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Support Vector Machines-Preliminaries

L Preliminaries — Gradients

Functions of One Real Variable

Let E be a subset of R.

A function f : E — R has a maximum M on E if there exists

xo € E such that f(xg) = M and f(x1) < M for every x; € E. The
element xg is a maximizer of f on E.

Similarly, f : E — R has a minimum m on E if there exists

xo € E such that f(xg) = m and f(x1) > m for every x; € E. The
element xg is a minimizer of f on E.
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Support Vector Machines-Preliminaries
L Preliminaries — Gradients

m If f:[a,b] — R and f is continuous, then f has a global
maximum M and a global minimum m on [a,b].

m If £ has a derivative on [a, b], and f'(xp) = 0, then xg is a
critical point of f.

m A local extremum (minimum or maximum) can occur only at
a critical point xg. If f”’(xg) < 0, the critical point provides a
local maximum; if f”/(xp) > 0 the critical point provides a
local minimum.
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Support Vector Machines-Preliminaries

L Preliminaries — Gradients

The V£ notation

(read “nabla ).
Let f : X — R, where X CR", and let z € X. The gradient of f

in z is the vector

BX1 (Z)
(VF)(z) = : e R".

;?In (2)
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Support Vector Machines-Preliminaries

L Preliminaries — Gradients

Example
Let f : R” — R be the function f(x) = x2 + - -- + x2; in other
words, f(x) =| x ||°.
We have

of of
8—X1—2X]_,...,8—Xn—2xn.

Therefore, (Vf)(x) = 2x.
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Support Vector Machines-Preliminaries

L Preliminaries — Gradients

Example

Let bj e R" and ¢; € Rfor 1 < j < n, and let f : R” — R be the

function .
F(x) =Y (bjx— ).
j=1
We have & (x) = Y7, 2b;(bix — ¢;), where bj = (by; - - - by;) for

1 < j < n. Thus, we obtain:

2}7:1 2b1j(bj-x — Cj)
(VF)(x) =2 : = 2(B'x—c')B = 2B'xB—2c'B,
371 2bnj(bjx — cj)

where B = (by - - -b,) € R"*",
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Support Vector Machines-Preliminaries

L Preliminaries — Gradients

The matrix-valued function Hf : R — R¥*k defined by

0%f
Hf(x) N <8X,'1 aX,'2>

is the Hessian matrix of f.
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Support Vector Machines-Preliminaries

L Preliminaries — Gradients

For the function f(x) = x2 + - - - 4+ x2 discussed on Slide 6 we have

2 0 --- 0

0 2 0
Hf(x) = :

0 0 - 2
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Support Vector Machines-Preliminaries
LOptimization

Definition
Let X be a open subset in R” and let f : X — R be a function.
The point xg € X is a local minimum for f if there exists § > 0

such that B(xg,d) C X and f(xq) < f(x) for every x € B(xo,9).
The point xq is a strict local minimum if f(xg) < f(x) for every

X € B(Xo,é) = {Xo}.
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Support Vector Machines-Preliminaries
LOptimization

Definition
A symmetric matrix A € R"*" is positive semidefinite if X’ Ax > 0

for all x € R".
A is positive definite if xX’Ax > 0 for all x € R” — {0,}.
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Support Vector Machines-Preliminaries
LOptimiza\tion

Example

The symmetric real matrix

a b
A= )
is positive definite if and only if a > 0 and b?> — ac < 0. Indeed, we
have x’Ax > 0 for every x € R? — {0} if and only if

ax? + 2bx;xy + cx3 > 0, where X' = (x; x2); elementary algebra
considerations lead to a > 0 and b?> — ac < 0.
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Support Vector Machines-Preliminaries
LOptimization

Is the matrix

=)

< ) = x1 + 4x1x0 +x2 can be made
= —1.

positive definite?

1
No, because (x1 x2 <2 >
negative with x; =1 an
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Support Vector Machines-Preliminaries
LOptimization

Theorem

A symmetric matrix A € R™" s positive definite if and only if all
its leading principal minors are positive.

The leading minors of the previous matrix are 1 and ‘; i

s
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Support Vector Machines-Preliminaries
LOptimization

Theorem

Let f : B(xo,r) — R be a function that belongs to the class
C2%(B(xq, r)), where B(xo, r) C R* and xq is a critical point for f.
If the Hessian matrix Hr(xo) is positive semidefinite, then xq is a
local minimum for f; if He(Xo) is negative semidefinite, then xg is
a local maximum for f.
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Support Vector Machines-Preliminaries
LOptimization

Let f : R2 — R be a function in C2(B(xo, r)). The Hessian
matrix in Xg is

82)’2 93f
He(xo) = | 2% %22 | (xo).
Oxo Ox1 (9X22 .
93f d3f 93f
Let a;; = W(XO)’ alp = m(xo), and ay = W(XO)' Note
that
h,Hf(Xo)h = allhf + 2a10h1hy + 322/1%
2 2
= h5 (a11&” + 23128 + ax) |
where £ = Z—;
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Support Vector Machines-Preliminaries
LOptimiza\tion

For a critical point xy we have:
h’Hg(xo)h > 0 for every h if aj; > 0 and a2, — ajzax < 0; in
this case, Hr(xp) is positive semidefinite and xg is a local
minimum;
h'H¢(xo)h < 0 for every h if a3; < 0 and 3%2 — ajiaxn < 0;in
this case, Hr(xo) is negative semidefinite and xg is a local
maximum;
if a2, — a11a20 > 0; in this case, H¢(xo) is neither positive nor
negative definite, so xq is a saddle point.
Note that in the first two previous cases we have a2, < aj1az, SO
a11 and ap have the same sign.
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Support Vector Machines-Preliminaries
LOptimiza\tion

Example

Let a@1,...,a, be m points in R”. The function

f(x) =Y., || x—a; ||? gives the sum of squares of the distances
between x and the points ay,...,a,. We will prove that this sum

has a global minimum obtained when x is the barycenter of the set

{al, 500 ,am}.
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Support Vector Machines-Preliminaries

LOptimization

Example (cont'd)

We have

m m
f(x) = m|x|? —2Za§x+ Z I a; |
= mix + —2ZZ%XJ+ZIIa, 1%,

j=1i=1

which implies
of
8XJ =2mx; — 2 Z ajj
for 1 < j < n. Thus, there exists only one critical point given by
1 m
XN= Z; ajj
1=

for1<j<n
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Support Vector Machines-Preliminaries

LOptimization

The Hessian matrix Hf = 2ml, is positive definite, so the critical
point is a local minimum and, in view of convexity of f, the global
minimum. This point is the barycenter of the set {a1,...,an}.
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Support Vector Machines-Preliminaries
L General Optimization Problems

Let f :R" — R, c:R?” — R™ and d : R"” — RP be three
functions defined on R"”. A general formulation of a constrained
optimization problem is:

minimize f(x), where x € R",
subject to ¢(x) < 0,,, where c : R" — R™,
and d(x) = 0,, whered : R" — RP.

21/70



Support Vector Machines-Preliminaries
L General Optimization Problems

Here ¢ specifies inequality constraints placed on x, while d defines

equality constraints.
The feasible region of the constrained optimization problem is the

set
Rea = {x €R" | ¢(x) <04 and d(x) = 0,}.

If the feasible region R4 is non-empty and bounded, then, under
certain conditions a solution exists. If Rc g = () we say that the
constraints are inconsistent.
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Support Vector Machines-Preliminaries

L General Optimization Problems

If only inequality constraints are present (as specified by the
function c) the feasible region is:

Re={x €R" | ¢(x) < Op}.
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Support Vector Machines-Preliminaries
L General Optimization Problems

Let x € R.. The set of active constraints at X is
ACT(Re,c,x) = {i €{1,...,m} | ci(x) =0}.

If i € ACT(Rc,c,x), we say that ¢; is an active constraint or that ¢;
is tight on x € Re; otherwise, that is, if ¢;(x) <0, ¢; is an inactive
constraint on Xx.
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Support Vector Machines-Preliminaries
LLagrange Multipliers

Definition
Let f : R” — R and c: R” — R be two functions. The
minimization problem MP(f,c) is:

minimize f(x), where x € R",
subject to x € Re.

If xo exists in Re that f(xp) = min{f(x) | x € Rc} we refer to xq
as a solution of MP(f,c).
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Support Vector Machines-Preliminaries
LLagrange Multipliers

If h: R" — R™ we can write
h1(x)
h(X) = ’
hm(x)

where h; : R” —; R are the components of h for 1 < j < m. If his
a differentiable function, the function (Dh)(x) is

(Vh)(x)
(Oh)x) = |
(Vb))
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Support Vector Machines-Preliminaries
LLagrange Multipliers

Let h : R? — R3 be given by

X1X2
h(x) = | X
X5
Then
X2 X1
(Dh)(x)=[2x O
0 2x
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Support Vector Machines-Preliminaries
LLagrange Multipliers

Theorem

(Existence Theorem of Lagrange Multipliers) Let f : R" — R
and h : R" — R™ be two functions such that:

" m<n,
m f € CYR"),
= h € CY(R"), and

m the matrix (Dh)(x) is of full rank, that is,
rank((Dh)(x)) = m < n.

If xq is a regular point of h and a local extremum of f subjected to
the restriction h(xg) = 0, then (Vf)(xo) is a linear combination
of (Vhi)(x0),---,(Vhm)(x0)-
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Support Vector Machines-Preliminaries
LLagrang;e Multipliers

Example

Suppose that we wish to minimize f(x) = x; + x» subject to the

condition
h(x) = x? + x3 —2 = 0.

N = ()

i = (52).

We have
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Support Vector Machines-Preliminaries

L Lagrange Multipliers

(Example con'd)

Xy

X1 + X2 a

At the local minimum x* =
(=1,—1) we have (Vf)(x*)

(o0 ()

(VF)(x*) + %(Vh) —0.
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Support Vector Machines-Preliminaries
LLagrange Multipliers

To apply the Lagrange multiplier technique the constraint gradients

(Vhl)(X), T (th)(X)
must be linearly independent. In this case, x is said to be regular.

There may not exist Lagrange multipliers for a local minimum that
is not regular.
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Support Vector Machines-Preliminaries
LLagrang;e Multipliers

Example

Consider minimizing the function f(x) = x; + x» subject to the
constraints

hi(x) = (x1 —1)> 4+ x5 —1=0,ho(x) = (x1 — 2)®> + x3 — 4 = 0.

We have
N = ()

and

(e = (204D wmye = (205 7).

2xo 2xo
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Support Vector Machines-Preliminaries

L Lagrange Multipliers

Example continued

The local minimum is at 0, = (8) At that point, we have

1 -2

(VF)(0,) = (1) (Vh)(02) = < 5 ) (Vh)(0s) = (‘04> .

The gradients (Vh1)(02), (Vh2)(02) are not linearly independent
because 2(Vh1)(02) + (Vh2)(02) = 02, so 02 is not a regular point
and Lagrange's multipliers do not exist.
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Support Vector Machines-Preliminaries
LLagrang;e Multipliers

Example

Let A € R"*" be a symmetric matrix and let f : R” — R be the
function defined by f(x) = x’Ax.

Optimization problem: minimize f subjected to the restriction

| x |=1, or equivalently h(x) =|| x ||> =1 = 0.

Since (Vf) = 2Ax and (Vh)(x) = 2x there exists A such that
2Axo = 2Axq for any extremum of f subjected to || xo ||= 1. Thus,
Xo must be a unit eigenvector of A and A must be an eigenvalue of
the same matrix.
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LLagrang;e Multipliers

Example

Let ABC be a triangle having no angle greater than %’T P a point
inside ABC and let x, y, z be the lengths of the segments PA, PB
and PC, respectively. The Toricelli point of the triangle is defined
as the point for which x 4+ y + z is minimal.

Let the angle BPA be «, the angle APC be 3 and the angle CPB
be 27 — a — (.

RS
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Support Vector Machines-Preliminaries

L Lagrange Multipliers

Example cont'd

The constraints are

x?+y? —2xycosa—c? = 0,

x?> 4+ 22 —2xzcosf — b*> = 0,

y? + 2% —2yxcos(2m —a — B) — a®> =

and the expresssion to be minimized is x + y + z.
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Support Vector Machines-Preliminaries

L Lagrange Multipliers

Example cont'd

Thus, the Lagrangean is
L=x+y+z+M(x*+y*>—2xycosa — c?)
+ Ao(x* + 2% — 2xz cos  — b?)
+ )‘3()/2 + 22 - 2yzcos(2m — o — B) — 32)‘

The optimality conditions are:

oL oL __ oL __
%= 0§_0,§_0,
e=0,5=0
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L Lagrange Multipliers

Example cont'd

We have:

L
g— = 142xA —2ycosa+2xAp —2zcos3 =0
X
oL
@ = 1+42y\ —2xcosa+2yA3 —2zcos(2mr —a—3) =0
oL
% - 1+ 2zMp —2xcosff+2z\3 — 2y cos(2r —a— ) =0
z
oL : .
o = 2xyA1sina — 2yzAzsin2r —a— ) =0
oL
o = 2xzMpsinf —2yzA3sin(2r —a — 3) = 0.
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LLagrange Multipliers

Regard the first three equations as a system in A1, Ao, and As:

—1+4 2y cosa + 2z cos 3

A1+ = ox )
—1+2xcosa+ 2zcos(2m — a —

)\1"‘)\3 - 2y ( u /3)7
—1+ 2xcos 8 + 2yy cos(2m — o —

A+ A3 = X B 2}2/ ( T—a 6)

The last two equations are:

2y(xA1sina — zA\3sinQn —a— 3) =
2z(xA\asin 8 —yAzsinr —a—f3) = 0.
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L Lagrange Multipliers

Example cont'd

Eliminating A1, A2 and A3 yields sina = sin 8 and
sinfa+ B8) = —sinf, soa=p3=3.
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LLagrange Multipliers

The next theorem provides necessary conditions for optimality that
include the linear independence of the gradients of the components
of the constraint (V¢;)(xg) for i € ACT(S, ¢,x0)} and ensure that
the coefficient of the gradient of the objective function (V£)(xo) is
not null. These conditions are known as the Karush-Kuhn-Tucker
conditions or the KKT conditions.
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LLagrange Multipliers

Theorem

(Karush-Kuhn-Tucker Theorem) Let S be a non-empty open
subset of R" and let f : R" — R and c : R" — R™. Let xg be a
local minimum in S of f subjected to the restriction ¢(xp) < Op.
Suppose that f is differentiable in xg, c; are differentiable in xq for
i € ACT(S, ¢, xg), and ¢; are continuous in xg for i ¢ ACT(S, c,Xo).
If{(Vci)(xo0) | i € ACT(S,c,x0)} is a linearly independent set,
then there exist non-negative numbers w; for i € ACT(S, ¢, xg) such
that

(VF)(x0) + > _{wi(Vci)(xo) | i € ACT(S, €, %0)} = 0.
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L Lagrange Multipliers

Theorem continued

Furthermore, if the functions ¢; are differentiable in xq for
i & ACT(S, ¢, xg), then the previous condition can be written as:

(VF)(x0) + 271 wi(Vei)(x0) = On;
w'c(xo) = 0;

wi
M w > 0,, where w=

Wm
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LDuality

The Primal Problem

Consider the following optimization problem for an object function
f:R" — R, a subset C C R", and the constraint functions
c:R" — R"and d: R" — R”:

minimize f(x),where x € C,
subject to ¢(x) < 0
and d(x) = 0.

We refer to this optimization problem as the primal problem.
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LDuality

The Lagrangian associated to the primal problem is the function
L:R" xR™ x RP — R given by:

L(x,u,v) = f(x) + u'c(x) + v'd(x)
forx € C, u € R”, and v € RP.

The component u; of u is the Lagrangian multiplier corresponding
to the constraint c;j(x) < 0; the component v; of v is the
Lagrangian multiplier corresponding to the constraint dj(x) = 0.
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LDuality

Lemma

At each feasible x we have f(x) = sup{L(x,u,v)} | u>0p,,v €
RP, ujci(x) =0 for 1 < i < m}.

Proof: at each feasible x we have ¢j(x) < 0 and d;(x) = 0, hence
L(x,u,v) = f(x) + u'c(x) + v'd(x) < f(x).

The last inequality becomes an equality if u;c;(x) = 0 for
1<i<m
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LDuality

The optimal value of the primal problem f* is

f*=inf sup L(x,u,v).

X u>0p,,v

Proof: Consider feasible x (designated at x € C). In this case we
have f* = infycc f(x) = infxcc supy>o,, v L(x, u, v).

When x is not feasible, since sup,~,, y L(x,u,v) = oo for any

x ¢ C, we have infyzc sup,=q,, v L(X,u,v) = co. Thus, in either
case, f* = infysup,,, v L(x,u,v).
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LDuality

The Dual Optimization Problem

The dual optimization problem starts with the Lagrange dual
function g : R™ x RP — R defined by

g(u,v) = inf L(x,u,v) (1)

and consists of

maximize g(u,v), where u € R™ and v € RP,
subject tou = 0p,.
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LDuality

Theorem

For every primal problem the Lagrange dual function
g :R™ x RP — R defined by Equality (1) is always concave over
R™ X RP.
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LDuanlity

Proof

For u;,up € R™ and vi, vy € RP we have:

g(tug + (1 — t)ug, tvy + (1 — t)va)
= inf{f(x) + (tu] + (1 — t)up)c(x) + (tv} + (1 — t)v5)d(x) | x € S}
= inf{t(f(x) + ujc + vid)

+(1 = t)(F(x) + u5e(x) + vod(x)) | x € S}

tinf{f(x) +ujc+vid | x € S}

+(1 — t)inf{f(x) + uhec(x) + vhd(x) | x € S}

= tg(ug,v1) + (1 - t)g(u2, v2),

WV

which shows that g is concave.
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LDuality

m The concavity of g is significant because a local optimum of g
is a global optimum regardless of convexity properties of f,c
or d.

m Although the dual function g is not given explicitly, the
restrictions of the dual have a simpler form and this may be
an advantage in specific cases.

m The dual function produces lower bounds for the optimal
value of the primal problem.
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LDuality

Theorem

(The Weak Duality Theorem) Suppose that x, is an optimum of
f and f, = f(x:), (ux,vy) is an optimum for g, and g, = g(u.,v.).
We have g, < f..

Proof: Since c(x.) < 0, and d(x,) = 0, it follows that
L(xs,u,v) = f(xs) + u'c(xs) + Vd(x,) < fi.

Therefore, g(u,v) = infxec L(x,u,v) < £, for all u and v.
Since g is the optimal value of g, the last inequality implies
g« < f.
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LDuality

The inequality of the previous theorem holds when £, and g, are
finite or infinite. The difference f,. — g, is the duality gap of the
primal problem.

Strong duality holds when the duality gap is 0.
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LDuality

Note that for the Lagrangian function of the primal problem we
can write

sup L(x,u,v) = sup f(x)+u'c(x)+vd(x)
u>0pm,v uz0m,v
B {f(x) if ¢(x) < O,

00 otherwise

which implies f, = inf,crn sup,g,, v L(X, u,v). By the definition of
g« we also have

g« = sup inf L(x,u,v).
u>0m,vX€Rn
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LDuality

Thus, the weak duality amounts to the inequality

sup inf L(x,u,v) < inf sup L(x,u,v),
u>0p,,v XER" x€ER" y>0,,,v

and the strong duality is equivalent to the equality

sup inf L(x,u,v) = inf sup L(x,u,v).

u>0pm,v x€R" x€R" u>0m,v
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LDuality

Example

Let f : R” — R be the linear function f(x) = a’x, A € RP*", and
b € RP. Consider the primal problem:

minimize a’x, where x € R",
subject to x > 0,, and
Ax —b =0,.

The constraint functions are ¢(x) = —x and d(x) = Ax — b and
the Lagrangian L is

L(x,u,v) = a'x—u'x+V(Ax —b)
= —vb+ (@ —u +VAx
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LDuality

Example (cont'd)

This yields the dual function

g(u,v) = —v'b+ inf (3’ —u’ + V' A)x.
xeR"

Unless a’ — u’ + V' A =0/, we have g(u,v) = —oo. Therefore, we
have
—Vvb ifa—u+Av=0,,
g(u,v) = .
—oo0  otherwise.
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LDuality

Example (cont'd)

The dual problem

maximize g(u,v),
subject tou > 0.

can be expressed as:

maximize —v'b,
subject toa—u+ A'v=0,
andu > 0,,.

In turn, this problem is equivalent to:

maximize —v'b,
subject toa+ A'v > 0,,.
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LDuality

Example

The following optimization problem
minimize %x’ Qx — r'x,
where x € R”,
subject to Ax > b,

where Q € R"*" is a positive definite matrix, r € R"?, A € RP*",
and b € RP is known as a quadratic optimization problem.
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LDuality

The Lagrangian L is
]‘/ / / ]‘/ / / /
L(x,u)zix Qx—rx+u(Ax—b):§xQx+(uA—r)x—ub

and the dual function is g(u) = infycrn L(x, u) subject to u > 0.
Since x is unconstrained in the definition of g, the minimum is
attained when we have the equalities

38Xi <;x’Qx + (WA —r)x— u’b) =0

for 1 < i < n, which amount to x = Q_l(r — Au). The dual
optimization function is: g(u) = —3u’Pu — u’d — ¥ Qr subject to
u>0,, where P = AQ 1A, d =b — AQ r. This shows that the
dual problem of this quadratic optimization problem is itself a
quadratic optimization problem.
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LDuality

Example

Let a1,...,a, € R". We seek to determine a closed sphere Bx, r]
of minimal radius that includes all points a; for 1 </ < m. This is
the minimum bounding sphere problem, formulated by J. J.
Sylvester. This problem amounts to solving the following primal
optimization problem:

minimize r, where r > 0,
subject to || x —a; [|[< r for1 <i<m.
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LDuality

An equivalent formulation requires minimizing r? and stating the
restrictions as || x — a; |2 —r? < 0 for 1 < i < m. The Lagrangian
of this problem is:

m
L(r,xu) = P+ il x—a;|* —r?)
i=1
m m
= Pl1=>u )+ wilx—a |
i=1 i=1
and the dual function is:
= inf L
glw) = inf_ Lrxu)
m m
= inf r? l—zu; +ZUiHX—ai’2H-
reR>0,xeR” - ;
- i=1 i=1
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LDuality

This leads to the following conditions:

oL(r,x,u) “

—a = 2r1-— ,Z; ui] =0

OL(r,x,u) 2

Txp = 2Zu, aj)p=0for 1< p<n.

=1

The first equality yields Y " ; u; = 1. Therefore, from the second
equality we obtain x = Zi:l u;a;. This shows that for x is a
convex combination of ay,...,a,. The dual function is

m m
:Zu; Zuhah—a; =0
i=1 h=1

because > ", uj = 1.
Note that the restriction functions gi(x,r) =|| x —a; ||> —r> <0

are not convex.
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Consider the primal problem

minimize X12 + x22, where x1, x> € R,
subject to x; — 1 > 0.

It is clear that the minimum of f(x) is obtained for x; = 1 and
xp = 0 and this minimum is 1. The Lagrangian is

L(u) = x12 + X22 +ui(xa—1)
and the dual function is
g(u) =inf{x{ +53 +u(x —1) [ x eR?} = ——L.

Then sup{g(u1) | u1 > 0} =0 and a gap exists between the
minimal value of the primal function and the maximal value of the
dual function. 64/70



Support Vector Machines-Preliminaries
LDuality

Example

Let a,b >0, p,g <0 and let r > 0. Consider the following primal
problem:
minimize f(x) = ax? + bx3
subject to px1 +gxo +r <0 and x3 >0, xo > 0.

The set Cis {x € R? | x; > 0,x; > 0}. The constraint function is
c(x) = px1 + gx2 + r < 0 and the Lagrangian of the primal
problem is

L(x,u) = ax? + b3 + u(pxi + qx2 + 1),

where u is a Lagrangian multiplier.
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Thus, the dual problem objective function is

g(u) = inf L(x,u)
xeC
= |nf ax¢ + b3 + u(pxa + gxa + 1)
= mf{axl +upxy | x1 =0}

+ inf {bx3 4+ ugxa | xo >0} + ur
xeC

The infima are achieved when x; = —g—g and x, = —% ifu>0
and at x = 05 if u < 0. Thus,
o) = <E+q—b>u2+ru if u>0,
ru ifu<O

which is a concave function.
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2r
2 2
pPZ 9%
a+b

The maximum of g(u) is achieved when u = and equals
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Family of Concentric Ellipses; the ellipse that “touches” the line
px1 + gxa + r = 0 gives the optimum value for f. The dotted area
is the feasible region.

68/70



Support Vector Machines-Preliminaries
LDuality

Note that if x is located on an ellipse ax? + bx3 — k = 0, then
f(x) = k. Thus, the minimum of f is achieved when k is chosen
such that the ellipse is tangent to the line px; + gxo +r =20. In
other words, we seek to determine k such that the tangent of the
ellipse at xg = <X01
X02

given by px; + gxo +r = 0.

) located on the ellipse coincides with the line
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The equation of the tangent is

ax1xg1 + bxoxpgp — k = 0.
Therefore, we need to have:

axpr bX02 . —k
pq r’

hence xp1 = —% and xgp = —

%. Substituting back these
coordina;ces in the equation of the ellipse yields k; = 0 and
ky = ="

2
P~
P

v"“,\)

. In this case no duality gap exists.

70/70



	Outline
	Preliminaries – Gradients
	Optimization
	General Optimization Problems
	Lagrange Multipliers
	Duality

