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The (n× n)-unit matrix on the field F is the square matrix In ∈ Fn×n given
by

In =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1

 .

The (m × n)-zero matrix is the (m × n)-matrix Om,n ∈ Fn×n given by

Om,n =


0 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
... · · ·

...
0 0 0 · · · 0

 .
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The (m × n)-complete matrix is the (m × n)-matrix Jm,n given by

Jm,n =


1 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...

...
... · · ·

...
1 1 1 · · · 1

 .

The one-column matrix Om,1 is denoted by 000m. Similarly, the one column
matrix having m rows 1

...
1


is denoted by 111m. The subscripts are omitted whenever there is no
ambiguity.
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Definition

A diagonal matrix is a matrix D ∈ Fm×n such that i ̸= j implies dij = 0. If
p ⩽ min{m, n}, then we denote the diagonal matrix

D =


d1 0 0 0 · · · 0
0 d2 0 0 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · 0
0 0 0 0 · · · 0


by diag(d1, . . . , dp).
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Definition

Let A = (aij) and B = (bij) be two matrices in Fm×n.
The sum of the matrices A and B is the matrix A+ B having the same
format and defined by

(A+ B)(i , j) = aij + bij

for 1 ⩽ i ⩽ m and 1 ⩽ j ⩽ n.
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It is easy to verify that the matrix sum is an associative and commutative
operation on Fm×n; that is,

A+ (B + C ) = (A+ B) + C ,

A+ B = B + A,

for all A,B,C ∈ Fm×n.
The zero matrix Om,n acts as an additive unit on the set Sm×n; that is,

A+ Om,n = Om,n + A,

for every A ∈ Fm×n.
The additive inverse, or the opposite of a matrix A = (aij) ∈ Fm×n, is the
matrix −A given by (−A)(i , j) = −aij for 1 ⩽ i ⩽ m and 1 ⩽ j ⩽ n.
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Example

The opposite of A ∈ R2×3, given by

A =

(
1 −2 3
0 2 −1

)
is the matrix

−A =

(
−1 2 −3
0 −2 1

)
.

It is immediate that A+ (−A) = O2,3.
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Definition

Let A ∈ Fm×n and B ∈ Fn×p be two matrices. The product of the
matrices A,B is the matrix C ∈ Fm×p defined by

C (i , k) =
n∑

j=1

aijbjk ,

where 1 ⩽ i ⩽ m and 1 ⩽ k ⩽ p. The product of the matrices A,B is
denoted by AB.

Matrix multiplication of A and B is possible only if number of columns of
A is equal to the number of rows of the second matrix B. Any pair of
matrices (A,B) that satisfies this condition is said to be conformant.

Prof. Dan A. Simovici CS724: Topics in Algorithms Matrices Slide Set 3 8 / 98



Theorem

Matrix multiplication is associative, that is, A(BC ) = (AB)C .

Theorem

If A ∈ Fm×n, then ImA = AIn = A.
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The product of matrices is not commutative. Indeed, consider the
matrices A,B ∈ Z2×2 defined by

A =

(
0 1
2 3

)
and B =

(
−1 1
1 0

)
.

We have

AB =

(
1 0
1 2

)
and BA =

(
2 2
0 1

)
,

so AB ̸= BA.
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Definition

A matrix A ∈ Fn×n is upper triangular if j < i implies aij = 0 and is strictly
upper triangular if j ⩽ i implies aij = 0.
A is lower triangular (strictly lower triangular) if A′ is upper triangular
(strictly upper triangular).
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Example

The matrix L ∈ Z4×4 given by

L =


1 0 0 0
−1 2 0 0
3 1 2 0
−7 6 1 −6


is a lower triangular matrix. The matrix U ∈ Z4×4

U =


1 2 3 4
0 −1 2 3
0 0 −1 −2
0 0 0 2


is an upper triangular matrix.
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It is interesting to compute two matrix products that can be formed
starting from the columns uuu and vvv given by

uuu =


u1
u2
...
un

 and vvv =


v1
v2
...
vn

 .

Note that uuu′vvv ∈ F1×1, that is,

uuu′vvv = u1v1 + u2v2 + · · ·+ unvn = vvv ′uuu.

This product is known as the inner product of uuu and vvv .
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Let C be the field of complex numbers. A complex matrix is a matrix
A ∈ Cm×n.

Definition

The conjugate of a matrix A ∈ Cm×n is the matrix Ā ∈ Cm×n, where
A(i , j) = A(i , j) for 1 ⩽ i ⩽ m and 1 ⩽ j ⩽ n.

The notion of symmetry is extended to accommodate complex matrices.

Definition

The transpose conjugate of the matrix A ∈ Cm×n or its Hermitian adjoint
is the matrix B ∈ Cn×m given by B = Ā′ = (A′).

The transpose conjugate of A is denoted by AH.
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Example

Let A ∈ C3×2 be the matrix

A =

1 + i 2
2− i i
0 1− 2i

 .

The matrix AH is given by

AH =

(
1− i 2 + i 0
2 −i 1 + 2i

)
.
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Using Hermitian conjugates several important classes of matrices are
defined.

Definition

The matrix A ∈ Cn×n is:
Hermitian if A = AH;
skew-Hermitian if AH = −A;
normal if AAH = AHA;
unitary if AAH = AHA = In.
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Example

Let α, β, γ, δ and θ be five real numbers such that α− β − γ + δ is a
multiple of 2π. The matrix

Mα,β,γ,δ(θ) =

(
e iα cos θ −e iβ sin θ
e iγ sin θ e iδ cos θ

)
is unitary because

Mα,β,γ,δ(θ)
HMα,β,γ,δ(θ)

=

(
e−iα cos θ e−iγ sin θ
−e−iβ sin θ e−iδ cos θ

)(
e iα cos θ −e iβ sin θ
e iγ sin θ e iδ cos θ

)
=

(
1 0
0 1

)
.
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The following properties of unitary matrices can be easily verified:
all unitary matrices are normal;
a matrix A ∈ Cn×n is unitary if and only if AH is unitary;
the product of two unitary matrices is an unitary matrix.
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We verify only the last property. Suppose that A,B ∈ Cn×n are unitary
matrices, that is, AAH = BBH = In. Then
(AB)(AB)H = ABBHAH = AAH = In, hence AB is unitary.
If A ∈ Rn×n is a real matrix and A is unitary we refer to A as an
orthogonal matrix or an orthonormal matrix.
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If A ∈ Rn×n is a matrix with real entries, then its Hermitian adjoint
coincides with the transposed matrix A′. Thus, a real matrix is Hermitian
if and only if it is symmetric.
Observe that if zzz ∈ Cn and

zzz =

z1
...
zn

 ,

then zzzHzzz = z1z1 + · · ·+ znzn =
∑n

i=1 |zi |2.
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Theorem

Let A ∈ Cn×n. The following statements hold:
the matrices A+ AH, AAH and AHA are Hermitian and A− AH is
skew-Hermitian;
if A is a Hermitian matrix, then so is Ak for k ∈ N;
if A is Hermitian and invertible, then so is A−1;
if A is Hermitian, then aii are real numbers for 1 ⩽ i ≤ n.

Proof.

All statements follow directly from the definition of Hermitian
matrices.
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Theorem

If A ∈ Cn×n there exists a unique pair of Hermitian matrices (H1,H2) such
that A = H1 + iH2.

Proof.

Let

H1 =
1

2
(A+ AH) and H2 = − i

2
(A− AH).

It is immediate that both H1 and H2 are Hermitian and that H1 + iH2 = A.
Suppose that A = H3 + iH4, where H3 and H4 are Hermitian. Then, we
have

2H1 = A+ AH = H3 + iH4 + HH
3 − iHH

4

= 2H3,

so H1 = H3. Therefore H2 = H4, so the matrices H1 and H2 are uniquely
determined.
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Theorem

If A ∈ Cn×n there exists a unique pair of matrices (H, S) such that H is
Hermitian, S is skew-Hermitian and A = H + S .

Proof.

A can be written as A = H1 + iH2, where H1 and H2 are Hermitian
matrices. Choose H = H1 and S = iH2. S is skew-Hermitian. The
uniqueness of the pair (H, S) is immediate.
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Next, we discuss a characterization of Hermitian matrices.

Theorem

A matrix A ∈ Cn×n is Hermitian if and only if xxxHAxxx is a real number for
every xxx ∈ Cn.

Proof: Suppose that A is Hermitian. Then,

xxxHAxxx = xxxHAHxxx = xxx ′A′xxx = xxx ′A′(xxxH)′ = xxxHAxxx ,

so xxxHAxxx is a real number because it is equal to its conjugate.
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Proof cont’d:

Conversely, suppose that xxxHAxxx is a real number for every xxx ∈ Cn. This
implies that

(xxx + yyy)HA(xxx + yyy) = xxxHAxxx + xxxHAyyy + yyyHAxxx + yyyHAyyy

is a real number, so xxxHAyyy + yyyHAxxx is real for every xxx ,yyy ∈ Cn.
Let xxx = eeep and yyy = eeeq. Then, apq + aqp is a real number. If we choose
xxx = −ieeep and yyy = eee j it follows that −iapq + iaqp is a real number. Thus,
ℑ(apq) = −ℑ(aqp) and ℜ(apq) = ℜ(aqp), which leads to apq = aqp for
1 ⩽ p, q ⩽ n. These equalities are equivalent to A = AH, so A is Hermitian.
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Let A ∈ Fm×n be a matrix and suppose that m = m1 + · · ·+mp and
n = n1 + · · ·+ nq, where F is the real or the complex field.
A partitioning of A is a collection of matrices Ahk ∈ Fmh×nk such that Ahk

is the contiguous submatrix

A

[
m1 + · · ·+mh−1 + 1, . . . ,m1 + · · ·+mh−1 +mh

n1 + · · ·+ nk−1 + 1, . . . , n1 + · · ·+ nk

]
,

for 1 ⩽ h ⩽ p and 1 ⩽ k ⩽ q.
If {Ahk | 1 ⩽ h ⩽ p and 1 ⩽ k ⩽ q} is a partitioning of A, A is written as

A =


A11 A12 · · · A1q

A21 A22 · · · A2q

...
... · · ·

...
Ap1 Ap2 · · · Apq

 .
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The matrices Ahk are referred to as the blocks of the partitioning. All
blocks located in a column must have the number of columns; all blocks
located in a row must have the same number of rows.
The matrix A ∈ F5×6 given by

A =


a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56


can be partitioned as

a11 a12 a13 a14 a15 a16
a21 a22 a23 a24 a25 a26
a31 a32 a33 a34 a35 a36
a41 a42 a43 a44 a45 a46
a51 a52 a53 a54 a55 a56
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Thus, if we introduce the matrices

A11 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , A12 =

a14
a24
a34

 , A13 =

a15 a16
a25 a26
a35 a36

 ,

A21 =

(
a41 a42 a43
a51 a52 a53

)
, A22 =

(
a45
a55

)
, A23 =

(
a45 a46
a55 a56

)
,

the matrix A can be written as

A =

(
A11 A12 A13

A21 A22 A23

)
.
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Partitioning matrices is useful because matrix operations can be performed
on block submatrices in a manner similar to scalar operations as we show
next.

Theorem

Let A ∈ Fm×n and B ∈ Fn×p be two matrices. Suppose that the matrices A,B
are partitioned as

A =

A11 · · · A1k

... · · ·
...

Ah1 · · · Ahk

 and B =

B11 · · · B1ℓ

... · · ·
...

Bk1 · · · Bkℓ

 ,

where Ars ∈ Fmr×ns , Bst ∈ Fns×pt for 1 ⩽ r ⩽ h, 1 ⩽ s ⩽ k and 1 ⩽ t ⩽ ℓ. Then,
the product C = AB can be partitioned as

C =

C11 . . . C1ℓ

... · · ·
...

Ch1 · · · Chl

 ,

where Cuv =
∑k

t=1 AutBtv , 1 ⩽ u ⩽ h, and 1 ⩽ v ⩽ ℓ.
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Definition

A matrix A ∈ Cn×n is invertible if there exists a matrix B ∈ Cn×n such
that AB = BA = In.
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Theorem

If A,B ∈ Cn×n are two invertible matrices, then the product AB is
invertible and (AB)−1 = B−1A−1.
If A ∈ Cn×n is invertible, then AH is invertible and (AH)−1 = (A−1)H.
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Theorem

Let {rrr1, . . . , rrrn} be a basis in Cn.
A matrix A ∈ Cn×n is invertible if and only if the set of vectors
{Arrr1, . . . ,Arrrn} is a basis in Cn.
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Proof

Suppose that A is an invertible matrix. Note that Axxx i = Axxx j implies
xxx i = xxx j , so {Arrr1, . . . ,Arrrn} consists on n distinct vectors. We claim that
the set {Arrr1, . . . ,Arrrn} is linearly independent. Indeed, suppose that
c1Arrr1 + · · ·+ cnArrrn = 000n such that not all coefficients ci equal 0. Then,
by multiplying by A−1 to the left we obtain c1rrr1 + · · ·+ cnrrrn = 000n, which
contradicts the fact that {rrr1, . . . , rrrn} is a basis. Thus, {Arrr1, . . . ,Arrrn} is a
linearly independent that consists of n vectors, which means that this set
is a basis in Cn.
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Proof cont’d

Conversely, suppose that for any basis {rrr1, . . . , rrrn} of Cn the set
{Arrr1, . . . ,Arrrn} is a basis in Cn. Each of the vectors rrr i can be uniquely
expressed as a linear combination of Arrr1, . . . ,Arrrn. In particular, for the
standard basis {eee1, . . . ,eeen}, each of the vectors eee i can be uniquely
expressed as a linear combination of the vectors Aeee1 = aaa1, . . . ,Aeeen = aaan,
where aaa1, . . . ,aaan are the columns of the matrix A. In other words, we have
the equalities

eee i = bi1aaa1 + · · ·+ binaaan

for 1 ⩽ i ⩽ n. In a succinct form, these equalities can be written as
In = BA, where B is the matrix of the coefficients bij , which shows that A
is an invertible matrix.
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Theorem

Let eee1, . . . ,eeen and ẽee1, . . . , ẽeen be two bases of an F-linear space L. There
exists an invertible matrix P ∈ Fn×n such that

(eee1 · · · eeen) = (ẽee1 · · · ẽeen)P.
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Since ẽee1, . . . , ẽeen is a basis of L each vector eee i is a unique linear
combination of the vectors ẽee1, . . . , ẽeen, that is

eee i = p1i ẽee1 + · · ·+ pni ẽeen = (ẽee1 · · · ẽeen)

p1i
...
pni

 ,

for 1 ⩽ i ⩽ n, so the equality of the theorem holds for the matrix
P = (pij). We have to show that P is an invertible matrix.
Assume that Pttt = 000L. The equality of the theorem implies

(eee1 · · · eeen)

t1
...
tn

 = (ẽee1 · · · ẽeen)Pttt = 000L.

which implies t1eee1 + · · ·+ tneeen = 000L. Since eee1, . . . ,eeen is a basis we obtain
t1 = · · · = tn = 0, so ttt = 000L, which implies that P is an invertible matrix.
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Corollary

Let zzz ∈ L and assume that zzz can be expressed relatively to the bases
{eee1, . . . ,eeen} and {ẽee1, . . . , ẽeen} as

zzz =
n∑

i=1

xieee i =
n∑

i=1

yi ẽee i ,

respectively. If P ∈ Fn×n is a matrix such that
(eee1 · · · eeen) = (ẽee1 · · · ẽeen)P, then

P

x1
...
xn

 =

y1
...
yn

 .
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Proof
We have

zzz = (eee1 · · · eeen)

x1
...
xn

 = (ẽee1 · · · ẽeen)P

y1
...
yn

 .

Substituting (eee1 · · · eeen) in the previous equality yields:

(ẽee1 · · · ẽeen)P

x1
...
xn

 =

y1
...
yn

 .

Since {ẽee1, . . . , ẽeen} is a basis we obtain the equality

P

x1
...
xn

 =

y1
...
yn

 .
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Thus, the components of a vector zzz relative to the two bases (eee1 · · · eeen),
and (ẽee1 · · · ẽeen) transform in opposite direction to the basis
transformation. We say that the set of numbers {x1, . . . , xn} are
contravariant components of the vector zzz .
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We proved that if {eee1, . . . ,eeen} is a basis of the F-linear space L, then the
set of linear forms {fff j | 1 ⩽ j ⩽ n} defined by

fff j(eee i ) =

{
1 if i = j ,

0 otherwise

is a basis of the dual space L∗. Furthermore, if fff (eee i ) = ai , then
fff = a1fff

1 + · · ·+ anfff
n.
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If we change the basis in L such that (eee1 · · · eeen) = (ẽee1 · · · ẽeen)P, where
P ∈ Fn×n, then assuming that ai = fff (eee i ) and bℓ = fff (ẽeeℓ) for 1 ⩽ i , ℓ ⩽ n,
we have:

ai = fff (eee i ) = fff (ẽee1p1i + · · ·+ ẽeenpni )

=
n∑

ℓ=1

fff (ẽeeℓ)pℓi =
n∑

ℓ=1

bℓpℓi .

Thus, the components of fff relative to the two bases (eee1 · · · eeen), and
(ẽee1 · · · ẽeen) transform in the same manner as these bases. We say that
{a1, . . . , an} are covariant components of the covector fff .

Prof. Dan A. Simovici CS724: Topics in Algorithms Matrices Slide Set 3 41 / 98



Let C ∈ Fm×n be a matrix. If xxx ∈ Fm and yyy ∈ Fn, the function
fC : L×M −→ F defined by fC (xxx ,yyy) = xxx ′Cyyy can be easily seen to be
bilinear. The next theorem shows that all biliniar functions between two
finite-dimensional spaces can be defined in this manner.

Theorem

Let L,M be two finite-dimensional F-linear spaces. If f : L×M −→ F is a
bilinear form, then there is a matrix Cf ∈ Fm×n such that

f (xxx ,yyy) = xxx ′Cf yyy

for all xxx ∈ L and yyy ∈ M.
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Proof
Suppose that B = {xxx1, . . . ,xxxm} and B ′ = {yyy1, . . . ,yyyn}, are bases in L and M,
respectively. Let xxx = a1xxx1 + · · ·+ amxxxm be the expression of xxx ∈ L in the base B.
Similarly, let yyy = b1yyy1 + · · ·+ bnyyyn be the expression of yyy ∈ M in B ′. The
bilinearily of f implies:

f (xxx ,yyy) = f

 m∑
i=1

aixxx i ,
n∑

j=1

bjyyy j

 =
m∑
i=1

n∑
j=1

aibj f (xxx i ,yyy j).

If Cf is the matrix

Cf =

 f (xxx1,yyy1) · · · f (xxx1,yyyn)
...

...
...

f (xxxm,yyy1) · · · f (xxxm,yyyn)

 ,

then f (xxx ,yyy) = xxx ′Cf yyy , where

xxx =

a1
...
am

 and yyy =

b1
...
bn

 .
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Let A ∈ Fn×n be a symmetric matrix. The quadratic form associated to the
matrix A is the function fA : Rn −→ R defined as fA(xxx) = xxx ′Axxx for xxx ∈ Fn.
The polar form of the quadratic form fA is the bilinear form f̃A defined by
f̃A(xxx ,yyy) = xxx ′Ayyy for xxx ,yyy ∈ Fn.
Since xxx ′Ayyy and yyy ′Axxx are scalars they are equal and we have:

fA(xxx + yyy) = (xxx + yyy)′A(xxx + yyy)

= xxx ′Axxx + yyy ′Ayyy + xxx ′Ayyy + yyy ′Axxx

= fA(xxx) + fA(yyy) + 2f̃A(xxx ,yyy),

which allows us to express the polar form of fA as

f̃A(xxx ,yyy) =
1

2
(fA(xxx + yyy)− fA(xxx)− fA(yyy)).
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Let h ∈ Hom(Cm,Cn) be a linear transformation between the linear spaces
Cm and Cn. Consider a basis in Cm, R = {rrr1, . . . , rrrm}, and a basis in Cn,
S = {sss1, . . . , sssn}. The function h is completely determined by the images
of the elements of the basis R, that is, by the set {h(rrr1), . . . , h(rrrm)}.
Indeed, if xxx = x1rrr1 + · · ·+ xmrrrm and

h(rrr j) = a1jsss1 + a2jsss2 + · · ·+ anjsssn =
n∑

i=1

aijsss i ,

then, by linearity

h(xxx) = x1h(rrr1) + · · ·+ xmh(rrrm)

=
m∑
j=1

xjh(rrr j)

=
m∑
j=1

n∑
i=1

xjaijsss i .
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In a more compact form, we can write

h(xxx) = (sss1 · · · sssn)

a11 · · · a1m
... · · ·

...
an1 · · · anm


x1

...
xm

 .
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Let xxx ∈ Cm be a vector such that xxx = x1rrr1 + · · ·+ xmrrrm. Then, the image
of xxx under h is equals Ahxxx , where Ah is

Ah =

a11 · · · a1m
... · · ·

...
an1 · · · anm


Clearly, the matrix Ah attached to h : Cm −→ Cn depends on the bases
chosen for the linear spaces Cm and Cn.
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Let now h : Cn −→ Cn be an endomorphism of Cn and let
R = {rrr1, . . . , rrrn} and S = {sss1, . . . , sssn} be two bases of Cn. The vectors sss i
can be expressed as linear combinations of the vectors rrr1, . . . , rrrn:

sss i = pi1rrr1 + · · ·+ pinrrrn, (1)

for 1 ⩽ i ⩽ n, which implies

h(sss i ) = pi1h(rrr1) + · · ·+ pinh(rrrn). (2)

for 1 ⩽ i ⩽ n. Therefore, the matrix associated to a linear form
h : Cm −→ C is a column vector rrr . In this case we can write h(xxx) = rrrHxxx
for xxx ∈ Rn.
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Theorem

Let h ∈ Hom(Cm,Cn). The matrix Ah∗ ∈ Cm×n is the transposed of the
matrix Ah, that is, we have Ah∗ = A′

h.
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By the previous discussion, if ℓ1, . . . , ℓn is a basis of the space (Cn)∗, then
the j th column of the matrix Ah∗ ∈ Cm×n is obtained by expressing the
linear form h∗(ℓj) = ℓjh in terms of a basis in the dual space (Cm)∗.
Therefore, we need to evaluate the linear form ℓjh ∈ (Cm)∗.
Let {ppp1, . . . ,pppm} be a basis in Cm and let {g1, . . . , gm} be its dual in
(Cm)∗. Also, let {qqq1, . . . ,qqqn} be a basis in Cn, and let {ℓ1, . . . , ℓn} be its
dual (Cn)∗.
Observe that if vvv ∈ Cm can be expressed as vvv =

∑m
j=1 vjpppj , then

gp(vvv) = gp

 m∑
j=1

vjpppj

 =
m∑
j=1

vjgp(pppj) = vp,

because {g1, . . . , gm} is the dual of {ppp1, . . . ,pppm} in (Cm)∗.
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On the other hand, we can write

ℓj(h(vvv)) = ℓj

 m∑
p=1

vph(pppp)

 = ℓj

 m∑
p=1

vp

n∑
i=1

aipqqqi


= ℓj

 m∑
p=1

n∑
i=1

vpaipqqqi

 =
m∑

p=1

n∑
i=1

vpaipℓj(qqqi )

=
m∑

p=1

vpajp =
m∑

p=1

ajpgp(vvv).

Thus, h∗(ℓj) =
∑m

p=1 ajpgp for every j , 1 ≤ j ⩽ m. This means that the

j th column of the matrix Ah∗ is the transposed j th row of the matrix Ah,
so Ah∗ = (Ah)

′.
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Matrix multiplication corresponds to the composition of linear mappings,
as we show next.

Theorem

Let h ∈ Hom(Cm,Cn) and g ∈ Hom(Cn,Cp). Then,

Agh = AgAh.

Proof.

If ppp1, . . . ,pppm is a basis for Cm, then
Agh(pppi ) = gh(pppi ) = g(h(pppi )) = g(Ahpppi ) = Ag (Ah(pppi )) for every i , where
1 ⩽ i ⩽ n. This proves that Agh = AgAh.
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The inverse direction, from matrices to linear operators is introduced next.

Definition

Let A ∈ Cn×m be a matrix. The linear operator associated to A, is the
mapping hA : Cm −→ Cn given by hA(xxx) = Axxx for xxx ∈ Cm.

If {eee1, . . . ,eeem} is a basis for Cm, then hA(eee i ) is the i th column of the
matrix A.
It is immediate that AhA = A and hAh

= h.
Attributes of a matrix A are usually transferred to the linear operator hA.
For example, if A is Hermitian we say that hA is Hermitian.
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Attributes of a matrix A are usually transferred to the linear operator hA.
For example, if A is Hermitian we say that hA is Hermitian.

Definition

Let A ∈ Cn×m be a matrix. The range of A is the subspace Im(hA) of Cn.
The null space of A is the subspace Ker(hA).
The range of A and the null space of A are denoted by range(A) and
null(A), respectively.

Clearly, CA,n = range(A). The null space of A ∈ Cm×n consists of those
xxx ∈ Cn such that Axxx = 000.
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Let {ppp1, . . . ,pppm} be a basis of Cm. Since range(A) = Im(hA) it follows
that this subspace is generated by the set {hA(ppp1), . . . , hA(pppm)}, that is,
by the columns of the matrix A. For this reason the subspace range(A) is
also known as the column subspace of A.

Theorem

Let A,B ∈ Cm×n be two matrices. Then

range(A+ B) ⊆ range(A) + range(B).

Proof.

Let u ∈ range(A+ B). There exists v ∈ Cn such that
u = (A+ B)v = Av + Bv . If x = Av and y = Bv , we have x ∈ range(A)
and y ∈ range(B), so u = x + y ∈ range(A) + range(B).

Prof. Dan A. Simovici CS724: Topics in Algorithms Matrices Slide Set 3 55 / 98



Definition

The rank of a matrix A is the number denoted by rank(A) given by
rank(A) = dim(range(A)) = dim(Im(hA)).

Thus, the rank of A is the maximal size of a set of linearly independent
columns of A.
A previous theorem applied to the linear mapping hA : Cm −→ Cn means
that for A ∈ Cn×m we have:

dim(null(A)) + rank(A) = m. (3)

Observe that if A ∈ Cm×m is non-singular, then Axxx = 000m implies xxx = 000m.
Thus, if xxx ∈ null(A) ∩ range(A) it follows that Axxx = 000, so the subspaces
null(A) and range(A) are complementary.
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Example

For the matrix

A =


1 0 2
1 −1 1
2 1 5
1 2 4


we have rank(A) = 2. Indeed, if ccc1,ccc2,ccc3 are its columns, then it is easy
to see that {ccc1,ccc2} is a linearly independent set, and ccc3 = 2ccc1 + ccc2.
Thus, the maximal size of a set of linearly independent columns of A is 2.
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Example cont’d

The number of linearly independent rows of

A =


1 0 2
1 −1 1
2 1 5
1 2 4


is also 2. Indeed, we have

(2 1 5) = a(1 0 2) + b(1 − 1 1)

for a = 3 and b = −1. Also,

(1 2 4) = c(1 0 2) + d(1 − 1 1)

for c = 3 and d = −2.
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Example

Let A ∈ Cn×m and B ∈ Cp×q. For the matrix C ∈ C(n+p)×(m+q) defined by

C =

(
A On,q

Op,m B

)
we have rank(C ) = rank(A) + rank(B).
Suppose that rank(C ) = ℓ and let ccc1, . . . ,cccℓ be a maximal set of linearly
independent columns of C . Without loss of generality we may assume that
the first k columns are among the first m columns of A and the remaining
ℓ− k columns are among the last q columns of C . The first k columns of
C correspond to k linearly independent columns of A, while the last ℓ− k
columns correspond to ℓ− k linearly independent columns of B. Thus,
rank(C ) = k ⩽ rank(A) + rank(B).
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Example cont’d

Example

Conversely, suppose that rank(A) = s and rank(B) = t. Let aaai1 , . . . ,aaais be
a maximal set of linearly independent columns of A and let bbbj1 , . . . ,bbbjt be
a maximal set of linearly independent columns of B. Then, it is easy to
see that the vectors(

aaai1
000n

)
, · · · ,

(
aaais
000n

)
, . . . ,

(
000n
bbbj1

)
, . . . ,

(
000n
bbbjt

)
constitute a linearly independent set of columns of C , so
rank(A) + rank(B) ⩽ rank(C ). Thus, rank(C ) = rank(A) + rank(B).
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Example

Let xxx and yyy be two vectors in Cn − {000}. The matrix xxxyyyH has rank 1.
Indeed, if yyyH = (y1, y2, . . . , yn), then we can write

xxxyyyH = (y1xxx y2xxx · · · ynxxx),

which implies that the maximum number of linearly independent columns
of xxxyyyH is 1.
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Example

Let A,B ∈ Cn×m. We have rank(A+ B) ⩽ rank(A) + rank(B).
Let A = (aaa1 aaa2 · · · aaam) and B = (bbb1 bbb2 · · · bbbm) be two matrices, where
aaa1, . . . ,aaam,bbb1, . . . ,bbbm ∈ Cn. Clearly, we have

A+ B = (aaa1 + bbb1 aaa2 + bbb2 · · · aaam + bbbm).

If xxx ∈ Im(A+ B) we can write:

xxx = x1(aaa1 + bbb1) + x2(aaa2 + bbb2) + · · ·+ xm(aaam + bbbm) = yyy + zzz ,

where

yyy = x1aaa1 + · · ·+ xmaaam ∈ Im(A),

zzz = x1bbb1 + · · ·+ xmbbbm ∈ Im(B).

Thus, Im(A+ B) ⊆ Im(A) + Im(B). Since the dimension of the sum of two
subspaces of a linear space is less or equal to the dimension of sum of these
subspaces, the result follows.
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The above discussion also shows that if A ∈ Cn×m, then
rank(A) ⩽ min{m, n}.

Theorem

Let A ∈ Cm×n be a matrix. We have rank(A) = rank(A).

Proof.

Suppose that A = (aaa1, . . . ,aaan) and that the set {aaai1 , . . . ,aaaip} is a set of
linearly independent columns of A. Then, the set {aaai1 , . . . ,aaaip} is a set of

linearly independent columns of A. This implies rank(A) = rank(A).
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Corollary

We have rank(A) = rank(AH) for every matrix A ∈ Cm×n.

Proof.

Since AH = A′, the statement follows immediately.
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If A ∈ Cm×n is a full-rank matrix and m ⩾ n, then the n columns of the
matrix are linearly independent; similarly, if n ⩾ m, the m rows of the
matrix are linearly independent.
A matrix that is not a full-rank is said to be degenerate. A degenerate
square matrix is said to be singular. A non-singular matrix A ∈ Cn×n is a
matrix that is not singular and, therefore has rank(A) = n.
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Theorem

A matrix A ∈ Cn×n is non-singular if and only if it is invertible.

Prof. Dan A. Simovici CS724: Topics in Algorithms Matrices Slide Set 3 66 / 98



Proof
Suppose that A is non-singular, that is, rank(A) = n. In other words the
set of columns {ccc1, . . . ,cccn} of A is linearly independent, and therefore, is
a basis of Cn. Then, each of the vectors eee i can be expressed as a unique
combination of the columns of A, that is

eee i = b1iccc1 + b2iccc2 + · · ·+ bnicccn,

for 1 ⩽ i ⩽ n. These equalities can be written as

(ccc1 · · · cccn)


b11 · · · b1n
b21 · · · b2n
... · · ·

...
bn1 · · · bnn

 = In.

Consequently, the matrix A is invertible and

A−1 =


b11 · · · b1n
b21 · · · b2n
... · · ·

...
bn1 · · · bnn
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Proof cont’d

Suppose now that A is invertible and that

d1ccc1 + · · ·+ dncccn = 000.

This is equivalent to

A

d1
...
dn

 = 000.

Multiplying both sides by A−1 impliesd1
...
dn

 = 000,

so d1 = · · · = dn = 0, which means that the set of columns of A is linearly
independent, so rank(A) = n.
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Corollary

A matrix A ∈ Cn×n is non-singular if and only if Axxx = 000 implies xxx = 000 for
xxx ∈ Cn.

Proof.

If A is non-singular then A is invertible. Therefore, Axxx = 000 implies
A−1(Ax) = A−1000, so xxx = 000.
Conversely, suppose that Axxx = 000 implies xxx = 000. If A = (ccc1 · · · cccn) and
xxx = (x1, . . . , xn)

′, the previous implication means that
x1ccc1 + · · ·+ xncccn = 000 implies x1 = · · · = xn = 0, so {ccc1, . . . ,cccn} is linearly
independent. Therefore, rank(A) = n, so A is non-singular.
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Define the similarity relation “∼” on the set of square matrices Cn×n by
A ∼ B if there exists an invertible matrix X such that A = XBX−1.
If X is a unitary matrix, then we say that A and B are unitarily similar and
we write A ∼u B, so ∼u is a subset of ∼. In this case, we have
A = XBX H. o
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Theorem

The relations “∼” and “∼u” are equivalence relations.

Proof.

We have A ∼ A because A = InA(In)
−1, so ∼ is a reflexive relation. To

prove that ∼ is symmetric suppose that A = XBX−1. Then, B = X−1AX
and, since X−1 is invertible, we have B ∼ A.
Finally, to verify the transitivity, let A,B,C be such that A = XBX−1 and
B = YCY−1, where X and Y are two invertible matrices. This allows us
to write

A = XBX−1 = XYCY−1X−1 = (XY )C (XY )−1,

which proves that A ∼ C .
We leave to the reader the similar proof concerning ∼u.
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Theorem

If A ∼u B, where A,B ∈ Cn×n, then AHA ∼u BHB.

Proof.

Since A ∼u B there exists a unitary matrix X such that
A = XBX−1 = XBX H. Then, AH = XBHX H, so
AHA = XBHX HXBX H = XBHBX H. Thus, AHA is unitarily similar to
BHB.
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Theorem

Let A and B be two matrices in Cm×n. We have A ∼ B if and only if
rank(A) = rank(B).

Proof: If A ∈ Cm×n be a matrix with rank(A) = r > 0, then

A ∼
(

Ir Or ,n−r

Om−r ,r Om−r ,n−r

)
.

Thus, for every two matrices A,B ∈ Cn×m of rank r we have A ∼ B
because both are similar to(

Ir Or ,n−r

Om−r ,r Om−r ,n−r

)
.
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Proof cont’d

Conversely, suppose that A ∼ B, that is, A = GBH, where G ∈ Cm×m and
H ∈ Cn×n are non-singular matrices. By a previous corollary we have
rank(A) = rank(B).
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Definition

A matrix A ∈ Cn×n is diagonalizable if there exists a diagonal matrix D
such that A ∼ D.
Let M be a class of matrices. A is M-diagonalizable if there exists a
matrix M ∈ M such that A = MDM−1.

For example, if A is M-diagonalizable and M is the class of unitary
matrices we say that A is unitarily diagonalizable.
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Let f : Cn −→ C be a polynomial given by

f (z) = a0z
n + a1z

n−1 + · · ·+ an,

where a0, a1, . . . , an ∈ C. If A ∈ Cm×m, then the matrix f (A) is defined by

f (A) = a0A
n + a1A

n−1 + · · ·+ anIm.

Theorem

If T ∈ Cm×m is an upper (a lower) triangular matrix and f is a
polynomial, then f (T ) is an upper (a lower) triangular matrix.
Furthermore, if the diagonal elements of T are t11, t22, . . . , tmm, then the
diagonal elements of f (T ) are f (t11), f (t22), . . . , f (tmm), respectively.
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Proof

Any power T k of T is an upper (a lower) triangular matrix. Since the sum
of upper (lower) triangular matrices is upper (lower) triangular, if follows
that f (T ) is an upper triangular (a lower triangular) matrix.
An easy argument by induction on k (left to the reader) shows that if the
diagonal elements of T are t11, t22, . . . , tmm, then the diagonal elements of
T k are tk11, t

k
22, . . . , t

k
mm. The second part of the theorem follows

immediately.
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Theorem

Let A,B ∈ Cm×m. If A ∼ B and f is a polynomial, then f (A) ∼ f (B).

Proof.

Let X be an invertible matrix such that A = XBX−1. It is straightforward
to verify that Ak = XBkX−1 for k ∈ N. This implies that
f (A) = Xf (B)X−1, so f (A) ∼ f (B). then f (A) ∼ f (B).
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Definition

Let A and B be two matrices in Cn×n. The matrices A and B are
congruent if there exists an invertible matrix X ∈ Cn×n such that
B = XAX H. This is denoted by A ∼H B.

The relation ∼H is an equivalence on Cn×n. We have A ∼H A because
A = InAI

H
n . If A ∼H B, then B = XAX H, so

A = X−1B(X H)−1 = X−1B(X−1)H, which implies B ∼H A. Finally, ∼H is
transitive because if B = XAX H and C = YBY H, where X and Y are
invertible matrices, then C = (YX )A(YX )H and YX is an invertible matrix.
It is immediate that any two congruent matrices have the same rank.
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Recapitulation

A and B are similar matrices, A ∼ B, if there exists an invertible
matrix X such that A = XBX−1;
A and B are congruent matrices, A ∼H B, if there exists an invertible
matrix X ∈ Cn×n such that B = XAX H;
A and B are unitarily similar, A ∼u B, if there exists a unitary matrix
U such that A = UBU−1.

Since every unitary matrix is invertible and its inverse equals its conjugate
Hermitian matrix, it follows that ∼u is a subset of both ∼ and ∼H.
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Definition

Let A ∈ Cm×n and B ∈ Cp×q be two matrices. The Kronecker product of
these matrices is the matrix A⊗ B ∈ Cmp×nq defined by

A⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB

 .

The Kronecker product A⊗ B creates mn copies of the matrix B and
multiplies each copy by the corresponding element of A.
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Consider the matrices

A =

(
a11 a12
a21 a22

)
and B =

b11 b12 b13
b21 b22 b23
b31 b32 b33


Their Kronecker product is

A⊗ B =



a11b11 a11b12 a11b13 a12b11 a12b12 a12b13
a11b21 a11b22 a11b23 a12b21 a12b22 a12b23
a11b31 a11b32 a11b33 a12b31 a12b32 a12b33
a21b11 a21b12 a21b13 a22b11 a22b12 a22b13
a21b21 a21b22 a21b23 a22b21 a22b22 a22b23
a21b31 a21b32 a21b33 a22b31 a22b32 a22b33

 .
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Let C ∈ Cmp×nq be the Kronecker product of the matrices A ∈ Cm×n and
B ∈ Cp×q. We seek to express the value of cij , where 1 ⩽ i ⩽ mp and
1 ⩽ j ≤ nq. It is easy to see that

cij = a⌈ i
p
⌉,⌈ j

q
⌉bi−p

(
⌈ i
p
⌉−1

)
,j−q

(
⌈ j
q
⌉−1

). (4)
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Theorem

For any matrices A,B,C ,D we have:
(A⊗ B)′ = A′ ⊗ B ′,
(A⊗ B)⊗ C = A⊗ (B ⊗ C ),
(A⊗ B)(C ⊗ D) = (AC ⊗ BD),
A⊗ B + A⊗ C = A⊗ (B + C ),
A⊗ D + B ⊗ D = (A+ B)⊗ D,
(A⊗ B)′ = A′ ⊗ B ′,
(A⊗ B)H = AH ⊗ BH,

when the usual matrix sum and multiplication are well-defined in each of
the above equalities.
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Example

Let xxx ∈ Cn and yyy ∈ Cm. We have

xxx ⊗ yyy =

x1yyy
...

xnyyy

 =

y1xxx
...

ymxxx

 ∈ Cmn.
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Theorem

If A ∈ Cn×n and B ∈ Cm×m are two invertible matrices, then A⊗ B is
invertible and (A⊗ B)−1 = A−1 ⊗ B−1.

Proof.

Since
(A⊗ B)(A−1 ⊗ B−1) = (AA−1 ⊗ BB−1) = In ⊗ Im,

the theorem follows by noting that In ⊗ Im = Inm.
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Theorem

Let A ∈ Cn×n and B ∈ Cm×m be two normal (unitary) matrices. Their
Kronecker product A⊗ B is also a normal (a unitary) matrix.

Proof.

We can write

(A⊗ B)′(A⊗ B) = (A′ ⊗ B ′)(A⊗ B)

= (A′A⊗ B ′B)

= (AA′ ⊗ BB ′)

(because both A and B are normal)

= (A⊗ B)(A⊗ B)′,

which implies that A⊗ B is normal.
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Definition

Let A ∈ Cm×m and B ∈ Cn×n be two square matrices. Their Kronecker
sum is the matrix A⊕ B ∈ Cmn×mn defined by

A⊕ B = (A⊗ In) + (Im ⊗ B).

The Kronecker difference is the matrix A⊖ B ∈ Cmn×mn defined by

A⊖ B = (A⊗ In)− (Im ⊗ B).
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Definition

Let A,B ∈ Cm×n. The Hadamard product of A and B is the matrix
A⊙ B ∈ Cm×n defined by

A⊙ B =


a11b11 a12b12 · · · a1nb1n
a21b21 a22b22 · · · a2nb2n

...
...

. . .
...

am1bm1 am2bm2 · · · amnbmn

 .
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Definition

The Hadamard quotient A⊘ B is defined only if bij ̸= 0 for 1 ⩽ i ⩽ m and
1 ⩽ j ⩽ n. In this case

A⊘ B =


a11
b11

a12
b12

· · · a1n
b1n

a21
b21

a22
b22

· · · a2n
b2n

...
...

. . .
...

am1
bm1

am2
bm2

· · · amn
bmn

 .
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Theorem

If A,B,C ∈ Cm×n and c ∈ C we have
A⊙ B = B ⊙ A;
A⊙ Jm,n = Jm,n ⊙ A = A;
A⊙ (B + C ) = A⊙ B + A⊙ C ;
A⊙ (cB) = c(A⊙ B).
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Note that the Hadamard product of two matrices A,B ∈ Cm×n is a
submatrix of the Kronecker product A⊗ B.

Example

Let A,B ∈ C2×3 be the matrices

A =

(
a11 a12 a13
a21 a22 a23

)
and B =

(
b11 b12 b13
b21 b22 b23

)
.

The Kronecker product of these matrices is A⊗ B ∈ C4×9 given by:

A⊗B =


a11b11 a11b12 a11b13 a12b11 a12b12 a12b13 a13b11 a13b12 a13b13
a11b21 a11b22 a11b23 a12b21 a12b22 a12b23 a13b21 a13b22 a13b23
a21b11 a21b12 a21b13 a22b11 a22b12 a22b13 a23b11 a23b12 a23b13
a21b21 a21b22 a21b23 a22b21 a22b22 a22b23 a23b21 a23b22 a23b23

 .
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Example

The Hadamard product of the same matrices is

A⊙ B =

(
a11b11 a12b12 a13b13
a21b21 a22b22 a23b23

)
,

and we can regard the Hadamard product as a submatrix of the Kronecker
product A⊗ B,

A⊙ B = (A⊗ B)

[
1, 5, 9
4, 4, 4

]
.

Prof. Dan A. Simovici CS724: Topics in Algorithms Matrices Slide Set 3 93 / 98



Another matrix product involves matrices that have the same number of
columns.

Definition

Let A ∈ Cm×n and B ∈ Cp×n be two matrices that have n columns,

A = (aaa1 · · · aaan) and B = (bbb1 · · · bbbn).

The Khatri-Rao product of A and B is the matrix

A ∗ B = (aaa1 ⊗ bbb1 aaa2 ⊗ bbb2 · · · aaan ⊗ bbbn).
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Example

The Khatri-Rao product of the matrices

A =

(
1 2 3
4 5 6

)
andB =

 1 0 2
2 1 3
−1 2 1


is the matrix (aaa1 ⊗ bbb1 aaa2 ⊗ bbb2 aaa3 ⊗ bbb3) which equals

1 0 6
2 2 9
−1 4 3
4 0 12
8 5 18
−4 10 6

 .
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Definition

Let uuu ∈ Cm and vvv ∈ Cn. The outer product of of the vectors uuu and vvv is
the matrix uuu ∗ vvv ∈ Cm×n defined by uuu ∗ vvv = uuuvvvH.

The outer product of two vectors is a matrix of rank 1.
For uuu ∈ Cm and vvv ∈ Cn we have vvv ∗ uuu = vvvuuuH = (uuuvvv sH)H = (uuu ∗ vvv)H.
Therefore, the outer product is not commutative because for uuu ∈ Cm and
vvv ∈ Cn we have uuu ∗ vvv ∈ Cm×n and vvv ∗ uuu ∈ Cn×m.
Note that when m = n we have uuuvvvH = trace(uuu ∗ vvv).
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Example

Let

uuu =

u1
u2
u3

 and vvv =

(
v1
v2

)
.

We have

uuu ∗ vvv =

u1v1 u1v2
u2v1 u2v2
u3v1 u3v2

 and vvv ∗ uuu =

(
v1u1 v1u2 v1u3
v2u1 v2u2 v2u3

)
.
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Example

Contrast this with the Kronecker products:

uuu ⊗ vvv =



u1v1
u1v2
u2v1
u2v2
u3v1
u3v2

 and vvv ⊗ uuu =



v1u1
v1u2
v1u3
v2u1
v2u2
v2u3

 .

Note that the entries of the Kronecker product uuu ⊗ vvv can be obtained by
reading the entries of uuu ∗ vvv row-wise, or the entries of the same
column-wise. Similar statements hold for vvv ⊗ uuu. This observation
suggested the use of the Kronecker symbol ⊗ for outer products of
vectors. In other words, we will denote the outer products uuu ∗ vvv and vvv ∗ uuu
with uuu ⊗ vvv and vvv ⊗ uuu, respectively.
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