
Finite Automata and Regular Languages
(part V)

Prof. Dan A. Simovici

UMB

1 / 34

Outline

1 Kleene’s Theorem

2 The Pumping Lemma

3 Applications of Pumping Lemma

2 / 34

Kleene’s Theorem

Theorem

The language L(M) accepted by a dfa M can be constructed starting from
finite languages by using union, product, and ∗ (also known as Kleene
closure).

3 / 34

Kleene’s Theorem

Proof

Let M = (A, {q0, . . . , qn−1}, δ, q0,F) be a dfa that has n states.
Define the language Rk

ij to consist of those words x ∈ A∗ that take M

from state qi to state qj without passing through any state q` with ` ≥ k .
Rk
ij comprises those words x ∈ A∗ such that δ∗(qi , x) = qj , and for every

proper prefix u of x , the automaton is in an intermediate state
δ∗(qi , u) ∈ {q0, . . . , qk−1}.

4 / 34

Kleene’s Theorem

Proof cont’d

R0
ij is the finite language

R0
ij =

{
{a ∈ A | δ(qi , a) = qj} if i 6= j ,
{λ} ∪ {a ∈ A | δ(qi , a) = qi} if i = j .

Note that no intermediate states are allowed (k = 0).

5 / 34

Kleene’s Theorem

Proof cont’d

To reach qj starting from qi , allowing only q0, . . . , qk−1 as intermediate
states presents two choices:

either the automaton avoids qk−1 entirely (which corresponds to a
word in Rk−1

ij), or

the automaton goes from qi to the first use of qk−1 (along a string in
Rk−1
ik−1); it then may revisit qk−1 zero or more times (each time along

a string in Rk−1
k−1k−1), and finally, it goes from the last use of qk−1 to

qj (along a string in Rk−1
k−1j).

This implies
Rk
ij = Rk−1

ij ∪ Rk−1
ik−1(Rk−1

k−1k−1)∗Rk−1
k−1j . (1)

This can be regarded as a recursive definition of the set Rk
ij .

6 / 34

Kleene’s Theorem

In formula
Rk
ij = Rk−1

ij ∪ Rk−1
ik−1(Rk−1

k−1k−1)∗Rk−1
k−1j ,

the following intermediate states are permitted:

Rk
ij : q0, . . . , qk−1 between qi and qj ;

Rk−1
ij : q0, . . . , qk−2 between qi and qj ;

Rk−1
ik−1 : q0, . . . , qk−2 between qi and qk−1

Rk−1
k−1 k−1 : q0, . . . , qk−2 from qk−1 back to qk−1;

Rk−1
k−1j : q0, . . . , qk−2 from qk−1 to qj .

7 / 34

Kleene’s Theorem

Proof cont’d

If the set of final states is F = {qi0 , . . . , qim−1}, then the language
accepted by M is

L(M) = Rn
0i0 ∪ · · · ∪ Rn

0im−1
,

since every state is allowed as an intermediate state. Thus, L(M) can be
indeed constructed starting from the finite languages R0

ij , using union,
product and Kleene closure.

8 / 34

Kleene’s Theorem

An Example

Consider the dfa:

s-
se

s
>

~
6q0

q2

q1

b

a

a

��
��

��
��

�b

�
b

=a

We have:
R1
ij = R0

ij ∪ R0
i0(R0

00)∗R0
0j ,

R2
ij = R1

ij ∪ R1
i1(R1

11)∗R1
1j ,

R3
ij = R2

ij ∪ R2
i2(R2

22)∗R2
2j .

9 / 34

Kleene’s Theorem

We have:
R1
ij = R0

ij ∪ R0
i0(R0

00)∗R0
0j ,

R2
ij = R1

ij ∪ R1
i1(R1

11)∗R1
1j ,

R3
ij = R2

ij ∪ R2
i2(R2

22)∗R2
2j .

l

10 / 34

Kleene’s Theorem

Example (cont’d)

R0
00 = {λ}, R0

01 = a R0
02 = b

R0
10 = ∅ R0

11 = {λ, b} R0
12 = a

R0
20 = a R0

21 = ∅ R0
22 = {λ, b}.

11 / 34

Kleene’s Theorem

R1
00 = R0

00 ∪ R0
00(R0

00)∗R0
00,

= λ,

R1
01 = R0

01 ∪ R0
00(R0

00)∗R0
01,

= a,

R1
02 = R0

02 ∪ R0
00(R0

00)∗R0
02,

= b,

12 / 34

Kleene’s Theorem

R1
10 = R0

10 ∪ R0
10(R0

00)∗R0
00,

= ∅,
R1
11 = R0

11 ∪ R0
10(R0

00)∗R0
01,

= {λ, b}
R1
12 = R0

12 ∪ R0
10(R0

00)∗R0
02,

= a,

13 / 34

Kleene’s Theorem

R1
20 = R0

20 ∪ R0
20(R0

00)∗R0
00,

= a,

R1
21 = R0

21 ∪ R0
20(R0

00)∗R0
01,

= aa,

R1
22 = R0

22 ∪ R0
20(R0

00)∗R0
02,

= {λ, b, ab}.

Note that we used the fact that ∅∗ = {λ}.

14 / 34

Kleene’s Theorem

R2
00 = R1

00 ∪ R1
01(R1

11)∗R1
10,

= ∅,
R2
01 = R1

01 ∪ R1
01(R1

11)∗R1
11,

= a ∪ a{λ, b}+ = ab∗,

R2
02 = R1

02 ∪ R1
01(R1

11)∗R1
12,

= b ∪ a{λ, b}∗a = b ∪ ab∗a,

15 / 34

Kleene’s Theorem

R2
10 = R1

10 ∪ R1
11(R1

11)∗R1
10,

= ∅,
R2
11 = R1

11 ∪ R1
11(R1

11)∗R1
11,

= b∗,

R2
12 = R1

12 ∪ R1
11(R1

11)∗R1
12,

= b∗a,

16 / 34

Kleene’s Theorem

R2
20 = R1

20 ∪ R1
21(R1

11)∗R1
10,

= a,

R2
21 = R1

21 ∪ R1
21(R1

11)∗R1
11,

= aa ∪ aab∗ = aab∗,

R2
22 = R1

22 ∪ R1
21(R1

11)∗R1
12,

= {λ, b, ab} ∪ aab∗a,

17 / 34

Kleene’s Theorem

Finally,

R3
02 = R2

02 ∪ R2
02(R2

22)∗R2
22.

= (b ∪ ab∗a){λ, b, ab} ∪ aab∗a)+.

18 / 34

Kleene’s Theorem

Theorem

Kleene’s Theorem The class R of regular languages is the least class of
languages that contains the class of finite languages and is closed with
respect to union, product and Kleene closure.

Proof.

Closure properties previously discussed imply that the class R contains the
class of finite languages and is closed with respect to union, product, and
Kleene closure, respectively.

19 / 34

Kleene’s Theorem

Proof cont’d

Let R′ be an arbitrary class of languages that contains the class of finite
languages and is closed with respect to union, product and Kleene closure.
If L ∈ R, the previous theorem implies that L ∈ R′, so R ⊆ R′.

20 / 34

The Pumping Lemma

The main focus of this section is a powerful tool for proving that certain
languages are not regular. Although traditionally named the Pumping
Lemma, we state it as a theorem to reflect its importance.

Theorem

If L is a regular language, then there exists a number n0 ∈ P such that if
x ∈ L and |x | ≥ n0, then x can be written as x = uvw such that v 6= λ,
|uv | ≤ n0, and uvnw ∈ L for every n ∈ N.

21 / 34

The Pumping Lemma

Proof

Since L is a regular language there exists a deterministic finite automaton
M = (A,Q, δ, q0,F) such that L = L(M). Choose n0 = |Q|, and let
x = a0 . . . a`−1 be a word of length `, where ` ≥ n0.
Consider the sequence of states (q0, q1, . . . , q`), where qi = δ(qi−1, ai−1)
for 1 ≤ i ≤ `. This sequence is of length `+ 1 > n0, so at least two of
these states must coincide. Pick k to be the position of the first repeated
state and let qj be its first occurrence.

22 / 34

The Pumping Lemma

Proof cont’d

Let u = a0a1 · · · aj−1, v = aj · · · ak−1, and w = ak · · · a`−1. Then,
qj = δ∗(q0, u) = δ∗(q0, uv) = qk . Consequently, δ∗(qj , v) = qk = qj .
Since δ∗(qk ,w) = q` ∈ F , we have δ∗(qj ,w) = q` ∈ F , so
δ∗(q0, uw) = q` ∈ F , and uw ∈ L.
By a simple induction, we can prove that δ∗(qj , v

n) = qj for all n ∈ N, so
δ∗(q0, uv

nw) = δ∗(qj , v
nw) = δ∗(qj ,w) = q` ∈ F . Hence, uvnw ∈ L for

all n ∈ N.
By the selection of k , 0 ≤ j < k ≤ n0, which implies |v | = k − j > 0, that
is v 6= λ, and also that |uv | ≤ n0.

23 / 34

The Pumping Lemma

We refer to a number n0 whose existence is established by the Pumping
Lemma as a pumping threshold for the language L.

24 / 34

The Pumping Lemma

Decidable Problems

One of most interesting areas of study of twentieth century mathematics is
the area of “decidability”. In this section, we approach decidability
informally. Specifically, we say that a question is decidable when there is
an effective procedure that always accurately answers the question, either
yes or no. The notion of “effective procedure” may be made explicit using
computer programs with unlimited resources or other computing models.

25 / 34

The Pumping Lemma

Example

If A is an alphabet, L ⊆ A∗ is a regular language, and x ∈ A∗ is a word,
then it is decidable whether x ∈ L. Indeed, in order to decide this problem
it suffices to write the word x on the input tape of a dfa M that accepts L
and determine if the state q of M is a final state. If this is the case, x ∈ L;
otherwise x 6∈ L.

26 / 34

The Pumping Lemma

Theorem

It is decidable whether a regular language is empty.

Proof.

Let L be a regular language, and let n0 be a pumping threshold for L. We
claim that if L 6= ∅, then there is a word z in L such that |z | < n0. Clearly,
if such a word exists in L, then L 6= ∅. Suppose that L 6= ∅. Then, let x be
a word in L having minimal length. If |x | ≥ n0, then, by the Pumping
Lemma, we can write x = uvw with |v | > 0 and uvnw ∈ L for every
n ∈ N. Taking n = 0, we obtain that uw ∈ L. The inequality |uw | < |x |,
contradicts the minimality of x . Therefore, L must contain a word shorter
than n0.
The previous argument shows that in order to decide whether a regular
language L is empty it is sufficient to test whether any word x ∈ A∗ with
|x | < n0 belongs to L. This implies the decidability result.

27 / 34

The Pumping Lemma

Theorem

It is decidable whether a regular language is infinite.

Proof.

Let L be a regular language. We prove that L is infinite if and only if it
contains a word x such that n0 ≤ |x | < 2n0, where n0 a pumping threshold
for L.
Suppose that the language L is infinite. Then, there exists a word y ∈ L
such that |y | ≥ 2n0. Suppose that y is one of the shortest such words. By
the Pumping Lemma we can write y = uvw with v 6= λ, |v | ≤ n0 and
uvnw ∈ L for every n ∈ N. Therefore, taking n = 0, we obtain
y ′ = uw ∈ L. Note that n0 ≤ |y ′| = |y | − |v | < |y |. Since y was supposed
to be a shortest word in L such that |y | ≥ 2n0 we obtain n0 ≤ |y ′| < 2n0.
Conversely, if L contains a word y with n0 ≤ |y | < 2n0 it is obvious, by the
Pumping Lemma, that L is infinite. Therefore, in order to determine if L is
infinite it is sufficient to examine the finite set
Lf = {x ∈ L | n0 ≤ |x | < 2n0}. L is infinite if and only if Lf 6= ∅.

28 / 34

Applications of Pumping Lemma

Example

The language L = {ambm | m ∈ N} is not regular.
To justify this claim, suppose that L is regular, and let n0 be a pumping
threshold for L. Choose m ∈ N such that m ≥ n0. Then, x = ambm can
be factored as x = uvw such that 1 ≤ |uv | ≤ n0 and uvnw ∈ L for every
n ∈ N. This implies that every symbol of v is equal to a, since uv is a
prefix of am. So, u = ak , v = a`, and w = ahbm, where k + `+ h = m,
and ` ≥ 1. By “pumping” v we obtain uv2w = aka2`ahbm = am+`bm ∈ L,
which contradicts the definition of L.

29 / 34

Applications of Pumping Lemma

Example

The language L = {ap | p is prime } is not regular.
Suppose that L were regular and that n0 is a pumping threshold for L. If
x ∈ L and |x | ≥ n0, then x can be written as x = uvw such that v 6= λ,
|uv | ≤ n0, and uvnw ∈ L for every n ∈ N. Let k = |v | ≥ 1. We have
p = h + k such that h + nk is prime for every value of n ∈ N. If h = 0 this
is a clear contradiction. If h = 1 choose, for example, n = 6k + 5. This
would imply h + nk = 1 + (6k + 5)k = (3k + 1)(2k + 1), which is not
prime. Otherwise, if h > 1, choose n = h. This implies ah(1+k) ∈ L, which
contradicts the definition of L since h(1 + k) is never a prime.

30 / 34

Applications of Pumping Lemma

Example

The language L = {apbq | p, q ∈ N and p ≤ q} is not regular.
Suppose that L were regular, and let n0 be a pumping threshold for L.
Choose p > n0. Then, if x = apbq ∈ L with p ≤ q, x can be factored as
x = uvw with |uv | ≤ n0 such that uvnw ∈ L for every n ∈ N. By the
choice for p, the words u and v consist only of as, so we can write u = ak ,
v = a` and w = ahbq, where k + `+ h = p, and ` ≥ 1. Thus,
uvnw = ak+n`+hbq = ap+(n−1)`bq ∈ L for every n ∈ N. By choosing n
such that p + (n − 1)` > q, that is n > q−p

` + 1 we obtain a word that
violates the definition of L, which requires every word to contain more bs
than as.

31 / 34

Applications of Pumping Lemma

Example

Consider the language L = {apb2qap | p, q ∈ N, q ≥ 1}.
We claim that L is not regular. Suppose that L were regular and let
x = apb2qap ∈ L such that p ≥ n0, where n0 is a pumping threshold for L.
Consider the factorization x = uvw whose existence follows from the
Pumping Lemma, where |uv | ≤ n0, such that uvnw ∈ L for every n ∈ N.
Both u and v consist of a symbols, so any kind of pumping of v alters the
balance between the p a symbols located at the beginning of the word and
the last p a symbols. Therefore, L is not regular.

32 / 34

Applications of Pumping Lemma

The nonregularity of

L = {apb2qap | p, q ∈ N, q ≥ 1}.

implies that the language K = {xxR | x ∈ {a, b}∗} is not regular. Indeed,
note that K ∩ {a}∗{b}+{a}∗ = L, so the regularity of K would imply the
regularity of L.

33 / 34

Applications of Pumping Lemma

Example

The language L = {apbqapbq | p, q ∈ P} is not regular. This can be easily
shown using an argument similar to the one used previously. Hence, since

{xx | x ∈ {a, b}∗} ∩ {a}∗{b}∗{a}∗{b}∗ = L

we can conclude that the language {xx | x ∈ {a, b}∗} is not regular.

34 / 34

	Outline
	Kleene's Theorem
	The Pumping Lemma
	Applications of Pumping Lemma

