊆ A× A.
The language

Lρ = {ai0 · · · aip | p ∈ N, (aij , aij+1
) ∈ ρ for 0 ≤ j ≤ p − 1}

is accepted by the ndfa Mρ = (A,Q, δ, q,F ), where
Q = {q, q0, . . . , qn−1}, F = {q0, . . . , qn−1}, and δ is given by

δ(q, ai ) = {qi} for 0 ≤ i ≤ n − 1;

for every i , j such that 0 ≤ i , j ≤ n − 1,

δ(qi , aj) = {qj ∈ Q | (ai , aj) ∈ ρ}.
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Nondeterministic Automata

Example (cont’d)

Note that if (ai , aj) 6∈ ρ, then (qi , aj) is a blocking situation. The existence
of these blocking situations is precisely what makes this device a
nondeterministic automaton.
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Graph of the ndfa Mρ
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Nondeterministic Automata

We show that Lρ = L(Mρ). Let x = ai0 · · · aip be a word in Lρ with p ≥ 0.
We prove by induction on p = |x | − 1 that x ∈ L(Mρ) and that
δ∗(q, x) = {qip}. The base case, p = 0, is immediate, since the condition
(aij , aij+1

) ∈ ρ for 0 ≤ j ≤ p − 1 is vacuous.
Suppose that the statement holds for words in Lρ of length at most p and
let x = ai0 · · · aip be a word in Lρ of length p + 1. It is clear that the word
y = ai0 · · · aip−1 belongs to Lρ. By the inductive hypothesis, y ∈ L(Mρ)
and δ∗(q, y) = {qip−1}. Since (aip−1 , aip) ∈ ρ (by the definition of Lρ), we
have δ(qip−1 , aip) = {qip}, so

qip ∈
⋃

q′∈δ(q,y)

δ(q′, aip) = δ∗(q, yaip) = δ∗(q, x).

Therefore, x ∈ L(Mρ).
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Nondeterministic Automata

To prove the converse inclusion L(Mρ) ⊆ Lρ we use an argument by
induction on |x | ≥ 1, where x is a word from L(Mρ), to show that if
x = ai0 · · · aip ∈ L(Mρ), then δ∗(q, x) = {qip} and x ∈ Lρ. Again, the base
case is immediate.
Suppose that the statement holds for words in L(Mρ) of length less than
p + 1 that belong to Lρ, and let x = ai0 · · · aip be a word in L(Mρ) of
length p + 1. If y = ai0 . . . aip−1 , it is easy to see that y ∈ L(Mρ) because
no blocking situation may arise in Mρ while the symbols of y are read.
Therefore, by the inductive hypothesis, y ∈ Lρ and δ∗(q, y) = {qip−1}.
Further, since δ(qip−1 , aip) 6= ∅, it follows that (aip−1 , aip) ∈ ρ, so x ∈ Lρ,
and δ∗(q, x) = qip .
Thus, Lρ is accepted by the ndfa Mρ.
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Nondeterministic Automata

Let M = (A,Q, δ, q0,F ) be a nondeterministic automaton, and let
∆ : P(Q)× A −→ P(Q) be defined by

∆(S , a) =
⋃
q∈S

δ(q, a) (1)

for every S ⊆ Q and a ∈ A. Starting from ∆, we define
∆∗ : P(Q)× A∗ −→ P(Q) in the manner used for the transition functions
of deterministic automata. Namely, we define

∆∗(S , λ) = S (2)

∆∗(S , xa) = ∆(∆∗(S , x), a) (3)

for every S ⊆ Q and a ∈ A.
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Nondeterministic Automata

Lemma

The functions ∆ and ∆∗ defined above satisfy the following properties:

1 For every family of sets {S0, . . . ,Sn−1} and every a ∈ A, we have:

∆

 ⋃
0≤i≤n−1

Si , a

 =
⋃

0≤i≤n−1
∆(Si , a).

2 For every set S ⊆ Q and x ∈ A∗ we have

∆∗(S , x) =
⋃
q∈S

δ∗(q, x).
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Nondeterministic Automata

Proof

The first part of the lemma is immediate, because

∆(
⋃

0≤i≤n−1 Si , a) =
⋃
{δ(q, a) | q ∈

⋃
0≤i≤n−1 Si}

=
⋃

0≤i≤n−1{δ(q, a) | q ∈ Si}
=

⋃
0≤i≤n−1 ∆(Si , a).
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Nondeterministic Automata

The argument for the second part of the lemma is by induction on |x |. For
the basis step, we have |x | = 0, so x = λ, and ∆∗(S , λ) = S ,⋃

q∈S δ
∗(q, λ) =

⋃
q∈S{q} = S .

Suppose that the argument holds for words of length n, and let x = za be
a word of length n + 1. We have

∆∗(S , x) = ∆∗(S , za)

= ∆(∆∗(S , z), a)

= ∆(
⋃
q∈S

δ∗(q, z), a)(by ind. hyp.)

=
⋃
q∈S

∆(δ∗(q, z), a)

=
⋃
q∈S

⋃
r∈δ∗(q,z)

δ(r , a) =
⋃
q∈S

δ∗(q, za) =
⋃
q∈S

δ∗(q, x).
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Nondeterministic Automata

Nondeterministic automata can be regarded as generalizations of
deterministic automata in the following sense. If M = (A,Q, δ, q0,F ) is a
deterministic automaton, consider a nondeterministic automaton
M′ = (A,Q, δ′, q0,F ), where δ′(q, a) = {δ(q, a)}. It is easy to verify that
for every q ∈ Q and x ∈ A∗ we have δ′∗(q, x) = {δ∗(q, x)}. Therefore,

L(M′) = {x ∈ A∗ | δ′∗(q0, x) ∩ F 6= ∅}
= {x ∈ A∗ | {δ∗(q0, x)} ∩ F 6= ∅}
= {x ∈ A∗ | δ∗(q0, x) ∈ F}
= L(M).

In other words, for every deterministic finite automaton there exists a
nondeterministic one that recognizes the same language.
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Nondeterministic Automata

Theorem

For every nondeterministic automaton, there exists a deterministic
automaton that accepts the same language.
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Nondeterministic Automata

Proof

Let M = (A,Q, δ, q0,F ) be a nondeterministic automaton. Define the
function ∆ as in the equality

∆(S , a) =
⋃
q∈S

δ(q, a),

and consider the deterministic automaton
M′ = (A,P(Q),∆, {q0}, {S | S ⊆ Q and S ∩ F 6= ∅}). For every x ∈ A∗

we have the following equivalent statements:

1 x ∈ L(M);

2 δ∗(q0, x) ∩ F 6= ∅;
3 ∆∗({q0}, x) ∩ F 6= ∅;
4 x ∈ L(M′).

This proves that L(M) = L(M′).
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Nondeterministic Automata

Example

Consider the nondeterministic finite automaton

M = ({a, b}, {q0, q1, q2}, δ, q0, {q2})

whose graph is given below.

u u u
��
��

��
��b b

b b

- -

- -

q0 q1 q2

- j��
��

��
��--

a a

23 / 25



Nondeterministic Automata

It is easy to see that the language accepted by this automaton is A∗bbA∗,
that is the language that consists of all words that contain two consecutive
b symbols.
The graph of the nondeterministic automaton is simpler than the graph of
the previous deterministic automaton; this simplification is made possible
by the nondeterminism.
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Nondeterministic Automata

Graph of the Equivalent ndfa
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