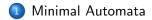
Finite Automata and Regular Languages (part VI)

Prof. Dan A. Simovici

UMB



For any regular language L there are several automata that are capable of recognizing it. Naturally, we are interested in finding among these automata the ones that have the smallest number of states.

Definition

The *Nerode equivalence* of a language $L \subseteq A^*$ is the relation:

$$\nu_L = \{(x, y) \in A^* \times A^* \mid xw \in L \text{ if and only if} \\ yw \in L \text{ for every } w \in A^* \}.$$

The relation ν_L is a right-invariant equivalence relation. In other words: if $(x, y) \in \nu_L$, then $(xu, yu) \in \nu_L$ for every $u \in A^*$. In terms of equivalence classes, $[x]_{\nu_L} = [y]_{\nu_L}$ implies $[xu]_{\nu_L} = [yu]_{\nu_L}$ for every $u \in A^*$.

Recall that $[x]_{\nu_L}$ denotes the ν_L -equivalence class of the word x. The set of all equivalence classes of ν_L will be denoted by A^*/ν_L .

Lemma

Let $L \subseteq A^*$ be a language over an alphabet A. We have $(x, y) \in \nu_L$ if and only if $x^{-1}L = y^{-1}L$.

Proof

Let $x, y \in A^*$ such that $(x, y) \in \nu_L$, and let $t \in x^{-1}L$. This means that $xt \in L$, which implies $yt \in L$ because of the definition of ν_L . Therefore, $t \in y^{-1}L$, so $x^{-1}L \subseteq y^{-1}L$. The reverse inclusion can be obtained in the same manner, so $x^{-1}L = y^{-1}L$. Conversely, if $x^{-1}L = y^{-1}L$, then $xt \in L$ if and only if $yt \in L$ for every $t \in A^*$, which means that $(x, y) \in \nu_L$.

Definition

Let $L \subseteq A^*$ be a language over the alphabet A. The set of left derivatives of L is the set $\mathfrak{Q}_L = \{t^{-1}L \mid t \in A^*\}$.

Lemma

Let $L \subseteq A^*$ be a language over an alphabet A. The set of left derivatives of L is finite if and only if A^*/ν_L is finite.

Proof.

The function $h_L : A^*/\nu_L \longrightarrow \mathfrak{Q}_L$ defined by $h_L([x]_{\nu_L}) = x^{-1}L$ is a bijection. The desired conclusion follows immediately.

Lemma

Any language $L \subseteq A^*$ is a ν_L -saturated set.

Proof.

In order to prove that *L* is ν_L -saturated, it suffices to show that the ν_L -equivalence class of every $x \in L$ is included in *L*. Let $x \in L$. If $(x, y) \in \nu_L$, then $yz \in L$ whenever $xz \in L$ for any $z \in A^*$. Selecting $z = \lambda$ gives the required result.

- Note that the previous lemma is equivalent to saying that for all words x, y ∈ A*, if x ∈ L and x⁻¹L = y⁻¹L, then y ∈ L.
- No assumption is made about the language L; in particular, L need not be regular.

Definition

Let $L \subseteq A^*$ be a language over the alphabet A.

The automaton of the language L is the deterministic automaton $\mathfrak{M}_L = (A, \mathfrak{Q}_L, \delta_L, L, F_L)$ is defined by $\delta_L(t^{-1}L, a) = (ta)^{-1}L$ for $t \in A^*$ and $a \in A$, and $F_L = \{x^{-1}L \mid x \in L\}$.

Remarks

- The mapping δ_L is well defined; that is, t⁻¹L = y⁻¹L implies (ta)⁻¹L = (ya)⁻¹L. Indeed, let w ∈ (ta)⁻¹L. We have taw ∈ L which implies aw ∈ t⁻¹L = y⁻¹L. Consequently, yaw ∈ L, so w ∈ (ya)⁻¹L. Thus, (ta)⁻¹L ⊆ (ya)⁻¹L. The reverse inclusion can be shown similarly, so (ta)⁻¹L = (ya)⁻¹L.
- We have $\delta(t^{-1}L, a) = a^{-1}(t^{-1}L)$ for every $t \in A^*$ and $a \in A$. This remark is very important for the algorithm discussed next.

We have

$$\delta_L^*(x^{-1}L, y) = (xy)^{-1}L$$

for every $x, y \in A^*$.

The argument is by induction on $\ell = |y|$. The basis case, $\ell = 0$, is immediate. Suppose that the equality holds for words of length less than ℓ , and let y be a word of length ℓ . We have y = za, where $z \in A^*$, $a \in A$ and $|z| = \ell - 1$. This gives:

$$\delta_{L}^{*}(x^{-1}L, y) = \delta_{L}(x^{-1}L, za) = \delta_{L}(\delta_{L}^{*}(x^{-1}L, z), a) = \delta_{L}((xz)^{-1}L, a) = (xza)^{-1}L = (xy)^{-1}L$$

The set of final states of \mathcal{M}_L can now be written as

$$F_L = \{\delta^*(L, x) \mid x \in L\},\$$

which allows us to compute the set F_L , once we have computed the transition function.

Nerode's Theorem:

Theorem

The language L is regular if and only if the set Q_L is finite.

Proof

Suppose that the set Ω_L is finite. In this case \mathcal{M}_L is a dfa and we have

$$L(\mathcal{M}_L) = \{ x \in A^* \mid \delta_L^*(L, x) \in F_L \}$$

= $\{ x \in A^* \mid x^{-1}L \in F_L \}.$

From the definition of F_L it follows that $x \in L(\mathcal{M}_L)$ implies that $x^{-1}L = z^{-1}L$ for some word $z \in L$, which shows that $(x, z) \in \nu_L$. Since L is a ν_L -saturated set, this implies $x \in L$. The reverse inclusion, $L \subseteq L(\mathcal{M}_L)$ is immediate, and it is left to the reader. Therefore, L is accepted by the dfa \mathcal{M}_L , so L is regular.

Conversely, suppose that L is a regular language. The finiteness of the set Ω_L follows from a previous Corollary.

Theorem

Let L be a regular language. The automaton \mathcal{M}_L has the least number of states among all dfas that accept L.

Proof

Let $\mathcal{M} = (A, Q, \delta, q_0, F)$ be a dfa such that $L = L(\mathcal{M})$. We intend to show that $|\Omega_L| \leq |Q|$. Clearly, if \mathcal{M} is to be minimal, it must be accessible, otherwise the automaton resulting from removing inaccessible states accepts the same language but has fewer states. In other words, we assume that for every state $q \in Q$ there exists a word $t \in A^*$ such that $\delta^*(q_0, t) = q$. Define the mapping $f : Q \longrightarrow \Omega_L$ by $f(q) = t^{-1}L$ if $\delta^*(q_0, t) = q$.

Proof (cont'd)

We need to verify that f is well-defined, that is, that $\delta^*(q_0, u) = \delta^*(q_0, v)$ implies $u^{-1}L = v^{-1}L$. If $x \in u^{-1}L$, then $ux \in L$, that is, $\delta^*(q_0, ux) \in F$. Since $\delta^*(q_0, ux) = \delta^*(\delta^*(q_0, u), x)$ and $\delta^*(q_0, u) = \delta^*(q_0, v)$, it follows that $\delta^*(\delta^*(q_0, v), x) = \delta^*(q_0, vx) \in F$, so $vx \in L$ and $x \in v^{-1}L$. The reverse implication can be obtained by exchanging u and v, so f is indeed well-defined.

It is clear that the mapping f is surjective, so $|\Omega_L| \le |Q|$, which shows that \mathcal{M}_L has the least number of states among all dfas that accept the language L.

The Algorithm

Input: A regular language *L* over an alphabet *A*. **Output:** The set Ω_L of left derivatives of *L*. **Method:** Construct an increasing chain $\Omega_0, \ldots, \Omega_k, \ldots$ of finite subsets of Ω_L as follows:

$$\begin{array}{rcl} \Omega_0 &=& \{L\} \\ \Omega_{k+1} &=& \Omega_k \cup \{a^{-1}K \mid a \in A \text{ and } K \in \Omega_k\} \end{array}$$

Continue until $Q_{k+1} = Q_k$; then stop and output Q_k .

Proof of Correctness:

The algorithm must stop, since Ω_L is a finite set. It is easy to see that $K \in \Omega_p$ if and only if the set K (considered as a state of the automaton \mathcal{M}_L) can be reached by a word of length less than or equal to p in \mathcal{M}_L . Every state of the automaton \mathcal{M}_L can be reached through a word of length less than $|\Omega_L|$. Therefore, when the algorithm stops, all members of Ω_L have been computed. We recall several equalities previously shown that are useful in the computation of left derivatives of languages. Namely, if L, K are two languages over the alphabet A and $a \in A$, then we have:

$$a^{-1}(L \cup K) = a^{-1}L \cup a^{-1}K$$

$$a^{-1}(LK) = (a^{-1}L)K \cup (L \cap \{\lambda\})a^{-1}K$$

$$a^{-1}L^* = (a^{-1}L)L^*$$

Example

Let $A = \{a, b\}$. Consider the regular language L that consists of all words from A^* that contain the infix *aba*. In other words, $L = A^* abaA^*$.

We have $Q_0 = \{L\}$ and $Q_1 = Q_0 \cup \{a^{-1}L, b^{-1}L\}$. Note that

$$a^{-1}L = a^{-1}(A^*abaA^*)$$

= $(a^{-1}A^*)(abaA^*) \cup (A^* \cap \{\lambda\})a^{-1}(abaA^*)$
= $A^*abaA^* \cup baA^*$
= $L \cup baA^*$

and

$$b^{-1}L = b^{-1}(A^* a b a A^*)$$

= $(b^{-1}A^*)(a b a A^*) \cup (A^* \cap \{\lambda\})b^{-1}(a b a A^*)$
= $A^* a b a A^*$
= L ,

because $b^{-1}(abaA^*) = \emptyset$, $(A^* \cap \{\lambda\})b^{-1}(abaA^*) = \emptyset$, and $b^{-1}A^* = A^*$.

Thus,

$$\mathfrak{Q}_1 = \{L, L \cup baA^*\}.$$

Next, in order to compute $\ensuremath{\mathbb{Q}}_2$, observe that

$$a^{-1}baA^*=\emptyset\ b^{-1}baA^*=aA^*.$$

We obtain:

$$a^{-1}(L \cup baA^*) = a^{-1}L = L \cup baA^*$$

 $b^{-1}(L \cup baA^*) = b^{-1}L \cup aA^* = L \cup aA^*,$

To compute Q_2 , observe that

$$a^{-1}baA^* = \emptyset$$
$$b^{-1}baA^* = aA^*.$$

We obtain:

$$a^{-1}(L \cup baA^*) = a^{-1}L = L \cup baA^*$$

$$b^{-1}(L \cup baA^*) = b^{-1}L \cup aA^* = L \cup aA^*,$$

The collection Q_2 is

$$\mathfrak{Q}_2 = \{L, L \cup baA^*, L \cup aA^*\}$$

Now we have

$$egin{array}{rcl} a^{-1}aA^*&=&A^*\ b^{-1}aA^*&=&\emptyset, \end{array}$$

which allows us to write:

$$a^{-1}(L \cup aA^*) = a^{-1}L \cup A^* = A^*$$

 $b^{-1}(L \cup aA^*) = b^{-1}L = L.$

The collection Ω_3 is given by

$$\mathfrak{Q}_{3} = \{L, L \cup baA^{*}, L \cup aA^{*}, A^{*}\}.$$

Since
$$a^{-1}A^* = b^{-1}A^* = A^*$$
, it follows that $\mathfrak{Q}_4 = \mathfrak{Q}_3$, so

$$\mathcal{Q}_L = \{L, L \cup baA^*, L \cup aA^*, A^*\}.$$

The automaton \mathcal{M}_L is defined by the following table:

	State			
Input	L	$L \cup baA^*$	$L \cup aA^*$	<i>A</i> *
а	$L \cup baA^*$	$L \cup baA^*$	A*	<i>A</i> *
b	L	$L\cup aA^*$	L	<i>A</i> *

- Since F_L = {δ*(L, x) | x ∈ L}, we can compute F_L by determining those members of Ω_L that can be reached from the initial state L using words from L of length not greater than 3.
- The language *L* contains only one word of length 3, namely *aba*, so $F_L = \{\delta^*(L, aba)\} = \{A^*\}$. The graph of \mathcal{M}_L is given next.

