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m If K is event such that P(K) = p, 1 is a random variable

1 if K takes place
1 = .
0 otherwise.

0 1
1x: (1_p p)
and E(1x) = p.
m If X is a random variable
X (Xl Xn)’
p1 - Pn
then X = "7 ; xilx—x, where

0 1
]-X:x,- : (1 — D: D:) . 3/26

m If P(K) = p, then
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First Lemma

Lemma

Let Z be a random variable that takes values in [0, 1] such that
E[Z] = p. Then, for every a € (0,1) we have

—a
1—

il%Zﬁzmdmz>aﬁ>

=

L

Proof: The random variable Y = 1 — Z is non-negative with
E(Y)=1-E(Z)=1— pu. By Markov's inequality:
E(Y) 1—-np

P(zg1—3):P(1—Z>a):P(Y>a)<TZ 3

Therefore,
1—p a+p—-1 p—(1-a)

P(Z>1—a)>1— =
a a a
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Proof (cont'd)

By replacing a by 1 — a we have:

=
L

P(Z > a) >

= | — a.
l—a’ua
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Second Lemma

Lemma

Let 0 be a random variable that ranges in the interval [0, 1] such
that E(0) > %. We have

1 1
— > =
P<0>8)/7

Proof: From the second inequality of the previous lemma it

follows that E(6)
—a
P(6 > —
(0 > a) T 3
By substituting a = % we obtain:
1, -1 1
PO>-)>2+-8 =",
8’ 1-% 7 o /26
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m A learning task is defined by an unknown probability
distribution D over X x ).

m The goal of the learner is to find (to learn) a hypothesis
h: X — Y such that its risk Lp(h) is sufficiently small.

m The choice of a hypothesis class H reflects some prior
knowledge that the learner has about the task: a belief that a
member of H is a low-error model for the task.

m Fundamental Question: There exist a universal learner A and
a training set size m such that for every distribution D, if A
receives m iid examples from D, there is a high probability
that A will produce h with a low risk?
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m The No-Free-Lunch (NFL) Theorem stipulates that a
universal learner (for every distribution) does not exist!

m A learner fails if, upon receiving a sequence of iid examples
from a distribution D, its output hypothesis is likely to have a
large loss (say, larger than 0.3), whereas for the same
distribution there exists another learner that will output a
hypothesis with a small loss.

m More precise statement: for every binary prediction task and
learner, there exists a distribution D for which the learning
task fails.

m No learner can succeed on all learning tasks: every learner has
tasks on which it fails whereas other learners succeed.

9/26



The No-Free-Lunch Theorem
LThe No-Free-Lunch Theorem

The 0/1-loss function is the function /y/; defined as

0 if h(x) =y,

lor(h (x.y)) = {1 if h(x) # .
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The NFL Theorem

For a learning algorithm A denote by A(S) the hypothesis returned
by the algorithm A upon receiving the training sequence S.

Theorem

Let A be any learning algorithm for the task of binary classification
with respect to the 0/1-loss function over an infinite domain X
and let m is a number representing a training set size.

There exists a distribution D over X x {0,1} such that:

m there exists a function f : X — {0, 1} with Lp(f) = 0;

m with probability at least 1/7 over the choice of a sample S of

size m there exists a hypothesis h = A(S) such that we have
Lp(h) > 1/8.
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Interpretation of the NFL Theorem

For every learner, there us a task for which it fails, even though the
task can be successfully learned by another learner.
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Proof

Let C be a subset of X" of size at least 2m; this set exists because
we assume that X is infinite.

Intuition of the proof: any algorithm that observes only m of the
instances of C has no information of what should be the labels of
the remaining examples. Therefore, there exists a target function f
which would contradict the labels that h = A(S) predicts on the
unobserved instances of C.
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Note that:

m If |C| = 2m, then there are T = 22™ possible functions from
C to {O, 1} fi,..., fr.
m The set C x {0, 1} consists of the pairs

C % {0,1} = {(x1,0), (x1, 1), - .., (xom; 0), (x2m, 1)}

For each f; let D; be the distribution over C x {0,1} given by

Di({(x )} = {é =1

otherwise.

The probability to choose a pair (x, y) is el | if y is the true label
according to f; and 0, otherwise (if y # fi(x)). Clearly Lp,(f;) = 0.
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Let m=3, C = {x1,x2, X3, Xa, X5, X6 } -
Suppose that

f(Xl) = ].7 f(XQ) = 07 f(X3) = l, f(X4) = ]., f(X5) = ]., f(Xs) =0.
The distribution D; is:

(X1,0) (X2’0) (X3’0) (X4’0) (X5?O) (Xﬁvo)

0 : 0 0 0 z
(le 1) (X2’ 1) (X?n 1) (X4’ 1) (X5? 1) (Xﬁv 1)

1 1 1 1

6 0 6 6 6 0.

We have:
Lp,(f) = P({(x.y) | f(x) #y})=0.
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Claim (*):
For every algorithm A that receives a training set S of m examples
from C x {0,1} and returns a function A(S): C — {0,1} we

have: )
Es.pm(Lp,(A(S))) = -.
ymax Es~p (Lp,(A(5))) =
This means that for every algorithm A’ that receives a training set
S of m examples from X x {0,1} and returns h = A'(S), there
exists f : X — {0,1} and a distribution D over X" x {0, 1} such

that

SIS

Lp(f) =0 and ESNDm(LD(h,)) >
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Index j refers to samples while / refers to hypotheses.
m There are k = (2m)™ possible sequences (samples) of size m

Si,.... S

from C, where |C| =2m.
m If S =(x1,...,xm), the sequence labeled by a function f; is

S = (G, fi(x1)), - (xm, Fixim))).

m If the distribution is D;, then the possible training sets that A
can receive are S}, .. .,5,’; and all these training sets have the
same probability of being sampled. Therefore, the expected
error of the sample S is:

Espm(Lp,(A Z Lp,(A(S}))
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Notation:

If E is a Boolean expression denote by 1g the indicator function of
E, which is 1 if E is true and 0 if E is false.
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Recall that there are T = 22™ possible functions from C to {0,1}:

fi,..., fr.
We have:

max — Z Lp,( .A(S

1<i<T k
> lZEZLD-(.AS’
T &k &P
i=1 j=1
T
= kz Z:
-
> min 7 X ta A
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Index j refers to samples while / refers to hypotheses.

Fix some j and let S; = {x1,...,Xm}.

Let {v, | 1 < r < p} be the examples in C that do not appear in
S;. Clearly, p > m.

Therefore, for each h: C — {0,1} and every i we have:

1 1 <
Lo(h) = 53 Laazaca = 5 2 Tn#a(un)
xeC r=1
1 p
> 3 Lyysncn):
2p rz_; h( r)7éfl( r)
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1~ 1<

> 2 > L))
i=1 r=1

1 1

% > Z Lacsiyv#hi(w)
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Index j refers to samples while / refers to hypotheses.

Let v, be an example in C that does not appear in a sample S;.
We can partition all functions in {f1,..., fr} into T /2 disjoint sets
{f;, fir} such that we have

fi(c) # fu(c) if and only if ¢ = v,.
Since for a set {f;, fy} we must have SJ’ = SJ’/ it follows that
Las)n#ate) T Las )z =1
which implies

1 < 1
T ; Lasiunzin) = 5
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Index j refers to samples while / refers to hypotheses.

Since
T Z Lo (A(3] E min T Z LA v (v0)
and ;
1 1
F 2 LS4 = 5
i=1
we have

= Z Lp, (A(S])

> \
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Thus,

k T
1 i . 1 i
1% 2 LA 2 min 7 3 Lo AS))
implies

max —ZLD
1<i<T k

4>\ =
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We combined

-
1 i 1
T Z LD;(A(S_/')) > E <p T Z lA(S D(ve)#fi(vr)

:
121X;ZLD A > i 73 Lo

k
1 i
Espm(Lp,(A(S))) = ;ZLD,-(A(SJ))
=1
1
T2 lashnsim) = 5
i—1
to obtain: )
max Es~or(Lp,(A(S)) = ;-
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Thus, the Claim (*) is justified.

This means that for every algorithm A’ that receives a training set
of m examples from X x {0,1} there exists a distribution D over
X x{0,1} and a function f : X — {0, 1} such that

LD(f) =0 and ESNDm(LD(A/(S))) =

ENg

By the second Lemma this implies:

P <LD(A’(S)) > 8) >
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