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The No-Free-Lunch Theorem

Preliminaries

Reminder

If K is event such that P(K ) = p, 1K is a random variable

1K =

{
1 if K takes place

0 otherwise.

If P(K ) = p, then

1K :

(
0 1

1− p p

)
and E (1K ) = p.
If X is a random variable

X :

(
x1 · · · xn
p1 · · · pn

)
,

then X =
∑n

i=1 xi1X=xi , where

1X=xi :

(
0 1

1− pi pi

)
.
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Preliminaries

First Lemma

Lemma

Let Z be a random variable that takes values in [0, 1] such that
E [Z ] = µ. Then, for every a ∈ (0, 1) we have

P(Z > 1− a) >
µ− (1− a)

a
and P(Z > a) >

µ− a

1− a
> µ− a.

Proof: The random variable Y = 1− Z is non-negative with
E (Y ) = 1− E (Z ) = 1− µ. By Markov’s inequality:

P(Z 6 1− a) = P(1− Z > a) = P(Y > a) 6
E (Y )

a
=

1− µ
a

.

Therefore,

P(Z > 1− a) > 1− 1− µ
a

=
a + µ− 1

a
=
µ− (1− a)

a
.
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Preliminaries

Proof (cont’d)

By replacing a by 1− a we have:

P(Z > a) >
µ− a

1− a
> µ− a.
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Preliminaries

Second Lemma

Lemma

Let θ be a random variable that ranges in the interval [0, 1] such
that E (θ) > 1

4 . We have

P

(
θ >

1

8

)
>

1

7
.

Proof: From the second inequality of the previous lemma it
follows that

P(θ > a) >
E (θ)− a

1− a
.

By substituting a = 1
8 we obtain:

P(θ >
1

8
) >

1
4 −

1
8

1− 1
8

=
1

7
.
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0 11
8

1
4

E (θ)

P(θ > 1
8) > 1

7
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The No-Free-Lunch Theorem

A learning task is defined by an unknown probability
distribution D over X × Y.

The goal of the learner is to find (to learn) a hypothesis
h : X −→ Y such that its risk LD(h) is sufficiently small.

The choice of a hypothesis class H reflects some prior
knowledge that the learner has about the task: a belief that a
member of H is a low-error model for the task.

Fundamental Question: There exist a universal learner A and
a training set size m such that for every distribution D, if A
receives m iid examples from D, there is a high probability
that A will produce h with a low risk?
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The No-Free-Lunch Theorem

The No-Free-Lunch (NFL) Theorem stipulates that a
universal learner (for every distribution) does not exist!

A learner fails if, upon receiving a sequence of iid examples
from a distribution D, its output hypothesis is likely to have a
large loss (say, larger than 0.3), whereas for the same
distribution there exists another learner that will output a
hypothesis with a small loss.

More precise statement: for every binary prediction task and
learner, there exists a distribution D for which the learning
task fails.

No learner can succeed on all learning tasks: every learner has
tasks on which it fails whereas other learners succeed.

9 / 26



The No-Free-Lunch Theorem

The No-Free-Lunch Theorem

Recall 0/1 Loss Function

The 0/1-loss function is the function `0/1 defined as

`0/1(h, (x , y)) =

{
0 if h(x) = y ,

1 if h(x) 6= y .
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The No-Free-Lunch Theorem

The NFL Theorem

For a learning algorithm A denote by A(S) the hypothesis returned
by the algorithm A upon receiving the training sequence S .

Theorem

Let A be any learning algorithm for the task of binary classification
with respect to the 0/1-loss function over an infinite domain X
and let m is a number representing a training set size.
There exists a distribution D over X × {0, 1} such that:

there exists a function f : X −→ {0, 1} with LD(f ) = 0;

with probability at least 1/7 over the choice of a sample S of
size m there exists a hypothesis h = A(S) such that we have
LD(h) > 1/8.
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The No-Free-Lunch Theorem

Interpretation of the NFL Theorem

For every learner, there us a task for which it fails, even though the
task can be successfully learned by another learner.
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The No-Free-Lunch Theorem

Proof

Let C be a subset of X of size at least 2m; this set exists because
we assume that X is infinite.
Intuition of the proof: any algorithm that observes only m of the
instances of C has no information of what should be the labels of
the remaining examples. Therefore, there exists a target function f
which would contradict the labels that h = A(S) predicts on the
unobserved instances of C .
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The No-Free-Lunch Theorem

Note that:

If |C | = 2m, then there are T = 22m possible functions from
C to {0, 1}: f1, . . . , fT .

The set C × {0, 1} consists of the pairs

C × {0, 1} = {(x1, 0), (x1, 1), . . . , (x2m, 0), (x2m, 1)}

For each fi let Di be the distribution over C × {0, 1} given by

Di ({(x , y)}} =

{
1
|C | if y = fi (x)

0 otherwise.

The probability to choose a pair (x , y) is 1
|C | if y is the true label

according to fi and 0, otherwise (if y 6= fi (x)). Clearly LDi
(fi ) = 0.
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The No-Free-Lunch Theorem

Intuition

Let m = 3, C = {x1, x2, x3, x4, x5, x6}.
Suppose that

f (x1) = 1, f (x2) = 0, f (x3) = 1, f (x4) = 1, f (x5) = 1, f (x6) = 0.

The distribution Di is:

(x1, 0) (x2, 0) (x3, 0) (x4, 0) (x5, 0) (x6, 0)
0 1

6 0 0 0 1
6

(x1, 1) (x2, 1) (x3, 1) (x4, 1) (x5, 1) (x6, 1)
1
6 0 1

6
1
6

1
6 0.

We have:
LDi

(f ) = P({(x , y) | f (x) 6= y}) = 0.

15 / 26



The No-Free-Lunch Theorem

The No-Free-Lunch Theorem

Claim (*):
For every algorithm A that receives a training set S of m examples
from C × {0, 1} and returns a function A(S) : C −→ {0, 1} we
have:

max
16i6|T |

ES∼Dm(LDi
(A(S))) >

1

4
.

This means that for every algorithm A′ that receives a training set
S of m examples from X × {0, 1} and returns h′ = A′(S), there
exists f : X −→ {0, 1} and a distribution D over X × {0, 1} such
that

LD(f ) = 0 and ES∼Dm(LD(h′)) >
1

4
.
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The No-Free-Lunch Theorem

Index j refers to samples while i refers to hypotheses.

There are k = (2m)m possible sequences (samples) of size m

S1, . . . ,Sk

from C , where |C | = 2m.

If Sj = (x1, . . . , xm), the sequence labeled by a function fi is

S i
j = ((x1, fi (x1)), . . . , (xm, fi (xm))).

If the distribution is Di , then the possible training sets that A
can receive are S i

1, . . . ,S
i
k and all these training sets have the

same probability of being sampled. Therefore, the expected
error of the sample S is:

ES∼Dm(LDi
(A(S)) =

1

k

k∑
j=1

LDi
(A(S i

j )).
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The No-Free-Lunch Theorem

Notation:

If E is a Boolean expression denote by 1E the indicator function of
E , which is 1 if E is true and 0 if E is false.
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Recall that there are T = 22m possible functions from C to {0, 1}:
f1, . . . , fT .
We have:

max
16i6T

1

k

k∑
j=1

LDi
(A(S i

j ))

>
1

T

T∑
i=1

1

k

k∑
j=1

LDi
(A(S i

j ))

=
1

k

k∑
j=1

1

T

T∑
i=1

LDi
(A(S i

j ))

> min
16j6k

1

T

T∑
i=1

LDi
(A(S i

j )).
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Index j refers to samples while i refers to hypotheses.
Fix some j and let Sj = {x1, . . . , xm}.
Let {vr | 1 6 r 6 p} be the examples in C that do not appear in
Sj . Clearly, p > m.
Therefore, for each h : C −→ {0, 1} and every i we have:

LDi
(h) =

1

2m

∑
x∈C

1h(x) 6=fi (x) >
1

2m

p∑
r=1

1h(vr )6=fi (vr )

>
1

2p

p∑
r=1

1h(vr )6=fi (vr ).
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Hence,

1

T

T∑
i=1

LDi
(A(S i

j )) >
1

T

T∑
i=1

1

2p

p∑
r=1

1A(S i
j )(vr ) 6=fi (vr )

=
1

2p

p∑
r=1

1

T

T∑
i=1

1A(S i
j )(vr ) 6=fi (vr )

>
1

2
min

16t6p

1

T

T∑
i=1

1A(S i
j )(vr )6=fi (vr )

.
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The No-Free-Lunch Theorem

Index j refers to samples while i refers to hypotheses.
Let vr be an example in C that does not appear in a sample Sj .
We can partition all functions in {f1, . . . , fT} into T/2 disjoint sets
{fi , fi ′} such that we have

fi (c) 6= fi ′(c) if and only if c = vr .

Since for a set {fi , fi ′} we must have S i
j = S i ′

j , it follows that

1A(S i
j )(vr ) 6=fi (vr )

+ 1A(S i′
j )(vr )6=fi′ (vr )

= 1,

which implies

1

T

T∑
i=1

1A(S i
j )(vr )6=fi (vr )

=
1

2
.
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The No-Free-Lunch Theorem

Index j refers to samples while i refers to hypotheses.
Since

1

T

T∑
i=1

LDi
(A(S i

j )) >
1

2
min

16t6p

1

T

T∑
i=1

1A(S i
j )(vr )6=fi (vr )

and

1

T

T∑
i=1

1A(S i
j (vr ) 6=fi (vr )

=
1

2
,

we have

1

T

T∑
i=1

LDi
(A(S i

j ) >
1

4
.
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The No-Free-Lunch Theorem

Thus,

max
16i6T

1

k

k∑
j=1

LDi
(A(S i

j )) > min
16j6k

1

T

T∑
i=1

LDi
(A(S i

j ))

implies

max
16i6T

1

k

k∑
j=1

LDi
(A(S i

j )) >
1

4
.
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We combined

1

T

T∑
i=1

LDi
(A(S i

j )) >
1

2
min

16t6p

1

T

T∑
i=1

1A(S i
j )(vr ) 6=fi (vr )

max
16i6T

1

k

k∑
j=1

LDi
(A(S i

j )) > min
16j6k

1

T

T∑
i=1

LDi
(A(S i

j ))

ES∼Dm(LDi
(A(S))) =

1

k

k∑
j=1

LDi
(A(S i

j ))

1

T

T∑
i=1

1A(S i
j )(vr )6=fi (vr )

=
1

2

to obtain:

max
16i6T

ES∼Dm
i

(LDi
(A(S)) >

1

4
.
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The No-Free-Lunch Theorem

Thus, the Claim (*) is justified.
This means that for every algorithm A′ that receives a training set
of m examples from X × {0, 1} there exists a distribution D over
X × {0, 1} and a function f : X −→ {0, 1} such that

LD(f ) = 0 and ES∼Dm(LD(A′(S))) >
1

4
.

By the second Lemma this implies:

P

(
LD(A′(S)) >

1

8

)
>

1

7
.
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