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Problem Setting

m the input space is X C R";
m the output spaceis Y = {-1,1};

m sample: a sequence S = ((x1,y1),---, (Xm, ¥Ym)) € (X x )7
extracted from a distribution D.

m concept sought: a function f : X — ) such that f(x;) = y;
forl1<i<m
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Problem Statement

m the hypothesis space H is H C Y*;
m task: find h € H such that the generalization error

Lp(h) = Px~p(h(x) # f(x))

is small.

The smaller the VCD(H) the more efficient the process is. One
possibility is the class of linear functions from X to -

H = {x~ sign(w'x + b) | w e R", b € R},

1 ifa>0,
sign(a) = { "

where

-1 ifa<O.
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A Fundamental Assumption: Linear Separability of S

X1

If S is linearly separable there are, in general, infinitely many
hyperplanes that can do the separation.
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Solution returned by SVMs

SVMs seek the hyperplane with the maximum separation margin.
X2
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The distance of a point x¢ to a hyperplane w'x + b =0

Equation of the line passing through xg and perpendicular on the
hyperplane is

X — Xg = tw;
Since z is a point on this line that belongs to the hyperplane, to
find the value of t that corresponds to z we must have
w'(xo + tw) + b = 0, that is,

Xo
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The distance of a point x¢ to a hyperplane w'x + b =0

X0

/ -
Thus, z = x¢ — %ﬁgbw, hence the distance

from xq to the hyperplane is
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Primal Optimization Problem

We seek a hyperplane in R” having the equation
wx+b=0,

where w € R" is a vector normal to the hyperplane and b€ R is a
scalar.

A hyperplane w'x + b = 0 that does not pass through a point of a
set S is in canonical form relative to S if

min_|w'x+ b| = 1.
(x,y)es
Note that we may always assume that the separating hyperplane
are in canonical form relative by S by rescaling the coefficients of
the equation that define the hyperplane (the components of w and
b).

9/37



Support Vector Machines - |

L Linear Classification

If the hyperplane w'x + b = 0 is in canonical form relative to S,
then the distance to the hyperplane to the closest points in S (the
margin of the hyperplane) is the same, namely,

wx+b 1

Cewes lwl o wll’
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Canonical Separating Hyperplane

For a canonical separating hyperplane we have
wW'x+ b| > 1

for any point (x, y) of the sample and
wW'x+ b| =1

for every support point. The point (x;, ;) is classified correctly if
y; has the same sign as w'x; + b, that is, y;(w'x; + b) > 1.
Maximizing the margin is equivalent to minimizing || w || or,
equivalently, to minimizing 1 || w ||>. Thus, in the separable case
the SVM problem is equivalent to the following convex
optimization problem:

= minimize 1 || w ||?;

m subjected to yj(w'x; + b) > 1for 1 <7< m.
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Consider a set S that consists of seven points in R? x {—1,1}:

positive examples: ( > ) < ! ) ( L ) ( € )
8 /J'\6 /)'\ 7 "\ 11 )7
negative examples: < 4 ) < : ) ( 2 ) .
4 )\ 1)\ 3
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Example cont'd
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Example cont'd

We seek a hyperplane (in this case, a line in R?) having the
equation
wixy + waxo + b = 0.

The support points are

and we must have

5W1+8W2—|—b: ].,7W1+6W2+b:1.4W1+4W2+b:—]..
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The solution of the above system is:

2 -2 b 11
Wi = —. W) —= — = —,
1 57 2 5 ) 5

Since | w ||= v/0.42 +0.42 = 0.4+/2, we have
=1 =52.176
p= = 2¥2 ~ 1.76.

lIwll
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Why 5 || w [[??

Note that this objective function,

1
2

1
| w2= S(wf + e+ w?)

is differentiable!
We have V (1 || w [|2) = w and that

3 w2 = I

which shows that 3 || w ||? is a convex function of w.
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Support Vectors

The Lagrangean of the optimization problem
| 2.
® minimize 5 || w [|%;

m subjected to yj(w'x; + b) > 1for 1 < i< m.

m

1
L(w, b,a) = > | w ||2 — Za,- (y,-(w’x,- +b) — 1) .
i=1
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The Karush-Kuhn-Tucker Optimality Conditions

m
Vwl = w=) ayx =0,
i—1

Vpl = _Zai)/i =0,
i=1
ai(yi(w'x; + b) —1) = Oforalli
imply
wo= Z ajyix; = 0, Z aiyi = 0,
i=1 i=1

ai = Oory(wx;j+b)=1forl1<i<m
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Consequences of the KKT Conditions

m the weight vector is a linear combination of the training
vectors Xi, ..., Xm, Where x; appears in this combination only
if a; # 0 (support vectors);

m since a;(yi(w'x; + b) —1) =0 or
yi(w'x; + b) =1 for 1 < i< m, we have a; =0 or
yi(w'x; + b) =1 for all i, if a; # 0; thus, y;(w'x; + b) =1 for
the support vectors;

m if non-support vector are removed the solution remains the
same;

m while the solution of the problem w remains the same
different choices may be possible for the support vectors.
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Recall that the optimization problem for SVMs was
minimize 1 || w |2
subject to y;(w'x+b) =1 forl1<i<m
Equivalently, the constraints are

1—yi(wx+b)<0

for1 <i<m.
The Lagrangean is

L(w, b,a)

1 m
= S lIwi?+) a1 - yi(w; + b))
i=1

1 m m m
= 5 ” w H2 +Z aj — Za,-y,-w'x,- — bz ajyi.
i=1 i=1 i=1
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The Dual Problem

maximize L(w, b, a)
The KKT conditions are

(Vwl) = w—> ayx;=0,
i=1

m
—> ajyi =0,
i=1

ai(1 — yi(w'x; + b)) =0,

(Vbl)

which are equivalent to
w = 27;1 aijyiXj,
Yimjayi = O,
ai=0 or y(wx+b)=1,

respectively. .
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Implications

m the weight vector w is a linear combination of the training
vectors Xi,...,Xm;

m a vector x; appears in w if and only if a; # 0 (such vectors are
called support vectors);

m if a; # 0, then y;(W'x; + b) = £1.

Note that support vectors define the maximum margin hyperplane,
or the SVM solution.
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Transforming the Lagrangean

Since
1 m m m
L(w,b,a) = 5 | w [ + Z aj — Z aiyiw'x; — bz ajyi,
i=1 i=1 i=1
w =37, a;yjX; (note that we changed the summation index from

itoj), and > ajy;i = 0, we have

L( ) =5 “ w ||2 +Za/ Zzalaj.ylyj

i=1 j=1
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Further Transformation of the Lagrangean

Note that
m m
fw> = ww= > ayx (Z a;y;x,'> :
j=1 i=1
m m
= DD adyiyxx:
i=1 j=1
Therefore,
1 m m m
L(w,b,a) = > | w2 +Z aj — 2 Z aiajyiyXixi
i=1 i=1 j=1
m 1 m m
= Z aj — E Z Z a,-ajy,-ijj-x,-.
i=1 i=1 j=1
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The Dual Optimization Problem for Separable Sets

- . m 1 m m /
maximize » ;" g ai — 5 > i0q D11 3idjYiyiXiX;
subject to aj > 0 for1 <i<mand ", ajy;=0.

Note that the objective function depends on ay, ..., am.
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m in this case the strong duality holds; therefore, the primal and
the dual problems are equivalent;

m the solution a of the dual problem can be used directly to
determine the hypothesis returned by the SVM as

h(x) = sign(w’x + b) = sign <Z a;yi(xix) + b) ;

i=1

B since support vectors lie on the marginal hyperplanes, for
every support vector x; we have w'x; + b= Yi, SO

m
b=y — Z ajyj(xx).
j=1

26/37



Support Vector Machines - |
LSVM - The Non-Separable Case

Slack Variables

If data is not separable the conditions y;(w'x; + b) > 1 cannot all
hold (for 1 < i < m). Instead, we impose a relaxed version, namely

yi(w'x; +b) >1-¢,

where &; are new variables known as slack variables.
A slack variable &; measures the distance by which x; violates the
desired inequality y;(w'x; + b) > 1.

27/37



Support Vector Machines - |

LSVM - The Non-Separable Case

N N

R\
wx+b=-1-"

S X

A vector x; is an outlier if x; is not positioned correctly on the side
of the appropriate hyperplane.
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m a vector x; with 0 < y;(w'x; + b) < 1 is still an outlier even if
it is correctly classified by the hyperplane w'x + b = 0 (see the
red point);

m if we omit the outliers the data is correctly separated by the
hyperplane w'x + b = 0 with a soft margin p = H%II;

m we wish to limit the amount of slack due to outliers

(>-7, &), but we also seek a hyperplane with a large margin
(even though this may lead to more outliers).
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Optimization for Non-Separable Data

minimize 1 || w || +C >, &P
subject to y;(w'x; +b) 21— & and & >0 for 1 < i< m.

The parameter C is determined in the process of cross-validation.
This is a convex optimization problem with affine constraints.
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Support Vectors

As in the separable case:
m constraints are affine and thus, qualified;

m the objective function and the affine constraints are convex
and differentiable;

m thus, the KKT conditions apply.
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Variables

m a; > 0 for 1 < i< m are variables associated with m
constraints;

m b; > 0 for 1 < i< m are variables associated with the
non—negatmty constralnts of the slack variables.
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The Lagrangean is defined as:
L(w7b7£1a"'7£m7aab) = % ||W||2 +CZ7;151
— 2y ailyi(w'xi + b) = 14 ]
- 27:1 bifi~

The KKT conditions are:

Vwl = w=>" ayx;i=0 = w=>",ayXx
Vel = =3 ayi=0 = >iayi=0
Vg.L = C—a—b=0 = aj+b=C

1
and

ailyi(w'x; +b)—14&]=0for1<i<m=a =0or
yi(w'x; +b) =1-¢,
b,'E;ZOéb,’ZOOI’&;:O.
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Consequences of the KKT Conditions

m w is a linear combination of the training vectors xi, ..
where x; appears in the combination only if a; # 0;

m if a; £ 0, then y;(w'x; + b) =1 —¢;;
m if § =0, then y;(w'x; + b) = 1 and x; lies on marginal
hyperplane as in the separable case; otherwise, x; is an outlier;

‘7xm;

m if X; is an outlier, b; = 0 and a; = C or x; is located on the
marginal hyperplane.

W is unique; the support vectors are not.
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The Dual Optimization Problem

The Lagrangean can be rewritten by substituting w:

’2

— 1 m oy m m o ovivixx:
L = §H Yomyaiyixi|| =2 j=1 i djYiYjX;X;
m m
= iyaiyib+ > ai
= Doil1di = 3 Dlim1 Djeq AdYiYiXiX;,
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m the Lagrangean has exactly the same form as in the separable
case;

m we need a; > 0 and, in addition b; > 0, which is equivalent to
a; < C (because a; + b; = C);

The dual optimization problem for the non-separable case becomes:

maximize fora Y " ; aj — %a,-ajy,-ijj.xj
subject to0 < a; < C and Y " ajyi =0
for1 <i<m.
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Consequences

m the objective function is concave and differentiable;

m the solution can be used to determine the hypothesis
h(x) = sign(w'x + b);

m for any support vector b; we have b = y; — 3 7 a;y;xix;.

m the hypothesis returned depends only on the inner products
between the vectors and not directly on the vectors
themselves.
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