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Linear Classification

Problem Setting

the input space is X ⊆ Rn;

the output space is Y = {−1, 1};
sample: a sequence S = ((x1, y1), . . . , (xm, ym)) ∈ (X × Y)m

extracted from a distribution D.

concept sought: a function f : X −→ Y such that f (xi ) = yi
for 1 6 i 6 m;
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Linear Classification

Problem Statement

the hypothesis space H is H ⊆ YX ;

task: find h ∈ H such that the generalization error

LD(h) = Px∼D(h(x) 6= f (x))

is small.

The smaller the VCD(H) the more efficient the process is. One
possibility is the class of linear functions from X to Y:

H = {x ; sign(w′x + b) | w ∈ Rn, b ∈ R},

where

sign(a) =

{
1 if a > 0,

−1 if a < 0.
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Linear Classification

A Fundamental Assumption: Linear Separability of S

x2

x1

If S is linearly separable there are, in general, infinitely many
hyperplanes that can do the separation.
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Solution returned by SVMs

SVMs seek the hyperplane with the maximum separation margin.
x2

x1
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Linear Classification

The distance of a point x0 to a hyperplane w′x+ b = 0

Equation of the line passing through x0 and perpendicular on the
hyperplane is

x− x0 = tw;

Since z is a point on this line that belongs to the hyperplane, to
find the value of t that corresponds to z we must have
w′(x0 + tw) + b = 0, that is,

t = −w′x0 + b

‖ w ‖2

z

x0

x
w
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Linear Classification

The distance of a point x0 to a hyperplane w′x+ b = 0

z

x0

x

w

Thus, z = x0 − w′x0+b
‖w‖2 w, hence the distance

from x0 to the hyperplane is

‖ x0 − z ‖= |w
′x0 + b|
‖ w ‖

.

8 / 37



Support Vector Machines - I

Linear Classification

Primal Optimization Problem

We seek a hyperplane in Rn having the equation

w′x + b = 0,

where w ∈ Rn is a vector normal to the hyperplane and b ∈ R is a
scalar.
A hyperplane w′x + b = 0 that does not pass through a point of a
set S is in canonical form relative to S if

min
(x,y)∈S

|w′x + b| = 1.

Note that we may always assume that the separating hyperplane
are in canonical form relative by S by rescaling the coefficients of
the equation that define the hyperplane (the components of w and
b).
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Linear Classification

If the hyperplane w′x + b = 0 is in canonical form relative to S ,
then the distance to the hyperplane to the closest points in S (the
margin of the hyperplane) is the same, namely,

ρ = min
(x,y)∈S

|w′x + b|
‖ w ‖

=
1

‖ w ‖
.

x2

x1

ρ
ρ
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Linear Classification

Canonical Separating Hyperplane

For a canonical separating hyperplane we have

|w′x + b| > 1

for any point (x, y) of the sample and

|w′x + b| = 1

for every support point. The point (xi , yi ) is classified correctly if
yi has the same sign as w′xi + b, that is, yi (w

′xi + b) > 1.
Maximizing the margin is equivalent to minimizing ‖ w ‖ or,
equivalently, to minimizing 1

2 ‖ w ‖
2. Thus, in the separable case

the SVM problem is equivalent to the following convex
optimization problem:

minimize 1
2 ‖ w ‖

2;

subjected to yi (w
′xi + b) > 1 for 1 6 i 6 m.
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Linear Classification

Example

Consider a set S that consists of seven points in R2 × {−1, 1}:

positive examples:

(
5
8

)
,

(
7
6

)
,

(
10
7

)
,

(
6
11

)
,

negative examples:

(
4
4

)
,

(
5
1

)
,

(
2
3

)
.
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Example cont’d
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Linear Classification

Example cont’d

We seek a hyperplane (in this case, a line in R2) having the
equation

w1x1 + w2x2 + b = 0.

The support points are(
5
8

)
,

(
7
6

)
,

(
4
4

)
,

and we must have

5w1 + 8w2 + b = 1, 7w1 + 6w2 + b = 1.4w1 + 4w2 + b = −1.
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The solution of the above system is:

w1 =
2

5
,w2 =

−2

5
, b =

11

5
.

Since ‖ w ‖=
√

0.42 + 0.42 = 0.4
√

2, we have

ρ = 1√
‖w‖

= 5
√

2
4 ∼ 1.76.
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Why 1
2 ‖ w ‖

2?

Note that this objective function,

1

2
‖ w ‖2=

1

2
(w2

1 + · · ·+ w2
n )

is differentiable!
We have ∇

(
1
2 ‖ w ‖

2
)

= w and that

H 1
2
‖w‖2 = In,

which shows that 1
2 ‖ w ‖

2 is a convex function of w.
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Support Vectors

The Lagrangean of the optimization problem

minimize 1
2 ‖ w ‖

2;

subjected to yi (w
′xi + b) > 1 for 1 6 i 6 m.

is

L(w, b, a) =
1

2
‖ w ‖2 −

m∑
i=1

ai
(
yi (w

′xi + b)− 1
)
.
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The Karush-Kuhn-Tucker Optimality Conditions

∇wL = w−
m∑
i=1

aiyixi = 0,

∇bL = −
m∑
i=1

aiyi = 0,

ai (yi (w
′xi + b)− 1) = 0 for all i

imply

w =
m∑
i=1

aiyixi = 0,
m∑
i=1

aiyi = 0,

ai = 0 or yi (w
′xi + b) = 1 for 1 6 i 6 m.
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Linear Classification

Consequences of the KKT Conditions

the weight vector is a linear combination of the training
vectors x1, . . . , xm, where xi appears in this combination only
if ai 6= 0 (support vectors);

since ai (yi (w
′xi + b)− 1) = 0 or

yi (w
′xi + b) = 1 for 1 6 i 6 m, we have ai = 0 or

yi (w
′xi + b) = 1 for all i , if ai 6= 0; thus, yi (w

′xi + b) = 1 for
the support vectors;

if non-support vector are removed the solution remains the
same;

while the solution of the problem w remains the same
different choices may be possible for the support vectors.
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SVM - The Separable Case

Recall that the optimization problem for SVMs was

minimize 1
2 ‖ w ‖

2

subject to yi (w
′x + b) > 1 for 1 6 i 6 m

Equivalently, the constraints are

1− yi (w
′x + b) 6 0

for 1 6 i 6 m.
The Lagrangean is

L(w, b, a)

=
1

2
‖ w ‖2 +

m∑
i=1

ai (1− yi (w
′xi + b))

=
1

2
‖ w ‖2 +

m∑
i=1

ai −
m∑
i=1

aiyiw
′xi − b

m∑
i=1

aiyi .
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SVM - The Separable Case

The Dual Problem

maximize L(w, b, a)

The KKT conditions are

(∇wL) = w−
m∑
i=1

aiyixi = 0,

(∇bL) = −
m∑
i=1

aiyi = 0,

ai (1− yi (w
′xi + b)) = 0,

which are equivalent to

w =
∑m

i=1 aiyixi ,∑m
i=1 aiyi = 0,
ai = 0 or yi (w

′xi + b) = 1,

respectively.
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SVM - The Separable Case

Implications

the weight vector w is a linear combination of the training
vectors x1, . . . , xm;

a vector xi appears in w if and only if ai 6= 0 (such vectors are
called support vectors);

if ai 6= 0, then yi (w
′xi + b) = ±1.

Note that support vectors define the maximum margin hyperplane,
or the SVM solution.
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SVM - The Separable Case

Transforming the Lagrangean

Since

L(w, b, a) =
1

2
‖ w ‖2 +

m∑
i=1

ai −
m∑
i=1

aiyiw
′xi − b

m∑
i=1

aiyi ,

w =
∑m

j=1 ajyjxj (note that we changed the summation index from
i to j), and

∑m
i=1 aiyi = 0, we have

L(w, b, a) =
1

2
‖ w ‖2 +

m∑
i=1

ai −
m∑
i=1

m∑
j=1

aiajyiyjx
′
jxi .
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SVM - The Separable Case

Further Transformation of the Lagrangean

Note that

‖ w ‖2 = w′w =

 m∑
j=1

ajyjx
′
j

( m∑
i=1

aiyixi

)
,

=
m∑
i=1

m∑
j=1

aiajyiyjx
′
jxi .

Therefore,

L(w, b, a) =
1

2
‖ w ‖2 +

m∑
i=1

ai −
m∑
i=1

m∑
j=1

aiajyiyjx
′
jxi

=
m∑
i=1

ai −
1

2

m∑
i=1

m∑
j=1

aiajyiyjx
′
jxi .
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SVM - The Separable Case

The Dual Optimization Problem for Separable Sets

maximize
∑m

i=1 ai −
1
2

∑m
i=1

∑m
j=1 aiajyiyjx

′
ixj

subject to ai > 0 for 1 6 i 6 m and
∑m

i=1 aiyi = 0.

Note that the objective function depends on a1, . . . , am.
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SVM - The Separable Case

in this case the strong duality holds; therefore, the primal and
the dual problems are equivalent;

the solution a of the dual problem can be used directly to
determine the hypothesis returned by the SVM as

h(x) = sign(w′x + b) = sign

(
m∑
i=1

aiyi (x
′
ix) + b

)
;

since support vectors lie on the marginal hyperplanes, for
every support vector xi we have w′xi + b = yi , so

b = yi −
m∑
j=1

ajyj(x
′
jx).

26 / 37



Support Vector Machines - I

SVM - The Non-Separable Case

Slack Variables

If data is not separable the conditions yi (w
′xi + b) > 1 cannot all

hold (for 1 6 i 6 m). Instead, we impose a relaxed version, namely

yi (w
′xi + b) > 1− ξi ,

where ξi are new variables known as slack variables.
A slack variable ξi measures the distance by which xi violates the
desired inequality yi (w

′xi + b) > 1.
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SVM - The Non-Separable Case

y

x

w′x + b = 1

w′x + b = 0

w′x + b = −1

ξi

ξi

A vector xi is an outlier if xi is not positioned correctly on the side
of the appropriate hyperplane.
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SVM - The Non-Separable Case

a vector xi with 0 < yi (w
′xi + b) < 1 is still an outlier even if

it is correctly classified by the hyperplane w′x + b = 0 (see the
red point);

if we omit the outliers the data is correctly separated by the
hyperplane w′x + b = 0 with a soft margin ρ = 1

‖w‖ ;

we wish to limit the amount of slack due to outliers
(
∑m

i=1 ξi ), but we also seek a hyperplane with a large margin
(even though this may lead to more outliers).
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SVM - The Non-Separable Case

Optimization for Non-Separable Data

minimize 1
2 ‖ w ‖

2 +C
∑m

i=1 ξ
p
i

subject to yi (w
′xi + b) > 1− ξi and ξi > 0 for 1 6 i 6 m.

The parameter C is determined in the process of cross-validation.
This is a convex optimization problem with affine constraints.
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SVM - The Non-Separable Case

Support Vectors

As in the separable case:

constraints are affine and thus, qualified;

the objective function and the affine constraints are convex
and differentiable;

thus, the KKT conditions apply.
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Variables

ai > 0 for 1 6 i 6 m are variables associated with m
constraints;

bi > 0 for 1 6 i 6 m are variables associated with the
non-negativity constraints of the slack variables.
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The Lagrangean is defined as:

L(w, b, ξ1, . . . , ξm, a,b) = 1
2 ‖ w ‖

2 +C
∑m

i=1 ξi
−
∑m

i=1 ai [yi (w
′xi + b)− 1 + ξi ]

−
∑n

i=1 biξi .

The KKT conditions are:

∇wL = w−
∑m

i=1 aiyixi = 0 ⇒ w =
∑m

i=1 aiyixi
∇bL = −

∑m
i=1 aiyi = 0 ⇒

∑m
i=1 aiyi = 0

∇ξiL = C − ai − bi = 0 ⇒ ai + bi = C

and

ai [yi (w
′xi + b)− 1 + ξi ] = 0 for 1 6 i 6 m⇒ ai = 0 or

yi (w
′xi + b) = 1− ξi ,

biξi = 0⇒ bi = 0 or ξi = 0.
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Consequences of the KKT Conditions

w is a linear combination of the training vectors x1, . . . , xm,
where xi appears in the combination only if ai 6= 0;

if ai 6= 0, then yi (w
′xi + b) = 1− ξi ;

if ξi = 0, then yi (w
′xi + b) = 1 and xi lies on marginal

hyperplane as in the separable case; otherwise, xi is an outlier;

if xi is an outlier, bi = 0 and ai = C or xi is located on the
marginal hyperplane.

w is unique; the support vectors are not.
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The Dual Optimization Problem

The Lagrangean can be rewritten by substituting w:

L = 1
2

∣∣∣∣∣∣∑m
i=1 aiyixi

∣∣∣∣∣∣2 −∑m
i=1

∑m
j=1 aiajyiyjx

′
ixj

−
∑m

i=1 aiyib +
∑m

i=1 ai
=

∑m
i=1 ai −

1
2

∑m
i=1

∑m
j=1 aiajyiyjx

′
ixj ,
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the Lagrangean has exactly the same form as in the separable
case;

we need ai > 0 and, in addition bi > 0, which is equivalent to
ai 6 C (because ai + bi = C );

The dual optimization problem for the non-separable case becomes:

maximize for a
∑m

i=1 ai −
1
2aiajyiyjx

′
ixj

subject to 0 6 ai 6 C and
∑m

i=1 aiyi = 0
for 1 6 i 6 m.
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Consequences

the objective function is concave and differentiable;

the solution can be used to determine the hypothesis

h(x) = sign(w′x + b);

for any support vector bi we have b = yi −
∑m

j=1 ajyjx
′
ixj .

the hypothesis returned depends only on the inner products
between the vectors and not directly on the vectors
themselves.
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