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Reminder

m For agnostic learning the generalization error is:

Lp(h) = D({(x,y) | h(x) # y}).

m The empirical risk is:

xi) # yi for 1 < i< m}|
- .
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Definition

Let H be a hypothesis class, and let D be a distribution. A
training set S is e-representative with respect to the above
elements, if the absolute value of the difference between the
empirical risk and the generalization error is less than ¢,

|Ls(h) — Lp(h)| < e.

for all h € H.

Equivalently,
Ls(h) —e < Lp(h) < Ls(h) +e.
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Definition
Let H be a class of hypotheses. A ERM predictor for H is a

hypothsis g such that its empirical risk Ls(g) is minimal, that is,
Ls(g) < Ls(h) for every sample S and hypothesis h € H.
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The next lemma stipulates that when the sample is
5-representative, the ERM learning rule applied to a sample S is
guaranteed to return a good hypothesis hs.

Lemma

Assume that a training set S is 5-representative, that is,
|Ls(h) — Lp(h)| < 5. Then, any hs that minimizes the empirical
risk

hs € argming,cq,Ls(h)

satisfies
Lp(hs) < mln Lp(h) + e.
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Proof

For every h € H we have

€
Lp(hs) < Ls(hs)+ =

2

(by the 5-representativeness of S to hs)
< Ls(h)+ %

(because hs is an ERM predictor, hence Ls(hs) < Ls(h))
< Lph)+ <+ %
X D 2 2

(because S is 5-representative, so Ls(h) < Lp(h) + 5)
< LD(h) + €.

Thus, to ensure that the ERM rule is an agnostic PAC learner, it
suffices to show that with probability of at least 1 — § over the

random choice of a training set, it will be an e-represeentative

training set. /17
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Generalized Loss Functions

Definition
Given a hypothesis set H and some domain Z let

¢ :H x Z — Rxq be a loss function.
The risk function is the expected loss of a classifier h € H given by

Lp(h) = E,p[l(h, 2)].

The empirical risk for S = {s1,...,5n} is
1 m
Ls(h) = — ) {(h,s;).
()= > ts)
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Definition

A hypothesis class H has the uniform convergence property
(relative to a domain Z and a loss function ¢) if there exists a
function mYC : (0,1)2 — N (the same for all hypotheses in A and
all probability distributions D) such that for every €,0 € (0,1) if S
is a sample of size m, where m > mYC(e, §), then with probability
at least 1 — 0, S is e-representative.

The term uniform refers to the fact that mY<(e, d) is the same for
all hypotheses in H and all probability distributions D.
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m The realizability assumption (the existence of a hypothesis
h* € H such that Py.p(h*(x) = f(x)) = 1) is not realistic in
many cases.

m Agnostic learning replaces the realizability assumption and the
targeted labeling function f, with a distribution D defined on
pairs (data, labels), that is, with a distribution D on X’ x ).

m Since D is defined over X' x ), the the generalization error is

Lp(h) = D({(x,y) | h(x) # y}).
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Theorem

If a class ‘H has the uniform convergence property with a function
mY€, then the class H is agnostically PAC learnable with the
sample complexity

mu(e, 8) < mY(e/2,0).

Furthermore, in this case, the ERMy; paradigm is a successful
agnostic learner for H.
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Proof

Suppose that H has the uniform convergence property with a

function mY€.

For every ¢,0 € (0,1) if S is a sample of size m, where
m = mUY%(e/2,6), then with probability at least 1 — 4, S is
€/2-representative, which means that for all h € H we have:

Lp(h) < Ls(h) +¢/2.
By the definition of hg we have:
Lp(h < in Lp(h 2
p(hs) min p(h) + €/

< min Lp(h) + e,
Irgﬂp()Jre

hence H is agnostically PAC-learnable with
my (e, 8) = mY<(e/2,6).
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Uniform convergence holds for a finite hypothesis class.

Proof: Fix ¢,6 € (0,1).
m We need a sample S = {s1,..., sy} of size m that guarantees
that for any D with probability at least 1 — § we have that

ILs(h) — Lp(h)[ <€

for all h € H (thatis, S is a representative sample).
m Equivalently,

D™({S | dh € H,|Ls(h) — Lp(h)| > €}) <.
m Note that:

{S | 3heH,|Ls(h)~Lp(h)| > e} = | J{S | ILs(h)~Lp(h)| > €}
heH
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This implies

D™({S | 3h € H,|Ls(h) — Lp(h)| > €})
= Y. D"{S | ILs(h) — Lo(h)| > ¢}).

heH

14 /17
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Next phase: each term of the right side of previous inequality
Y ohen DTS | |Ls(h) — Lp(h)| > €}) is small enough (for large

m).

m Let 0; be the random variable 6; = ¢(h, s;). Since h is fixed
and and s1,..., sy, are iid random variables, it follows that
01,...,0, are also iid random variables.

mE(01)=-=E(0m) = p.

m Range of £ is [0, 1] and therefore, the range of 6; is [0, 1].

m Each term D™({S | |Ls(h) — Lp(h)| > €}) is small enough
for large m.

m We have:

1 m
Ls(h) = — > 6 and Lp(h) = p.
i=1
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By Hoeffding's Inequality,
D™({S | ILs(h) = Lp(h)[ > €})
1 m
= P (‘m;@'—u’ > 6)
< Z 2e—2me2

heH
< 2(H[e 2

To have D™({S | |Ls(h) — Lp(h)| > €}) < & we need
2|H|e~2m* < §, which is equivalent to

log(2|H|/0)
m > 2¢2
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A Corollary

Recall that the ERM algorithm returns a hypothesis h such that for
which Lg(h) is minimal.

Corollary

Let H be a finite hypothesis class, let Z be a domain, and
0:H x Z—0,1] be a loss function. Then H enjoys the uniform
convergence property with sample complexity

log Gl
m'l;_JlC(e,(S) = |'2—62 .

Furthermore, the class is agnostically PAC learnable using the ERM
algorithm with sample complexity;

e 8) < mi(e/2,6) < | 25T
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