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Minimal Automata

For any regular language L there are several automata that are capable of
recognizing it. Naturally, we are interested in finding among these
automata the ones that have the smallest number of states.
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Minimal Automata

Definition
The Nerode equivalence of a language L C A* is the relation:

v = {(x,y) € A" x A" | xw € L if and only if
yw € L for every w € A*}.

4/31



Minimal Automata

The relation v, is a right-invariant equivalence relation.

In other words: if (x,y) € v, then (xu, yu) € v, for every u € A*. In
terms of equivalence classes, [x],, = [y]., implies [xu],, = [yu],, for every
uec A"

Recall that [x],, denotes the v;-equivalence class of the word x. The set
of all equivalence classes of v, will be denoted by A* /v, .
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Minimal Automata

Lemma

Let L C A* be a language over an alphabet A. We have (x,y) € v if and
only if x 'L =y~ 'L
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Proof

Let x,y € A* such that (x,y) € v, and let t € x~1L. This means that
xt € L, which implies yt € L because of the definition of ;. Therefore,
t €y 1L, so x 1L C y~'L. The reverse inclusion can be obtained in the
same manner, so x 1L = y_lL.

Conversely, if x71L = y~1L, then xt € L if and only if yt € L for every

t € A*, which means that (x,y) € v,.
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Minimal Automata

Definition
Let L C A* be a language over the alphabet A. The set of left derivatives
of Listheset Q = {t71L | t € A*}.
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Minimal Automata

Lemma

Let L C A* be a language over an alphabet A. The set of left derivatives
of L is finite if and only if A* /v is finite.

Proof.
The function h; : A* /vy — Q; defined by hy([x],,) = x 1L is a bijection.
The desired conclusion follows immediately. O
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Minimal Automata

Lemma

Any language L C A* is a v, -saturated set.

Proof.

In order to prove that L is v;-saturated, it suffices to show that the
vi-equivalence class of every x € Lis included in L. Let x € L. If

(x,y) € v, then yz € L whenever xz € L for any z € A*. Selecting z = \
gives the required result. [

v
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Minimal Automata

o Note that the previous lemma is equivalent to saying that for all
words x,y € A*, if x € Land x 1L =y~ 'L, then y € L.

@ No assumption is made about the language L; in particular, L need
not be regular.
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Minimal Automata

Definition

Let L C A* be a language over the alphabet A.

The automaton of the language L is the deterministic automaton

M, = (A, 9,0, L, Fp) is defined by 6, (t~1L,a) = (ta) 1L for t € A* and
ac€A and FL = {x71L | xe L}
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Remarks

o The mapping ¢, is well defined; that is, t 1L = y =1L implies
(ta)™1L = (ya)~'L. Indeed, let w € (ta)"1L. We have taw € L which
implies aw € t71L = y~1L. Consequently, yaw € L, so w € (ya)~'L.
Thus, (ta)™'L C (ya) 1L. The reverse inclusion can be shown
similarly, so (ta)~*L = (ya)~'L.

o We have 6(t71L,a) = a~1(t71L) for every t € A* and a € A. This
remark is very important for the algorithm discussed next.
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Minimal Automata

We have

S (xTLy) = ()7L
for every x,y € A*.
The argument is by induction on ¢ = |y|. The basis case, £ =0, is
immediate. Suppose that the equality holds for words of length less than
£, and let y be a word of length ¢. We have y = za, where z € A*, a € A
and |z| = ¢ — 1. This gives:

i (x"'Ly)
= §f(x7IL, za) = 0,(0}(x 1L, 2), a)
= 0((x2)7IL, a) = (xza) L = (xy) 7L
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Minimal Automata

The set of final states of M; can now be written as
Fr ={6"(L,x) | x € L},

which allows us to compute the set F;, once we have computed the
transition function.
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Minimal Automata

Nerode’s Theorem:

Theorem
The language L is regular if and only if the set Q; is finite. J
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Proof

Suppose that the set Q, is finite. In this case M, is a dfa and we have

LML) = {xeA* | &(Lx)eF}
= {xe A" | xLeF}.

From the definition of F; it follows that x € L(M,) implies that

x~1L = 271 for some word z € L, which shows that (x,z) € v. Since L
is a v -saturated set, this implies x € L. The reverse inclusion, L C L(M)
is immediate, and it is left to the reader. Therefore, L is accepted by the
dfa My, so L is regular.

Conversely, suppose that L is a regular language. The finiteness of the set
Qy follows from a previous Corollary.
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Minimal Automata

Theorem

Let L be a regular language. The automaton M, has the least number of
states among all dfas that accept L.
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Proof

Let M = (A, Q, 9, qo, F) be a dfa such that L = L(M). We intend to show
that |Q;| < |Q|. Clearly, if M is to be minimal, it must be accessible,
otherwise the automaton resulting from removing inaccessible states
accepts the same language but has fewer states. In other words, we
assume that for every state g € @ there exists a word t € A* such that
6*(qo,t) = q.

Define the mapping f : @ — Q; by f(q) = t~L if *(qo,t) = q.
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Proof (cont'd)

We need to verify that f is well-defined, that is, that 6*(qo, u) = 6*(qo, v)
implies u™L = v71L. If x € u™1L, then ux € L, that is, §*(qo, ux) € F.
Since §*(qo, ux) = 6*(0*(qo, u), x) and 6*(qo, u) = 0*(qo, v), it follows
that 6*(6*(qo, v),x) = 6*(qo,vx) € F, so vx € L and x € v~1L. The
reverse implication can be obtained by exchanging u and v, so f is indeed
well-defined.

It is clear that the mapping f is surjective, so |Q;| < |Q|, which shows
that M, has the least number of states among all dfas that accept the
language L.
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The Algorithm

Input: A regular language L over an alphabet A.

Output: The set Q; of left derivatives of L.

Method: Construct an increasing chain Qg, ..., Qy, ... of finite subsets of
Q, as follows:

Q = {L}
Qi1 = QU{a 'K |acAand K€ Q)

Continue until Q11 = Qg; then stop and output Q.
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Minimal Automata

Proof of Correctness:

The algorithm must stop, since Q; is a finite set. It is easy to see that

K € Q, if and only if the set K (considered as a state of the automaton
M) can be reached by a word of length less than or equal to p in M;.
Every state of the automaton M, can be reached through a word of length
less than |Q;|. Therefore, when the algorithm stops, all members of Q;
have been computed.
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Minimal Automata

We recall several equalities previously shown that are useful in the
computation of left derivatives of languages. Namely, if L, K are two
languages over the alphabet A and a € A, then we have:

a Y (LUK) = alLualk
a Y(LK) = (@ )KU(LN{ADatK
a 'l = (a7t
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Minimal Automata

Example

Let A= {a, b}. Consider the regular language L that consists of all words
from A* that contain the infix aba. In other words, L = A*abaA*.
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Minimal Automata

We have Qo = {L} and Q; = Qo U {a~1L,b~1L}. Note that

all = al(A*abaA*)

(a~LA*)(abaA*) U (A* N {A})a(abaA®)
A*abaA* U baA*

= LU baA*

and

b~'L = b l(A*abaA*)

(b~ A*)(abaA*) U (A* N {\})b ! (abaA*)
A*abaA*

= L,

because b~1(abaA*) = 0, (A* N {\})b~1(abaA*) = (), and b~1A* = A*
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Minimal Automata

Thus,
Q1 ={L,LU baA*}.

Next, in order to compute Qy, observe that

a lhaA* = 0
b~ lhaA* = aA*.

We obtain:

a Y(LUbaA*) = alL=LUbaA"
b~ Y(LUbaA*) = b lLUaA* = LUaA*
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Minimal Automata

To compute 9y, observe that

a lhaA* =
b~ lhaA* = aA*.

We obtain:

Y{LubaA*)y = a 'L = LU baA*

=
b~Y(LUbaA*) = b lLUaA* = LU aA",

The collection Q5 is

Qp = {L, LU baA*, LU aA*}
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Minimal Automata

Now we have

a laA® = A*
b~laA* = 0,
which allows us to write:
al(LuaA*) = alLUA*=A"

bl (LUaA*) = b lL=L

The collection Q3 is given by

Qs = {L, LU baA*, L U aA*, A*}.
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Minimal Automata

Since a 1A* = b~ 1A* = A*, it follows that Q4 = Q3, so

Q, = {L, LU baA*, LU aA*, A*}.

The automaton M, is defined by the following table:

State
Input L LU baA* | LU aA* | A*
a LU baA* | LU baA* A* A*
b L LU aA* L A*
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Minimal Automata

e Since F; = {6*(L,x) | x € L}, we can compute F; by determining
those members of Q; that can be reached from the initial state L
using words from L of length not greater than 3.

@ The language L contains only one word of length 3, namely aba, so
Fi = {6*(L,aba)} = {A*}. The graph of M is given next.
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Minimal Automata
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