Support Vector Machines - I

Prof. Dan A. Simovici

UMB

2 SVM - The Separable Case

3 SVM - The Non-Separable Case

Problem Setting

- the input space is $\mathcal{X} \subseteq \mathbb{R}^n$;
- the output space is $\mathcal{Y} = \{-1, 1\}$;
- sample: a sequence $S = ((\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)) \in (\mathcal{X} \times \mathcal{Y})^m$ extracted from a distribution \mathcal{D} .
- concept sought: a function $f : \mathcal{X} \longrightarrow \mathcal{Y}$ such that $f(\mathbf{x}_i) = y_i$ for $1 \leq i \leq m$;

Problem Statement

- the hypothesis space H is $H \subseteq \mathcal{Y}^{\mathcal{X}}$;
- task: find $h \in H$ such that the generalization error

$$L_{\mathcal{D}}(h) = P_{x \sim \mathcal{D}}(h(\mathbf{x}) \neq f(\mathbf{x}))$$

is small.

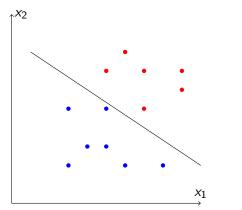
The smaller the VCD(H) the more efficient the process is. One possibility is the class of linear functions from \mathcal{X} to \mathcal{Y} :

$$H = \{\mathbf{x} \rightsquigarrow sign(\mathbf{w}'\mathbf{x} + b) \mid \mathbf{w} \in \mathbb{R}^n, b \in \mathbb{R}\},\$$

where

$$sign(a) = egin{cases} 1 & ext{if } a \geqslant 0, \ -1 & ext{if } a < 0. \end{cases}$$

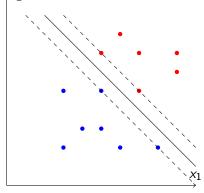
A Fundamental Assumption: Linear Separability of S



If S is linearly separable there are, in general, infinitely many hyperplanes that can do the separation.

Solution returned by SVMs

SVMs seek the hyperplane with the maximum separation margin. $r_{\uparrow}^{x_2}$



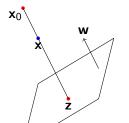
The distance of a point \mathbf{x}_0 to a hyperplane $\mathbf{w}'\mathbf{x} + b = 0$

Equation of the line passing through \mathbf{x}_0 and perpendicular on the hyperplane is

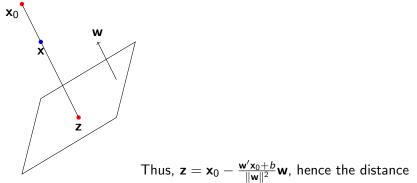
$$\mathbf{x} - \mathbf{x}_0 = t\mathbf{w};$$

Since z is a point on this line that belongs to the hyperplane, to find the value of t that corresponds to z we must have $\mathbf{w}'(\mathbf{x}_0 + t\mathbf{w}) + b = 0$, that is,

$$t = -\frac{\mathbf{w}'\mathbf{x}_0 + b}{\parallel \mathbf{w} \parallel^2}$$



The distance of a point \mathbf{x}_0 to a hyperplane $\mathbf{w}'\mathbf{x} + b = 0$



from \mathbf{x}_0 to the hyperplane is

$$\parallel \mathbf{x}_0 - \mathbf{z} \parallel = \frac{|\mathbf{w}'\mathbf{x}_0 + b|}{\parallel \mathbf{w} \parallel}.$$

Primal Optimization Problem

We seek a hyperplane in \mathbb{R}^n having the equation

$$\mathbf{w}'\mathbf{x}+b=\mathbf{0},$$

where $\mathbf{w} \in \mathbb{R}^n$ is a vector normal to the hyperplane and $b \in \mathbb{R}$ is a scalar.

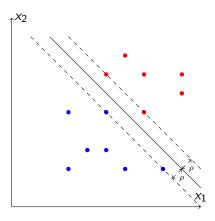
A hyperplane $\mathbf{w}'\mathbf{x} + b = 0$ that does not pass through a point of a set S is in canonical form relative to S if

$$\min_{(\mathbf{x},y)\in S} |\mathbf{w}'\mathbf{x} + b| = 1.$$

Note that we may always assume that the separating hyperplane are in canonical form relative by S by rescaling the coefficients of the equation that define the hyperplane (the components of **w** and b).

If the hyperplane $\mathbf{w}'\mathbf{x} + b = 0$ is in canonical form relative to *S*, then the distance to the hyperplane to the closest points in *S* (the margin of the hyperplane) is the same, namely,

$$\rho = \min_{(\mathbf{x}, y) \in S} \frac{|\mathbf{w}' \mathbf{x} + b|}{\parallel \mathbf{w} \parallel} = \frac{1}{\parallel \mathbf{w} \parallel}$$



Canonical Separating Hyperplane

For a canonical separating hyperplane we have

 $|\mathbf{w'x} + b| \ge 1$

for any point (\mathbf{x}, y) of the sample and

$$|\mathbf{w'x} + b| = 1$$

for every support point. The point (\mathbf{x}_i, y_i) is classified correctly if y_i has the same sign as $\mathbf{w}'\mathbf{x}_i + b$, that is, $y_i(\mathbf{w}'\mathbf{x}_i + b) \ge 1$. Maximizing the margin is equivalent to minimizing $\|\mathbf{w}\|$ or, equivalently, to minimizing $\frac{1}{2} \|\mathbf{w}\|^2$. Thus, in the separable case the SVM problem is equivalent to the following convex optimization problem:

- minimize $\frac{1}{2} \parallel \mathbf{w} \parallel^2$;
- subjected to $y_i(\mathbf{w}'\mathbf{x}_i + b) \ge 1$ for $1 \le i \le m$.

Example

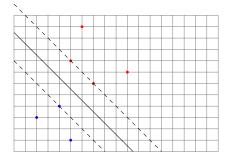
Consider a set S that consists of seven points in $\mathbb{R}^2 \times \{-1, 1\}$:

positive examples:

negative examples:

$$\begin{pmatrix} 5\\8 \end{pmatrix}, \begin{pmatrix} 7\\6 \end{pmatrix}, \begin{pmatrix} 10\\7 \end{pmatrix}, \begin{pmatrix} 6\\11 \end{pmatrix}, \\ \begin{pmatrix} 4\\4 \end{pmatrix}, \begin{pmatrix} 5\\1 \end{pmatrix}, \begin{pmatrix} 2\\3 \end{pmatrix}.$$

Example cont'd



Example cont'd

We seek a hyperplane (in this case, a line in $\mathbb{R}^2)$ having the equation

$$w_1x_1 + w_2x_2 + b = 0.$$

The support points are

$$\left(\begin{array}{c}5\\8\end{array}\right), \left(\begin{array}{c}7\\6\end{array}\right), \left(\begin{array}{c}4\\4\end{array}\right),$$

and we must have

$$5w_1 + 8w_2 + b = 1, 7w_1 + 6w_2 + b = 1.4w_1 + 4w_2 + b = -1.$$

The solution of the above system is:

$$w_1 = \frac{2}{5}, w_2 = \frac{-2}{5}, b = \frac{11}{5}.$$

Since $|| \mathbf{w} || = \sqrt{0.4^2 + 0.4^2} = 0.4\sqrt{2}$, we have $\rho = \frac{1}{\sqrt{||w||}} = \frac{5\sqrt{2}}{4} \sim 1.76.$

Why
$$\frac{1}{2} \parallel w \parallel^2$$
?

Note that this objective function,

$$\frac{1}{2} \parallel \mathbf{w} \parallel^2 = \frac{1}{2} (w_1^2 + \dots + w_n^2)$$

is differentiable! We have $\nabla\left(\frac{1}{2}\parallel \mathbf{w}\parallel^2
ight)=\mathbf{w}$ and that

$$H_{\frac{1}{2}\|\mathbf{w}\|^2} = \mathbf{I}_n,$$

which shows that $\frac{1}{2} \parallel \mathbf{w} \parallel^2$ is a convex function of \mathbf{w} .

Support Vectors

The Lagrangean of the optimization problem

is

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \parallel \mathbf{w} \parallel^2 - \sum_{i=1}^m a_i \left(y_i (\mathbf{w}' \mathbf{x}_i + b) - 1 \right).$$

The Karush-Kuhn-Tucker Optimality Conditions

$$\nabla_{\mathbf{w}} L = \mathbf{w} - \sum_{i=1}^{m} a_i y_i \mathbf{x}_i = 0,$$
$$\nabla_b L = -\sum_{i=1}^{m} a_i y_i = 0,$$
$$a_i (y_i (\mathbf{w}' \mathbf{x}_i + b) - 1) = 0 \text{ for all } i$$

m

imply

$$\mathbf{w} = \sum_{i=1}^{m} a_i y_i \mathbf{x}_i = 0, \sum_{i=1}^{m} a_i y_i = 0,$$

$$a_i = 0 \text{ or } y_i (\mathbf{w}' \mathbf{x}_i + b) = 1 \text{ for } 1 \leq i \leq m.$$

Consequences of the KKT Conditions

the weight vector is a linear combination of the training vectors x₁,..., x_m, where x_i appears in this combination only if a_i ≠ 0 (support vectors);

since
$$a_i(y_i(\mathbf{w}'\mathbf{x}_i + b) - 1) = 0$$
 or
 $y_i(\mathbf{w}'\mathbf{x}_i + b) = 1$ for $1 \le i \le m$, we have $a_i = 0$ or
 $y_i(\mathbf{w}'\mathbf{x}_i + b) = 1$ for all i , if $a_i \ne 0$; thus, $y_i(\mathbf{w}'\mathbf{x}_i + b) = 1$ for
the support vectors;

- if non-support vector are removed the solution remains the same;
- while the solution of the problem w remains the same different choices may be possible for the support vectors.

Recall that the optimization problem for SVMs was

$$\begin{array}{l} \textit{minimize } \frac{1}{2} \parallel \mathbf{w} \parallel^2 \\ \textit{subject to } y_i(\mathbf{w'x} + b) \ge 1 \textit{ for } 1 \leqslant i \leqslant m \end{array}$$

Equivalently, the constraints are

$$1 - y_i(\mathbf{w}'\mathbf{x} + b) \leqslant 0$$

for $1 \leq i \leq m$. The Lagrangean is

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \| \mathbf{w} \|^2 + \sum_{i=1}^m a_i (1 - y_i (\mathbf{w}' \mathbf{x}_i + b)) \\ = \frac{1}{2} \| \mathbf{w} \|^2 + \sum_{i=1}^m a_i - \sum_{i=1}^m a_i y_i \mathbf{w}' \mathbf{x}_i - b \sum_{i=1}^m a_i y_i.$$

Support Vector Machines - I

The Dual Problem

maximize L(w, b, a) The KKT conditions are

$$(\nabla_{\mathbf{w}}L) = \mathbf{w} - \sum_{i=1}^{m} a_i y_i \mathbf{x}_i = \mathbf{0},$$

$$(\nabla_b L) = -\sum_{i=1}^{m} a_i y_i = 0,$$

$$a_i (1 - y_i (\mathbf{w}' \mathbf{x}_i + b)) = 0,$$

which are equivalent to

$$\mathbf{w} = \sum_{i=1}^{m} a_i y_i \mathbf{x}_i,$$

$$\sum_{i=1}^{m} a_i y_i = 0,$$

$$a_i = 0 \quad \text{or} \quad y_i (\mathbf{w}' \mathbf{x}_i + b) = 1,$$

respectively.

Implications

- the weight vector w is a linear combination of the training vectors x₁,..., x_m;
- a vector \mathbf{x}_i appears in \mathbf{w} if and only if $a_i \neq 0$ (such vectors are called support vectors);
- if $a_i \neq 0$, then $y_i(\mathbf{w}'\mathbf{x}_i + b) = \pm 1$.

Note that support vectors define the maximum margin hyperplane, or the SVM solution.

Transforming the Lagrangean

Since

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \| \mathbf{w} \|^2 + \sum_{i=1}^m a_i - \sum_{i=1}^m a_i y_i \mathbf{w}' \mathbf{x}_i - b \sum_{i=1}^m a_i y_i,$$

 $\mathbf{w} = \sum_{j=1}^{m} a_j y_j \mathbf{x}_j$ (note that we changed the summation index from *i* to *j*), and $\sum_{i=1}^{m} a_i y_i = 0$, we have

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \| \mathbf{w} \|^2 + \sum_{i=1}^m a_i - \sum_{i=1}^m \sum_{j=1}^m a_i a_j y_i y_j \mathbf{x}'_j \mathbf{x}_i.$$

Further Transformation of the Lagrangean

Note that

$$\|\mathbf{w}\|^{2} = \mathbf{w}'\mathbf{w} = \left(\sum_{j=1}^{m} a_{j}y_{j}\mathbf{x}'_{j}\right) \left(\sum_{i=1}^{m} a_{i}y_{i}\mathbf{x}_{i}\right),$$
$$= \sum_{i=1}^{m} \sum_{j=1}^{m} a_{i}a_{j}y_{i}y_{j}\mathbf{x}'_{j}\mathbf{x}_{i}.$$

Therefore,

$$L(\mathbf{w}, b, \mathbf{a}) = \frac{1}{2} \| \mathbf{w} \|^2 + \sum_{i=1}^m a_i - \sum_{i=1}^m \sum_{j=1}^m a_i a_j y_i y_j \mathbf{x}'_j \mathbf{x}_i$$
$$= \sum_{i=1}^m a_i - \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^m a_i a_j y_i y_j \mathbf{x}'_j \mathbf{x}_i.$$

The Dual Optimization Problem for Separable Sets

maximize
$$\sum_{i=1}^{m} a_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j y_i y_j \mathbf{x}'_i \mathbf{x}_j$$

subject to $a_i \ge 0$ for $1 \le i \le m$ and $\sum_{i=1}^{m} a_i y_i = 0$.

Note that the objective function depends on a_1, \ldots, a_m .

- in this case the strong duality holds; therefore, the primal and the dual problems are equivalent;
- the solution a of the dual problem can be used directly to determine the hypothesis returned by the SVM as

$$h(\mathbf{x}) = sign(\mathbf{w}'\mathbf{x} + b) = sign\left(\sum_{i=1}^{m} a_i y_i(\mathbf{x}'_i\mathbf{x}) + b\right);$$

since support vectors lie on the marginal hyperplanes, for every support vector x_i we have w'x_i + b = y_i, so

$$b = y_i - \sum_{j=1}^m a_j y_j(\mathbf{x}'_j \mathbf{x}).$$

Slack Variables

If data is not separable the conditions $y_i(\mathbf{w}'\mathbf{x}_i + b) \ge 1$ cannot all hold (for $1 \le i \le m$). Instead, we impose a relaxed version, namely

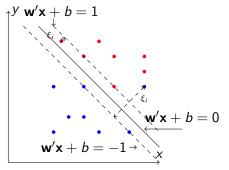
$$y_i(\mathbf{w}'\mathbf{x}_i+b) \ge 1-\xi_i,$$

where ξ_i are new variables known as slack variables.

A slack variable ξ_i measures the distance by which \mathbf{x}_i violates the desired inequality $y_i(\mathbf{w}'\mathbf{x}_i + b) \ge 1$.

Support Vector Machines - I

SVM - The Non-Separable Case



A vector \mathbf{x}_i is an outlier if \mathbf{x}_i is not positioned correctly on the side of the appropriate hyperplane.

- a vector x_i with 0 < y_i(w'x_i + b) < 1 is still an outlier even if it is correctly classified by the hyperplane w'x + b = 0 (see the red point);
- if we omit the outliers the data is correctly separated by the hyperplane w'x + b = 0 with a soft margin ρ = 1/||w||;
- we wish to limit the amount of slack due to outliers (∑_{i=1}^m ξ_i), but we also seek a hyperplane with a large margin (even though this may lead to more outliers).

Optimization for Non-Separable Data

minimize
$$\frac{1}{2} \parallel \mathbf{w} \parallel^2 + C \sum_{i=1}^m \xi_i^p$$

subject to $y_i(\mathbf{w}'\mathbf{x}_i + b) \ge 1 - \xi_i$ and $\xi_i \ge 0$ for $1 \le i \le m$.

The parameter C is determined in the process of cross-validation. This is a convex optimization problem with affine constraints.

Support Vectors

As in the separable case:

- constraints are affine and thus, qualified;
- the objective function and the affine constraints are convex and differentiable;
- thus, the KKT conditions apply.

Support Vector Machines - I

Variables

- $a_i \ge 0$ for $1 \le i \le m$ are variables associated with m constraints;
- b_i ≥ 0 for 1 ≤ i ≤ m are variables associated with the non-negativity constraints of the slack variables.

The Lagrangean is defined as:

$$L(\mathbf{w}, b, \xi_1, \dots, \xi_m, \mathbf{a}, \mathbf{b}) = \frac{1}{2} \| \mathbf{w} \|^2 + C \sum_{i=1}^m \xi_i \\ -\sum_{i=1}^m a_i [y_i(\mathbf{w}'\mathbf{x}_i + b) - 1 + \xi_i] \\ -\sum_{i=1}^n b_i \xi_i.$$

The KKT conditions are:

$$\nabla_{\mathbf{w}} L = \mathbf{w} - \sum_{i=1}^{m} a_i y_i \mathbf{x}_i = 0 \implies \mathbf{w} = \sum_{i=1}^{m} a_i y_i \mathbf{x}_i$$
$$\nabla_b L = -\sum_{i=1}^{m} a_i y_i = 0 \implies \sum_{i=1}^{m} a_i y_i = 0$$
$$\nabla_{\xi_i} L = C - a_i - b_i = 0 \implies a_i + b_i = C$$

and

$$egin{aligned} &a_i[y_i(\mathbf{w}'\mathbf{x}_i+b)-1+\xi_i]=0 \ ext{for} \ 1\leqslant i\leqslant m \Rightarrow a_i=0 \ ext{or} \ y_i(\mathbf{w}'\mathbf{x}_i+b)=1-\xi_i, \ &b_i\xi_i=0 \Rightarrow b_i=0 \ ext{or} \ \xi_i=0. \end{aligned}$$

Consequences of the KKT Conditions

• w is a linear combination of the training vectors $\mathbf{x}_1, \ldots, \mathbf{x}_m$, where \mathbf{x}_i appears in the combination only if $a_i \neq 0$;

• if
$$a_i \neq 0$$
, then $y_i(\mathbf{w}'\mathbf{x}_i + b) = 1 - \xi_i$;

- if ξ_i = 0, then y_i(w'x_i + b) = 1 and x_i lies on marginal hyperplane as in the separable case; otherwise, x_i is an outlier;
- if \mathbf{x}_i is an outlier, $b_i = 0$ and $a_i = C$ or \mathbf{x}_i is located on the marginal hyperplane.
- **w** is unique; the support vectors are not.

Support Vector Machines - I <u>SVM</u> - The Non-Separable Case

The Dual Optimization Problem

The Lagrangean can be rewritten by substituting w:

$$L = \frac{1}{2} \left\| \sum_{i=1}^{m} a_i y_i \mathbf{x}_i \right\|^2 - \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j y_i y_j \mathbf{x}'_i \mathbf{x}_j - \sum_{i=1}^{m} a_i y_i b + \sum_{i=1}^{m} a_i = \sum_{i=1}^{m} a_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} a_i a_j y_i y_j \mathbf{x}'_i \mathbf{x}_j,$$

- the Lagrangean has exactly the same form as in the separable case;
- we need $a_i \ge 0$ and, in addition $b_i \ge 0$, which is equivalent to $a_i \le C$ (because $a_i + b_i = C$);

The dual optimization problem for the non-separable case becomes:

maximize for
$$\mathbf{a} \sum_{i=1}^{m} a_i - \frac{1}{2} a_i a_j y_i y_j \mathbf{x}'_i \mathbf{x}_j$$

subject to $0 \leq a_i \leq C$ and $\sum_{i=1}^{m} a_i y_i = 0$
for $1 \leq i \leq m$.

Consequences

- the objective function is concave and differentiable;
- the solution can be used to determine the hypothesis

$$h(\mathbf{x}) = sign(\mathbf{w}'\mathbf{x} + b);$$

• for any support vector b_i we have $b = y_i - \sum_{j=1}^m a_j y_j \mathbf{x}'_i \mathbf{x}_j$.

the hypothesis returned depends only on the inner products between the vectors and not directly on the vectors themselves.