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Learning via Uniform Convergence

Uniform Convergence

Reminder

For agnostic learning the generalization error is:

LD(h) = D({(x , y) | h(x) 6= y}).

The empirical risk is:

LS(h) =
|{i | h(xi ) 6= yi for 1 6 i 6 m}|

m
.
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Learning via Uniform Convergence

Uniform Convergence

Definition

Let H be a hypothesis class, and let D be a distribution. A
training set S is ε-representative with respect to the above
elements, if the absolute value of the difference between the
empirical risk and the generalization error is less than ε,

|LS(h)− LD(h)| 6 ε.

for all h ∈ H.

Equivalently,
LS(h)− ε 6 LD(h) 6 LS(h) + ε.
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Learning via Uniform Convergence

Uniform Convergence

Definition

Let H be a class of hypotheses. A ERM predictor for H is a
hypothsis g such that its empirical risk LS(g) is minimal, that is,
LS(g) 6 LS(h) for every sample S and hypothesis h ∈ H.
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Learning via Uniform Convergence

Uniform Convergence

The next lemma stipulates that when the sample is
ε
2 -representative, the ERM learning rule applied to a sample S is
guaranteed to return a good hypothesis hS .

Lemma

Assume that a training set S is ε
2 -representative, that is,

|LS(h)− LD(h)| 6 ε
2 . Then, any hS that minimizes the empirical

risk
hS ∈ argminh∈HLS(h)

satisfies
LD(hS) 6 min

h∈H
LD(h) + ε.
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Learning via Uniform Convergence

Uniform Convergence

Proof

For every h ∈ H we have

LD(hS) 6 LS(hS) +
ε

2
(by the ε

2 -representativeness of S to hS)

6 LS(h) +
ε

2
(because hS is an ERM predictor, hence LS(hS) 6 LS(h))

6 LD(h) +
ε

2
+
ε

2
(because S is ε

2 -representative, so LS(h) 6 LD(h) + ε
2)

6 LD(h) + ε.

Thus, to ensure that the ERM rule is an agnostic PAC learner, it
suffices to show that with probability of at least 1− δ over the
random choice of a training set, it will be an ε-represeentative
training set. 7 / 17



Learning via Uniform Convergence

Uniform Convergence

Generalized Loss Functions

Definition

Given a hypothesis set H and some domain Z let
` : H× Z −→ R>0 be a loss function.
The risk function is the expected loss of a classifier h ∈ H given by

LD(h) = Ez∼D [`(h, z)].

The empirical risk for S = {s1, . . . , sm} is

LS(h) =
1

m

m∑
i=1

`(h, si ).
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Learning via Uniform Convergence

Uniform Convergence

Definition

A hypothesis class H has the uniform convergence property
(relative to a domain Z and a loss function `) if there exists a
function mUC : (0, 1)2 −→ N (the same for all hypotheses in H and
all probability distributions D) such that for every ε, δ ∈ (0, 1) if S
is a sample of size m, where m > mUC(ε, δ), then with probability
at least 1− δ, S is ε-representative.

The term uniform refers to the fact that mUC(ε, δ) is the same for
all hypotheses in H and all probability distributions D.
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Learning via Uniform Convergence

Uniform Convergence

REMINDER: Agnostic PAC Learning

The realizability assumption (the existence of a hypothesis
h∗ ∈ H such that Px∼D(h∗(x) = f (x)) = 1 ) is not realistic in
many cases.

Agnostic learning replaces the realizability assumption and the
targeted labeling function f , with a distribution D defined on
pairs (data, labels), that is, with a distribution D on X × Y.

Since D is defined over X × Y, the the generalization error is

LD(h) = D({(x , y) | h(x) 6= y}).
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Learning via Uniform Convergence

Uniform Convergence

Theorem

If a class H has the uniform convergence property with a function
mUC, then the class H is agnostically PAC learnable with the
sample complexity

mH(ε, δ) 6 mUC(ε/2, δ).

Furthermore, in this case, the ERMH paradigm is a successful
agnostic learner for H.

11 / 17



Learning via Uniform Convergence

Uniform Convergence

Proof

Suppose that H has the uniform convergence property with a
function mUC.
For every ε, δ ∈ (0, 1) if S is a sample of size m, where
m > mUC(ε/2, δ), then with probability at least 1− δ, S is
ε/2-representative, which means that for all h ∈ H we have:

LD(h) 6 LS(h) + ε/2.

By the definition of hS we have:

LD(hS) 6 min
h∈H

LD(h) + ε/2

6 min
h∈H

LD(h) + ε,

hence H is agnostically PAC-learnable with
mH(ε, δ) = mUC(ε/2, δ).
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Learning via Uniform Convergence

Finite Classes are Agostically PAC-learnable

Theorem

Uniform convergence holds for a finite hypothesis class.

Proof: Fix ε, δ ∈ (0, 1).

We need a sample S = {s1, . . . , sm} of size m that guarantees
that for any D with probability at least 1− δ we have that

|LS(h)− LD(h)| 6 ε

for all h ∈ H (that is, S is a representative sample).

Equivalently,

Dm({S | ∃h ∈ H, |LS(h)− LD(h)| > ε}) < δ.

Note that:

{S | ∃h ∈ H, |LS(h)−LD(h)| > ε} =
⋃
h∈H
{S | |LS(h)−LD(h)| > ε}
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Learning via Uniform Convergence

Finite Classes are Agostically PAC-learnable

This implies

Dm({S | ∃h ∈ H, |LS(h)− LD(h)| > ε})
=

∑
h∈H
Dm({S | |LS(h)− LD(h)| > ε}).

14 / 17



Learning via Uniform Convergence

Finite Classes are Agostically PAC-learnable

Next phase: each term of the right side of previous inequality∑
h∈HDm({S | |LS(h)− LD(h)| > ε}) is small enough (for large

m).

Let θi be the random variable θi = `(h, si ). Since h is fixed
and and s1, . . . , sm are iid random variables, it follows that
θ1, . . . , θm are also iid random variables.

E (θ1) = · · · = E (θm) = µ.

Range of ` is [0, 1] and therefore, the range of θi is [0, 1].

Each term Dm({S | |LS(h)− LD(h)| > ε}) is small enough
for large m.

We have:

LS(h) =
1

m

m∑
i=1

θi and LD(h) = µ.
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Finite Classes are Agostically PAC-learnable

By Hoeffding’s Inequality,

Dm({S | |LS(h)− LD(h)| > ε})

= P

(∣∣∣ 1

m

m∑
i=1

θi − µ
∣∣∣ > ε

)
6

∑
h∈H

2e−2mε2

6 2|H|e−2mε2 .

To have Dm({S | |LS(h)− LD(h)| > ε}) 6 δ we need
2|H|e−2mε2 6 δ, which is equivalent to

m >
log(2|H|/δ)

2ε2
.
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Finite Classes are Agostically PAC-learnable

A Corollary

Recall that the ERM algorithm returns a hypothesis h such that for
which LS(h) is minimal.

Corollary

Let H be a finite hypothesis class, let Z be a domain, and
` : H× Z −→ [0, 1] be a loss function. Then H enjoys the uniform
convergence property with sample complexity

mUC
H (ε, δ) =

⌈
log 2|H|

δ

2ε2

⌉
.

Furthermore, the class is agnostically PAC learnable using the ERM
algorithm with sample complexity;

mH(ε, δ) 6 mUC
H (ε/2, δ) 6

⌈
2 log 2|H|

δ

ε2

⌉
.
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