
Finite Automata and Regular Languages
(part VI)

Prof. Dan A. Simovici

UMB

1 / 31

Outline

1 Minimal Automata

2 / 31

Minimal Automata

For any regular language L there are several automata that are capable of
recognizing it. Naturally, we are interested in finding among these
automata the ones that have the smallest number of states.

3 / 31

Minimal Automata

Definition

The Nerode equivalence of a language L ⊆ A∗ is the relation:

νL = {(x , y) ∈ A∗ × A∗ | xw ∈ L if and only if

yw ∈ L for every w ∈ A∗}.

4 / 31

Minimal Automata

The relation νL is a right-invariant equivalence relation.
In other words: if (x , y) ∈ νL, then (xu, yu) ∈ νL for every u ∈ A∗. In
terms of equivalence classes, [x]νL = [y]νL implies [xu]νL = [yu]νL for every
u ∈ A∗.
Recall that [x]νL denotes the νL-equivalence class of the word x . The set
of all equivalence classes of νL will be denoted by A∗/νL.

5 / 31

Minimal Automata

Lemma

Let L ⊆ A∗ be a language over an alphabet A. We have (x , y) ∈ νL if and
only if x−1L = y−1L.

6 / 31

Minimal Automata

Proof

Let x , y ∈ A∗ such that (x , y) ∈ νL, and let t ∈ x−1L. This means that
xt ∈ L, which implies yt ∈ L because of the definition of νL. Therefore,
t ∈ y−1L, so x−1L ⊆ y−1L. The reverse inclusion can be obtained in the
same manner, so x−1L = y−1L.
Conversely, if x−1L = y−1L, then xt ∈ L if and only if yt ∈ L for every
t ∈ A∗, which means that (x , y) ∈ νL.

7 / 31

Minimal Automata

Definition

Let L ⊆ A∗ be a language over the alphabet A. The set of left derivatives
of L is the set QL = {t−1L | t ∈ A∗}.

8 / 31

Minimal Automata

Lemma

Let L ⊆ A∗ be a language over an alphabet A. The set of left derivatives
of L is finite if and only if A∗/νL is finite.

Proof.

The function hL : A∗/νL −→ QL defined by hL([x]νL) = x−1L is a bijection.
The desired conclusion follows immediately.

9 / 31

Minimal Automata

Lemma

Any language L ⊆ A∗ is a νL-saturated set.

Proof.

In order to prove that L is νL-saturated, it suffices to show that the
νL-equivalence class of every x ∈ L is included in L. Let x ∈ L. If
(x , y) ∈ νL, then yz ∈ L whenever xz ∈ L for any z ∈ A∗. Selecting z = λ
gives the required result.

10 / 31

Minimal Automata

Note that the previous lemma is equivalent to saying that for all
words x , y ∈ A∗, if x ∈ L and x−1L = y−1L, then y ∈ L.

No assumption is made about the language L; in particular, L need
not be regular.

11 / 31

Minimal Automata

Definition

Let L ⊆ A∗ be a language over the alphabet A.
The automaton of the language L is the deterministic automaton
ML = (A,QL, δL, L,FL) is defined by δL(t−1L, a) = (ta)−1L for t ∈ A∗ and
a ∈ A, and FL = {x−1L | x ∈ L}.

12 / 31

Minimal Automata

Remarks

The mapping δL is well defined; that is, t−1L = y−1L implies
(ta)−1L = (ya)−1L. Indeed, let w ∈ (ta)−1L. We have taw ∈ L which
implies aw ∈ t−1L = y−1L. Consequently, yaw ∈ L, so w ∈ (ya)−1L.
Thus, (ta)−1L ⊆ (ya)−1L. The reverse inclusion can be shown
similarly, so (ta)−1L = (ya)−1L.

We have δ(t−1L, a) = a−1(t−1L) for every t ∈ A∗ and a ∈ A. This
remark is very important for the algorithm discussed next.

13 / 31

Minimal Automata

We have
δ∗L(x−1L, y) = (xy)−1L

for every x , y ∈ A∗.
The argument is by induction on ` = |y |. The basis case, ` = 0, is
immediate. Suppose that the equality holds for words of length less than
`, and let y be a word of length `. We have y = za, where z ∈ A∗, a ∈ A
and |z | = `− 1. This gives:

δ∗L(x−1L, y)

= δ∗L(x−1L, za) = δL(δ∗L(x−1L, z), a)

= δL((xz)−1L, a) = (xza)−1L = (xy)−1L

14 / 31

Minimal Automata

The set of final states of ML can now be written as

FL = {δ∗(L, x) | x ∈ L},

which allows us to compute the set FL, once we have computed the
transition function.

15 / 31

Minimal Automata

Nerode’s Theorem:

Theorem

The language L is regular if and only if the set QL is finite.

16 / 31

Minimal Automata

Proof

Suppose that the set QL is finite. In this case ML is a dfa and we have

L(ML) = {x ∈ A∗ | δ∗L(L, x) ∈ FL}
= {x ∈ A∗ | x−1L ∈ FL}.

From the definition of FL it follows that x ∈ L(ML) implies that
x−1L = z−1L for some word z ∈ L, which shows that (x , z) ∈ νL. Since L
is a νL-saturated set, this implies x ∈ L. The reverse inclusion, L ⊆ L(ML)
is immediate, and it is left to the reader. Therefore, L is accepted by the
dfa ML, so L is regular.
Conversely, suppose that L is a regular language. The finiteness of the set
QL follows from a previous Corollary.

17 / 31

Minimal Automata

Theorem

Let L be a regular language. The automaton ML has the least number of
states among all dfas that accept L.

18 / 31

Minimal Automata

Proof

Let M = (A,Q, δ, q0,F) be a dfa such that L = L(M). We intend to show
that |QL| ≤ |Q|. Clearly, if M is to be minimal, it must be accessible,
otherwise the automaton resulting from removing inaccessible states
accepts the same language but has fewer states. In other words, we
assume that for every state q ∈ Q there exists a word t ∈ A∗ such that
δ∗(q0, t) = q.
Define the mapping f : Q −→ QL by f (q) = t−1L if δ∗(q0, t) = q.

19 / 31

Minimal Automata

Proof (cont’d)

We need to verify that f is well-defined, that is, that δ∗(q0, u) = δ∗(q0, v)
implies u−1L = v−1L. If x ∈ u−1L, then ux ∈ L, that is, δ∗(q0, ux) ∈ F .
Since δ∗(q0, ux) = δ∗(δ∗(q0, u), x) and δ∗(q0, u) = δ∗(q0, v), it follows
that δ∗(δ∗(q0, v), x) = δ∗(q0, vx) ∈ F , so vx ∈ L and x ∈ v−1L. The
reverse implication can be obtained by exchanging u and v , so f is indeed
well-defined.
It is clear that the mapping f is surjective, so |QL| ≤ |Q|, which shows
that ML has the least number of states among all dfas that accept the
language L.

20 / 31

Minimal Automata

The Algorithm

Input: A regular language L over an alphabet A.
Output: The set QL of left derivatives of L.
Method: Construct an increasing chain Q0, . . . ,Qk , . . . of finite subsets of
QL as follows:

Q0 = {L}
Qk+1 = Qk ∪ {a−1K | a ∈ A and K ∈ Qk}

Continue until Qk+1 = Qk ; then stop and output Qk .

21 / 31

Minimal Automata

Proof of Correctness:
The algorithm must stop, since QL is a finite set. It is easy to see that
K ∈ Qp if and only if the set K (considered as a state of the automaton
ML) can be reached by a word of length less than or equal to p in ML.
Every state of the automaton ML can be reached through a word of length
less than |QL|. Therefore, when the algorithm stops, all members of QL

have been computed.

22 / 31

Minimal Automata

We recall several equalities previously shown that are useful in the
computation of left derivatives of languages. Namely, if L,K are two
languages over the alphabet A and a ∈ A, then we have:

a−1(L ∪ K) = a−1L ∪ a−1K

a−1(LK) = (a−1L)K ∪ (L ∩ {λ})a−1K
a−1L∗ = (a−1L)L∗

23 / 31

Minimal Automata

Example

Let A = {a, b}. Consider the regular language L that consists of all words
from A∗ that contain the infix aba. In other words, L = A∗abaA∗.

24 / 31

Minimal Automata

We have Q0 = {L} and Q1 = Q0 ∪ {a−1L, b−1L}. Note that

a−1L = a−1(A∗abaA∗)

= (a−1A∗)(abaA∗) ∪ (A∗ ∩ {λ})a−1(abaA∗)

= A∗abaA∗ ∪ baA∗

= L ∪ baA∗

and

b−1L = b−1(A∗abaA∗)

= (b−1A∗)(abaA∗) ∪ (A∗ ∩ {λ})b−1(abaA∗)

= A∗abaA∗

= L,

because b−1(abaA∗) = ∅, (A∗ ∩ {λ})b−1(abaA∗) = ∅, and b−1A∗ = A∗.

25 / 31

Minimal Automata

Thus,
Q1 = {L, L ∪ baA∗}.

Next, in order to compute Q2, observe that

a−1baA∗ = ∅
b−1baA∗ = aA∗.

We obtain:

a−1(L ∪ baA∗) = a−1L = L ∪ baA∗

b−1(L ∪ baA∗) = b−1L ∪ aA∗ = L ∪ aA∗,

26 / 31

Minimal Automata

To compute Q2, observe that

a−1baA∗ = ∅
b−1baA∗ = aA∗.

We obtain:

a−1(L ∪ baA∗) = a−1L = L ∪ baA∗

b−1(L ∪ baA∗) = b−1L ∪ aA∗ = L ∪ aA∗,

The collection Q2 is

Q2 = {L, L ∪ baA∗, L ∪ aA∗}

27 / 31

Minimal Automata

Now we have

a−1aA∗ = A∗

b−1aA∗ = ∅,

which allows us to write:

a−1(L ∪ aA∗) = a−1L ∪ A∗ = A∗

b−1(L ∪ aA∗) = b−1L = L.

The collection Q3 is given by

Q3 = {L, L ∪ baA∗, L ∪ aA∗,A∗}.

28 / 31

Minimal Automata

Since a−1A∗ = b−1A∗ = A∗, it follows that Q4 = Q3, so

QL = {L, L ∪ baA∗, L ∪ aA∗,A∗}.

The automaton ML is defined by the following table:

State
Input L L ∪ baA∗ L ∪ aA∗ A∗

a L ∪ baA∗ L ∪ baA∗ A∗ A∗

b L L ∪ aA∗ L A∗

29 / 31

Minimal Automata

Since FL = {δ∗(L, x) | x ∈ L}, we can compute FL by determining
those members of QL that can be reached from the initial state L
using words from L of length not greater than 3.

The language L contains only one word of length 3, namely aba, so
FL = {δ∗(L, aba)} = {A∗}. The graph of ML is given next.

30 / 31

Minimal Automata

u u u u- - - -a b a

� �
b

�

�
�
�
�

�
�
�
� �

�
�
�
a

6

-
a

A∗L ∪ aA∗L L ∪ baA∗

b

-

j
6

b

31 / 31

	Outline
	Minimal Automata

