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Support Vector Machines-Preliminaries

Preliminaries – Gradients

Functions of One Real Variable

Let E be a subset of R.
A function f : E −→ R has a maximum M on E if there exists
x0 ∈ E such that f (x0) = M and f (x1) 6 M for every x1 ∈ E . The
element x0 is a maximizer of f on E .
Similarly, f : E −→ R has a minimum m on E if there exists
x0 ∈ E such that f (x0) = m and f (x1) > m for every x1 ∈ E . The
element x0 is a minimizer of f on E .
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Support Vector Machines-Preliminaries

Preliminaries – Gradients

If f : [a, b] −→ R and f is continuous, then f has a global
maximum M and a global minimum m on [a,b].

If f has a derivative on [a, b], and f ′(x0) = 0, then x0 is a
critical point of f .

A local extremum (minimum or maximum) can occur only at
a critical point x0. If f ′′(x0) < 0, the critical point provides a
local maximum; if f ′′(x0) > 0 the critical point provides a
local minimum.
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Preliminaries – Gradients

The ∇f notation

(read “nabla f”).
Let f : X −→ R, where X ⊆ Rn, and let z ∈ X . The gradient of f
in z is the vector

(∇f )(z) =


∂f
∂x1

(z)
...

∂f
∂xn

(z)

 ∈ Rn.
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Preliminaries – Gradients

Example

Let f : Rn −→ R be the function f (x) = x21 + · · ·+ x2n ; in other
words, f (x) =‖ x ‖2.
We have

∂f

∂x1
= 2x1, . . . ,

∂f

∂xn
= 2xn.

Therefore, (∇f )(x) = 2x.
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Preliminaries – Gradients

Example

Let bj ∈ Rn and cj ∈ R for 1 6 j 6 n, and let f : Rn −→ R be the
function

f (x) =
n∑

j=1

(b′jx− cj)
2.

We have ∂f
∂xi

(x) =
∑n

j=1 2bij(b
′
jx− cj), where bj =

(
b1j · · · bnj

)
for

1 6 j 6 n. Thus, we obtain:

(∇f )(x) = 2


∑n

j=1 2b1j(b
′
jx− cj)

...∑n
j=1 2bnj(b

′
jx− cj)

 = 2(B ′x−c′)B = 2B ′xB−2c′B,

where B = (b1 · · ·bn) ∈ Rn×n.
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Preliminaries – Gradients

The matrix-valued function Hf : Rk −→ Rk×k defined by

Hf (x) =

(
∂2f

∂xi1 ∂xi2

)
is the Hessian matrix of f .
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Support Vector Machines-Preliminaries

Preliminaries – Gradients

Example

For the function f (x) = x21 + · · ·+ x2n discussed on Slide 6 we have

Hf (x) =


2 0 · · · 0
0 2 · · · 0
...

... · · ·
...

0 0 · · · 2

 .
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Optimization

Definition

Let X be a open subset in Rn and let f : X −→ R be a function.
The point x0 ∈ X is a local minimum for f if there exists δ > 0
such that B(x0, δ) ⊆ X and f (x0) 6 f (x) for every x ∈ B(x0, δ).
The point x0 is a strict local minimum if f (x0) < f (x) for every
x ∈ B(x0, δ)− {x0}.
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Optimization

Definition

A symmetric matrix A ∈ Rn×n is positive semidefinite if x′Ax > 0
for all x ∈ Rn.
A is positive definite if x′Ax > 0 for all x ∈ Rn − {0n}.
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Optimization

Example

The symmetric real matrix

A =

(
a b
b c

)
is positive definite if and only if a > 0 and b2 − ac < 0. Indeed, we
have x′Ax > 0 for every x ∈ R2 − {0} if and only if
ax21 + 2bx1x2 + cx22 > 0, where x′ = (x1 x2); elementary algebra
considerations lead to a > 0 and b2 − ac < 0.

12 / 70



Support Vector Machines-Preliminaries

Optimization

Is the matrix

A =

(
1 2
2 1

)
positive definite?

No, because (x1 x2)

(
1 2
2 1

)(
x1
x2

)
= x21 + 4x1x2 + x22 can be made

negative with x1 = 1 and x2 = −1.
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Optimization

Theorem

A symmetric matrix A ∈ Rn×n is positive definite if and only if all
its leading principal minors are positive.

The leading minors of the previous matrix are 1 and

∣∣∣∣1 2
2 1

∣∣∣∣ = −3.
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Optimization

Theorem

Let f : B(x0, r) −→ R be a function that belongs to the class
C 2(B(x0, r)), where B(x0, r) ⊆ Rk and x0 is a critical point for f .
If the Hessian matrix Hf (x0) is positive semidefinite, then x0 is a
local minimum for f ; if Hf (x0) is negative semidefinite, then x0 is
a local maximum for f .
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Optimization

Let f : R2 −→ R be a function in C 2(B(x0, r)). The Hessian
matrix in x0 is

Hf (x0) =

(
∂2f
∂x12

∂2f
∂x1 ∂x2

∂2f
∂x2 ∂x1

∂2f
∂x22

.

)
(x0).

Let a11 = ∂2f
∂x12

(x0), a12 = ∂2f
∂x1 ∂x2

(x0), and a22 = ∂2f
∂x22

(x0). Note
that

h′Hf (x0)h = a11h
2
1 + 2a12h1h2 + a22h

2
2

= h22
(
a11ξ

2 + 2a12ξ + a22
)
,

where ξ = h1
h2

.
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Optimization

For a critical point x0 we have:

i h′Hf (x0)h > 0 for every h if a11 > 0 and a212 − a11a22 < 0; in
this case, Hf (x0) is positive semidefinite and x0 is a local
minimum;

ii h′Hf (x0)h 6 0 for every h if a11 < 0 and a212 − a11a22 < 0; in
this case, Hf (x0) is negative semidefinite and x0 is a local
maximum;

iii if a212 − a11a22 > 0; in this case, Hf (x0) is neither positive nor
negative definite, so x0 is a saddle point.

Note that in the first two previous cases we have a212 < a11a22, so
a11 and a22 have the same sign.
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Optimization

Example

Let a1, . . . , am be m points in Rn. The function
f (x) =

∑m
i=1 ‖ x− ai ‖2 gives the sum of squares of the distances

between x and the points a1, . . . , am. We will prove that this sum
has a global minimum obtained when x is the barycenter of the set
{a1, . . . , am}.
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Support Vector Machines-Preliminaries

Optimization

Example (cont’d)

We have

f (x) = m ‖ x ‖2 −2
m∑
i=1

a′ix +
m∑
i=1

‖ ai ‖2

= m(x21 + · · ·+ x2n )− 2
n∑

j=1

m∑
i=1

aijxj +
m∑
i=1

‖ ai ‖2,

which implies

∂f

∂xj
= 2mxj − 2

m∑
i=1

aij

for 1 6 j 6 n. Thus, there exists only one critical point given by

xj =
1

m

m∑
i=1

aij

for 1 6 j 6 n.
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Optimization

The Hessian matrix Hf = 2mIn is positive definite, so the critical
point is a local minimum and, in view of convexity of f , the global
minimum. This point is the barycenter of the set {a1, . . . , am}.
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General Optimization Problems

Let f : Rn −→ R, c : Rn −→ Rm, and d : Rn −→ Rp be three
functions defined on Rn. A general formulation of a constrained
optimization problem is:

minimize f (x), where x ∈ Rn,
subject to c(x) 6 0m, where c : Rn −→ Rm,
and d(x) = 0p, where d : Rn −→ Rp.
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General Optimization Problems

Here c specifies inequality constraints placed on x, while d defines
equality constraints.
The feasible region of the constrained optimization problem is the
set

Rc,d = {x ∈ Rn | c(x) 6 0m and d(x) = 0p}.

If the feasible region Rc,d is non-empty and bounded, then, under
certain conditions a solution exists. If Rc,d = ∅ we say that the
constraints are inconsistent.
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General Optimization Problems

If only inequality constraints are present (as specified by the
function c) the feasible region is:

Rc = {x ∈ Rn | c(x) 6 0m}.
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General Optimization Problems

Let x ∈ Rc. The set of active constraints at x is

ACT(Rc, c, x) = {i ∈ {1, . . . ,m} | ci (x) = 0}.

If i ∈ ACT(Rc, c, x), we say that ci is an active constraint or that ci
is tight on x ∈ Rc; otherwise, that is, if ci (x) < 0, ci is an inactive
constraint on x.
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Lagrange Multipliers

Definition

Let f : Rn −→ R and c : Rn −→ Rm be two functions. The
minimization problem MP(f , c) is:

minimize f (x), where x ∈ Rn,
subject to x ∈ Rc.

If x0 exists in Rc that f (x0) = min{f (x) | x ∈ Rc} we refer to x0
as a solution of MP(f , c).
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Lagrange Multipliers

If h : Rn −→ Rm we can write

h(x) =

h1(x)
...

hm(x)

 ,

where hj : Rn −→ R are the components of h for 1 6 j 6 m. If h is
a differentiable function, the function (Dh)(x) is

(Dh)(x) =

 (∇h1)(x)′

...
(∇hm)(x)′

 .
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Lagrange Multipliers

Example

Let h : R2 −→ R3 be given by

h(x) =

x1x2
x21
x22


Then

(Dh)(x) =

 x2 x1
2x1 0
0 2x2

 .
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Lagrange Multipliers

Theorem

(Existence Theorem of Lagrange Multipliers) Let f : Rn −→ R
and h : Rn −→ Rm be two functions such that:

m < n,

f ∈ C 1(Rn),

h ∈ C 1(Rn), and

the matrix (Dh)(x) is of full rank, that is,
rank((Dh)(x)) = m < n.

If x0 is a regular point of h and a local extremum of f subjected to
the restriction h(x0) = 0m, then (∇f )(x0) is a linear combination
of (∇h1)(x0), . . . , (∇hm)(x0).
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Lagrange Multipliers

Example

Suppose that we wish to minimize f (x) = x1 + x2 subject to the
condition

h(x) = x21 + x22 − 2 = 0.

We have

(∇f )(x) =

(
1
1

)
(∇h)(x) =

(
2x1
2x2

)
.
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Lagrange Multipliers

(Example con’d)

x2

x1

0

x1 + x2 = a
h(x) = 0

At the local minimum x∗ =
(−1,−1) we have (∇f )(x∗) =(

1
1

)
and (∇h) =

(
−2
−2

)
, so

(∇f )(x∗) +
1

2
(∇h) = 0.
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Lagrange Multipliers

To apply the Lagrange multiplier technique the constraint gradients

(∇h1)(x), · · · , (∇hm)(x)

must be linearly independent. In this case, x is said to be regular.
There may not exist Lagrange multipliers for a local minimum that
is not regular.
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Lagrange Multipliers

Example

Consider minimizing the function f (x) = x1 + x2 subject to the
constraints

h1(x) = (x1 − 1)2 + x22 − 1 = 0, h2(x) = (x1 − 2)2 + x22 − 4 = 0.

We have

(∇f )(x) =

(
1
1

)
,

and

(∇h1)(x) =

(
2(x1 − 1)

2x2

)
, (∇h2)(x) =

(
2(x1 − 2)

2x2

)
.
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Lagrange Multipliers

Example continued

The local minimum is at 02 =

(
0
0

)
. At that point, we have

(∇f )(02) =

(
1
1

)
, (∇h1)(02) =

(
−2
0

)
, (∇h2)(02) =

(
−4
0

)
.

The gradients (∇h1)(02), (∇h2)(02) are not linearly independent
because 2(∇h1)(02) + (∇h2)(02) = 02, so 02 is not a regular point
and Lagrange’s multipliers do not exist.
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Lagrange Multipliers

Example

Let A ∈ Rn×n be a symmetric matrix and let f : Rn −→ R be the
function defined by f (x) = x′Ax.
Optimization problem: minimize f subjected to the restriction
‖ x ‖= 1, or equivalently h(x) =‖ x ‖2 −1 = 0.
Since (∇f ) = 2Ax and (∇h)(x) = 2x there exists λ such that
2Ax0 = 2λx0 for any extremum of f subjected to ‖ x0 ‖= 1. Thus,
x0 must be a unit eigenvector of A and λ must be an eigenvalue of
the same matrix.
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Lagrange Multipliers

Example

Let ABC be a triangle having no angle greater than 2π
3 , P a point

inside ABC and let x , y , z be the lengths of the segments PA,PB
and PC , respectively. The Toricelli point of the triangle is defined
as the point for which x + y + z is minimal.
Let the angle BPA be α, the angle APC be β and the angle CPB
be 2π − α− β.

B

A

C

P
α β

2π − α− β
y

x

z
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Lagrange Multipliers

Example cont’d

The constraints are

x2 + y2 − 2xy cosα− c2 = 0,

x2 + z2 − 2xz cosβ − b2 = 0,

y2 + z2 − 2yx cos(2π − α− β)− a2 = 0.

and the expresssion to be minimized is x + y + z .
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Lagrange Multipliers

Example cont’d

Thus, the Lagrangean is

L = x + y + z + λ1(x2 + y2 − 2xy cosα− c2)

+ λ2(x2 + z2 − 2xz cosβ − b2)

+ λ3(y2 + z2 − 2yz cos(2π − α− β)− a2).

The optimality conditions are:

∂L
∂x = 0, ∂L∂y = 0, ∂L∂z = 0,
∂L
∂α = 0, ∂L∂β = 0.
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Lagrange Multipliers

Example cont’d

We have:

∂L

∂x
= 1 + 2xλ1 − 2y cosα + 2xλ2 − 2z cosβ = 0

∂L

∂y
= 1 + 2yλ1 − 2x cosα + 2yλ3 − 2z cos(2π − α− β) = 0

∂L

∂z
= 1 + 2zλ2 − 2x cosβ + 2zλ3 − 2y cos(2π − α− β) = 0

∂L

∂α
= 2xyλ1 sinα− 2yzλ3 sin(2π − α− β) = 0

∂L

∂β
= 2xzλ2 sinβ − 2yzλ3 sin(2π − α− β) = 0.
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Lagrange Multipliers

Regard the first three equations as a system in λ1, λ2, and λ3:

λ1 + λ2 =
−1 + 2y cosα + 2z cosβ

2x
,

λ1 + λ3 =
−1 + 2x cosα + 2z cos(2π − α− β)

2y
,

λ2 + λ3 =
−1 + 2x cosβ + 2yy cos(2π − α− β)

2z
.

The last two equations are:

2y(xλ1 sinα− zλ3 sin(2π − α− β) = 0

2z(xλ2 sinβ − yλ3 sin(2π − α− β) = 0.
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Lagrange Multipliers

Example cont’d

Eliminating λ1, λ2 and λ3 yields sinα = sinβ and
sin(α + β) = − sinβ, so α = β = 2π

3 .
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Lagrange Multipliers

The next theorem provides necessary conditions for optimality that
include the linear independence of the gradients of the components
of the constraint (∇ci )(x0) for i ∈ ACT(S , c, x0)} and ensure that
the coefficient of the gradient of the objective function (∇f )(x0) is
not null. These conditions are known as the Karush-Kuhn-Tucker
conditions or the KKT conditions.
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Lagrange Multipliers

Theorem

(Karush-Kuhn-Tucker Theorem) Let S be a non-empty open
subset of Rn and let f : Rn −→ R and c : Rn −→ Rm. Let x0 be a
local minimum in S of f subjected to the restriction c(x0) 6 0m.
Suppose that f is differentiable in x0, ci are differentiable in x0 for
i ∈ ACT(S , c, x0), and ci are continuous in x0 for i 6∈ ACT(S , c, x0).
If {(∇ci )(x0) | i ∈ ACT(S , c, x0)} is a linearly independent set,
then there exist non-negative numbers wi for i ∈ ACT(S , c, x0) such
that

(∇f )(x0) +
∑
{wi (∇ci )(x0) | i ∈ ACT(S , c, x0)} = 0n.
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Lagrange Multipliers

Theorem continued

Furthermore, if the functions ci are differentiable in x0 for
i 6∈ ACT(S , c, x0), then the previous condition can be written as:

i (∇f )(x0) +
∑m

i=1 wi (∇ci )(x0) = 0n;

ii w′c(x0) = 0;

iii w > 0m, where w =

w1
...

wm

.
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Duality

The Primal Problem

Consider the following optimization problem for an object function
f : Rn −→ R, a subset C ⊆ Rn, and the constraint functions
c : Rn −→ Rm and d : Rn −→ Rp:

minimize f (x),where x ∈ C,
subject to c(x) 6 0m
and d(x) = 0p.

We refer to this optimization problem as the primal problem.
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Duality

Definition

The Lagrangian associated to the primal problem is the function
L : Rn × Rm × Rp −→ R given by:

L(x,u, v) = f (x) + u′c(x) + v′d(x)

for x ∈ C , u ∈ Rm, and v ∈ Rp.
The component ui of u is the Lagrangian multiplier corresponding
to the constraint ci (x) 6 0; the component vj of v is the
Lagrangian multiplier corresponding to the constraint dj(x) = 0.
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Duality

Lemma

At each feasible x we have f (x) = sup{L(x,u, v)} | u > 0m, v ∈
Rp, uici (x) = 0 for 1 6 i 6 m}.

Proof: at each feasible x we have ci (x) 6 0 and di (x) = 0, hence

L(x,u, v) = f (x) + u′c(x) + v′d(x) 6 f (x).

The last inequality becomes an equality if uici (x) = 0 for
1 6 i 6 m.
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Duality

Lemma

The optimal value of the primal problem f ∗ is

f ∗ = inf
x

sup
u>0m,v

L(x,u, v).

Proof: Consider feasible x (designated at x ∈ C ). In this case we
have f ∗ = infx∈C f (x) = infx∈C supu>0m,v L(x,u, v).
When x is not feasible, since supu>0m,v L(x,u, v) =∞ for any
x 6∈ C , we have infx6∈C supu>0m,v L(x,u, v) =∞. Thus, in either
case, f ∗ = infx supu>0m,v L(x,u, v).
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Duality

The Dual Optimization Problem

The dual optimization problem starts with the Lagrange dual
function g : Rm × Rp −→ R defined by

g(u, v) = inf
x∈C

L(x,u, v) (1)

and consists of

maximize g(u, v), where u ∈ Rm and v ∈ Rp,
subject to u > 0m.
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Duality

Theorem

For every primal problem the Lagrange dual function
g : Rm ×Rp −→ R defined by Equality (1) is always concave over
Rm × Rp.
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Duality

Proof

For u1,u2 ∈ Rm and v1, v2 ∈ Rp we have:

g(tu1 + (1− t)u2, tv1 + (1− t)v2)

= inf{f (x) + (tu′1 + (1− t)u′2)c(x) + (tv′1 + (1− t)v′2)d(x) | x ∈ S}
= inf{t(f (x) + u′1c + v′1d)

+(1− t)(f (x) + u′2c(x) + v′2d(x)) | x ∈ S}
> t inf{f (x) + u′1c + v′1d | x ∈ S}

+(1− t) inf{f (x) + u′2c(x) + v′2d(x) | x ∈ S}
= tg(u1, v1) + (1− t)g(u2, v2),

which shows that g is concave.
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Duality

The concavity of g is significant because a local optimum of g
is a global optimum regardless of convexity properties of f , c
or d.

Although the dual function g is not given explicitly, the
restrictions of the dual have a simpler form and this may be
an advantage in specific cases.

The dual function produces lower bounds for the optimal
value of the primal problem.
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Duality

Theorem

(The Weak Duality Theorem) Suppose that x∗ is an optimum of
f and f∗ = f (x∗), (u∗, v∗) is an optimum for g, and g∗ = g(u∗, v∗).
We have g∗ 6 f∗.

Proof: Since c(x∗) 6 0m and d(x∗) = 0p it follows that

L(x∗,u, v) = f (x∗) + u′c(x∗) + v′d(x∗) 6 f∗.

Therefore, g(u, v) = infx∈C L(x,u, v) 6 f∗ for all u and v.
Since g∗ is the optimal value of g , the last inequality implies
g∗ 6 f∗.
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Duality

The inequality of the previous theorem holds when f∗ and g∗ are
finite or infinite. The difference f∗ − g∗ is the duality gap of the
primal problem.
Strong duality holds when the duality gap is 0.
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Duality

Note that for the Lagrangian function of the primal problem we
can write

sup
u>0m,v

L(x,u, v) = sup
u>0m,v

f (x) + u′c(x) + v′d(x)

=

{
f (x) if c(x) 6 0m,

∞ otherwise
,

which implies f∗ = infx∈Rn supu>0m,v L(x,u, v). By the definition of
g∗ we also have

g∗ = sup
u>0m,v

inf
x∈Rn

L(x,u, v).
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Duality

Thus, the weak duality amounts to the inequality

sup
u>0m,v

inf
x∈Rn

L(x,u, v) 6 inf
x∈Rn

sup
u>0m,v

L(x,u, v),

and the strong duality is equivalent to the equality

sup
u>0m,v

inf
x∈Rn

L(x,u, v) = inf
x∈Rn

sup
u>0m,v

L(x,u, v).
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Duality

Example

Let f : Rn −→ R be the linear function f (x) = a′x, A ∈ Rp×n, and
b ∈ Rp. Consider the primal problem:

minimize a′x, where x ∈ Rn,
subject to x > 0n and
Ax− b = 0p.

The constraint functions are c(x) = −x and d(x) = Ax− b and
the Lagrangian L is

L(x,u, v) = a′x− u′x + v′(Ax− b)

= −v′b + (a′ − u′ + v′A)x.
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Example (cont’d)

This yields the dual function

g(u, v) = −v′b + inf
x∈Rn

(a′ − u′ + v′A)x.

Unless a′ − u′ + v′A = 0′n we have g(u, v) = −∞. Therefore, we
have

g(u, v) =

{
−v′b if a− u + A′v = 0n,

−∞ otherwise.
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Example (cont’d)

The dual problem

maximize g(u, v),
subject to u > 0m.

can be expressed as:

maximize −v′b,
subject to a− u + A′v = 0n
and u > 0m.

In turn, this problem is equivalent to:

maximize −v′b,
subject to a + A′v > 0n.
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The following optimization problem

minimize 1
2x
′Qx− r′x,

where x ∈ Rn,
subject to Ax > b,

where Q ∈ Rn×n is a positive definite matrix, r ∈ Rn, A ∈ Rp×n,
and b ∈ Rp is known as a quadratic optimization problem.
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The Lagrangian L is

L(x,u) =
1

2
x′Qx− r′x + u′(Ax− b) =

1

2
x′Qx + (u′A− r′)x− u′b

and the dual function is g(u) = infx∈Rn L(x,u) subject to u > 0m.
Since x is unconstrained in the definition of g , the minimum is
attained when we have the equalities

∂

∂xi

(
1

2
x′Qx + (u′A− r′)x− u′b

)
= 0

for 1 6 i 6 n, which amount to x = Q−1(r− Au). The dual
optimization function is: g(u) = −1

2u
′Pu− u′d− 1

2r
′Qr subject to

u > 0p, where P = AQ−1A′, d = b− AQ−1r. This shows that the
dual problem of this quadratic optimization problem is itself a
quadratic optimization problem.
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Example

Let a1, . . . , am ∈ Rn. We seek to determine a closed sphere B[x, r ]
of minimal radius that includes all points ai for 1 6 i 6 m. This is
the minimum bounding sphere problem, formulated by J. J.
Sylvester. This problem amounts to solving the following primal
optimization problem:

minimize r , where r > 0,
subject to ‖ x− ai ‖6 r for 1 6 i 6 m.
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An equivalent formulation requires minimizing r2 and stating the
restrictions as ‖ x− ai ‖2 −r2 6 0 for 1 6 i 6 m. The Lagrangian
of this problem is:

L(r , x,u) = r2 +
m∑
i=1

ui (‖ x− ai ‖2 −r2)

= r2

(
1−

m∑
i=1

ui

)
+

m∑
i=1

ui ‖ x− ai ‖2

and the dual function is:

g(u) = inf
r∈R>0,x∈Rn

L(r , x,u)

= inf
r∈R>0,x∈Rn

r2

(
1−

m∑
i=1

ui

)
+

m∑
i=1

ui ‖ x− ai |2 ‖ .
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This leads to the following conditions:

∂L(r , x,u)

∂r
= 2r

(
1−

m∑
i=1

ui

)
= 0

∂L(r , x,u)

∂xp
= 2

m∑
i=1

ui (x− ai )p = 0 for 1 6 p 6 n.

The first equality yields
∑m

i=1 ui = 1. Therefore, from the second
equality we obtain x =

∑m
i=1 uiai . This shows that for x is a

convex combination of a1, . . . , am. The dual function is

g(u) =
m∑
i=1

ui

(
m∑

h=1

uhah − ai

)
= 0

because
∑m

i=1 ui = 1.
Note that the restriction functions gi (x, r) =‖ x− ai ‖2 −r2 6 0
are not convex.
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Example

Consider the primal problem

minimize x21 + x22 , where x1, x2 ∈ R,
subject to x1 − 1 > 0.

It is clear that the minimum of f (x) is obtained for x1 = 1 and
x2 = 0 and this minimum is 1. The Lagrangian is

L(u) = x21 + x22 + u1(x1 − 1)

and the dual function is

g(u) = inf
x
{x21 + x22 + u1(x1 − 1) | x ∈ R2} = −u21

4
.

Then sup{g(u1) | u1 > 0} = 0 and a gap exists between the
minimal value of the primal function and the maximal value of the
dual function. 64 / 70
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Example

Let a, b > 0, p, q < 0 and let r > 0. Consider the following primal
problem:

minimize f (x) = ax21 + bx22
subject to px1 + qx2 + r 6 0 and x1 > 0, x2 > 0.

The set C is {x ∈ R2 | x1 > 0, x2 > 0}. The constraint function is
c(x) = px1 + qx2 + r 6 0 and the Lagrangian of the primal
problem is

L(x, u) = ax21 + bx22 + u(px1 + qx2 + r),

where u is a Lagrangian multiplier.
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Thus, the dual problem objective function is

g(u) = inf
x∈C

L(x, u)

= inf
x∈C

ax21 + bx22 + u(px1 + qx2 + r)

= inf
x∈C
{ax21 + upx1 | x1 > 0}

+ inf
x∈C
{bx22 + uqx2 | x2 > 0}+ ur

The infima are achieved when x1 = −up
2a and x2 = −uq

2b if u > 0
and at x = 02 if u < 0. Thus,

g(u) =

{
−
(
p2

4a + q2

4b

)
u2 + ru if u > 0,

ru if u < 0

which is a concave function.
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The maximum of g(u) is achieved when u = 2r
p2

a
+ q2

b

and equals

r2(
p2

a + q2

b

)

x1

x2
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Family of Concentric Ellipses; the ellipse that “touches” the line
px1 + qx2 + r = 0 gives the optimum value for f . The dotted area
is the feasible region.
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Note that if x is located on an ellipse ax21 + bx22 − k = 0, then
f (x) = k . Thus, the minimum of f is achieved when k is chosen
such that the ellipse is tangent to the line px1 + qx2 + r = 0. In
other words, we seek to determine k such that the tangent of the

ellipse at x0 =

(
x01
x02

)
located on the ellipse coincides with the line

given by px1 + qx2 + r = 0.
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The equation of the tangent is

ax1x01 + bx2x02 − k = 0.

Therefore, we need to have:

ax01
p

=
bx02
q

=
−k
r
,

hence x01 = −kp
ar and x02 = −kq

br . Substituting back these
coordinates in the equation of the ellipse yields k1 = 0 and
k2 = r2

p2

a
+ q2

b

. In this case no duality gap exists.
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