
Approximate Computation of Object Distances by
Locality-Sensitive Hashing

Selim Mimaroglu and Dan A. Simovici
University of Massachusetts at Boston,

Department of Computer Science,
Boston, Massachusetts 02125, USA,
{smimarog,dsim}@cs.umb.edu

Abstract—We propose an approximate computation technique
for inter-object distances for binary data sets. Our approach is
based on the locality sensitive hashing, scales up with the number
of objects and is much faster than the “brute-force” computation
of these distances.

I. INTRODUCTION

Locality Sensitive Hashing (LSH), first introduced in [1],
can be used for an approximate calculation of distances
between the tuples of a table by using randomized hash
functions. A close variant of LSH which works best with the
Hamming distance is described in [2].

Our data set is a binary table D, having N distinct objects
and a set I that consists of n distinct attributes. A set K ⊆ I
of k attributes, designated as a probe and chosen randomly
defines a random hashing function fK by assigning to a tuple
t the numerical binary equivalent of the projection of t on the
set K, t[K].

Each hashing function produces a partition of the set of
tuples; each block of this partition consists of tuples that
collide under that hashing function.

LSH is used for clustering the Web in [3]. In [4] it is used to
enhance the agglomerative hierarchical clustering of the single
link method [5]. Both of these techniques rely on the same idea
provided by LSH: close objects are likely to collide under a
high number of randomly chosen hashing functions. Both of
these techniques compute the real distances between objects
residing in the same blocks.

LSH-Link algorithm [4] has O(N2) time complexity as
the classical single link method and it works as follows.
Database D is hashed into m partitions by using randomly
generated functions of LSH on k attributes. In the first phase
of the algorithm distances between all pairs of tuples (u, v)
residing in the same blocks are computed, and all the pairs
of tuples having distance at most r are merged at once. Note
that this pairwise computation takes place on every block of
every partition. If after the first phase there is more than
one cluster, the algorithm proceeds to the second phase by
selecting a new projection size k′ such that k′ < k, and a new
distance value r′ such that r′ > r. LSH-Link hashes the whole
database D again by using the new values r′, k′. It merges the
pair of clusters with respect to r′. If there is more than one
cluster, the algorithm proceeds to the next phase by selecting

new values r′′, k′′ and by repeating all the calculations. This
continues until there is only one cluster. Authors of [4] point
that in a phase several clusters may be merged as opposed to
merging only two clusters in classical single link algorithm.
Note that if the initial distance r is not chosen carefully the
LSH-Link algorithm may take many phases, therefore yielding
many redundant hashing and pairwise distance computations.
Furthermore, in the worst case this algorithm computes N2

distances.
The clustering algorithms proposed in [3] and [4] focus on

finding the approximate set of near neighbors ANN(u) of an
object u, followed by finding real near neighbors of u by
computing the actual distances d(u, v) for all v ∈ ANN(u).
Note that some of the real neighbors of u may be missed
because LSH does not guarantee to put all the close objects
in the same blocks.

We aim for a distinct goal, namely an efficient, approxima-
tive computation of the distance matrix of the set of objects
using LSH, which allows us to use a variety of standard
clustering algorithms.

In the next section relation between randomly generated
hash function collisions and distances between objects is
explained. Experimental results is followed by conclusions and
future work.

II. COLLISIONS AND DISTANCES

A binary data collection is a sequence D = (t1, . . . , tN) of
tuples, where ti ∈ {0, 1}n.

Let K = {i1, . . . , ik} ⊆ {1, . . . , n}. The projection of a
tuple t ∈ {0, 1}n on K is the tuple t[K] = (ti1 , . . . , tik

). The
K-projection of the binary data collection D is the binary data
collection D[K] = (t1[K], . . . , tN [K]).

Each K-projection of D generates a function hK :
{1, . . . , N} −→ N, where hK(r) is the binary equivalent of
the sequence tr[K]. This can be seen in Figure 1, where the
function h{i1,i3,i5} for the binary data collection shown in
Part (a) is given in Part (b) of the figure. h{i1,i3,i5} creates
a partition with 8 blocks; 2 of these are empty as shown in
Figure 2.

The Hamming distance between two tuples u, v ∈ {0, 1}n

is given by

d(u, v) = |{i ∈ {1, . . . , n} | ui 6= vi}|,

D

r i1 i2 i3 i4 i5
1 1 0 0 1 1
2 0 1 1 0 0
3 1 0 1 0 0
4 1 1 0 1 0
5 0 1 1 1 1
6 0 0 1 1 1
7 1 0 1 0 1
8 1 1 0 0 1
9 0 1 1 1 0

r hK(r)
1 5
2 2
3 6
4 4
5 3
6 3
7 7
8 5
9 2

(a) (b)

Fig. 1. A binary collection and the hashing function hK for K =
{i1, i3, i5}.

000 001 010 011
{} {} {2,9} {5,6}

100 101 110 111
{4} {1,8} {3} {7}

Fig. 2. All the blocks created by hK for K = {i1, i3, i5}. Block descriptors,
and corresponding row numbers are shown.

where u = (u1, . . . , un) and v = (v1, . . . , vn).
Suppose that the set of attributes K that defines a probe

is chosen at random. There are
(

n
k

)
such choices if |K| =

k. A collision takes place between two rows u and v if the
chosen k attributes are among the n−d attributes on which u
and v are equal, where d = d(u, v) is the Hamming distance

between u and v. There are
(

n− d
k

)
such choices for the

set I . Therefore, for any two rows u, v of D the collision
probability for hK , that is, the probability that hK(u) = hK(v)
is

p =

(
n− d

k

)

(
n
k

) .

If m sets K having k elements are chosen at random, then
C(u, v) the total number of collisions that occur in this exper-
iment is a binomially distributed variable with the distribution
B(m, p). Thus, the expected number of collisions is

E(C(u, v)) = m

(
n− d

k

)

(
n
k

)

if k ≤ n − d, which is typically the case. If k > n − d a
collision is impossible and p = 0. It is clear that the smaller
the distance d(u, v), the larger the number of collisions will
be.

Using Stirling’s Formula we can write
(

n− d
k

)

(
n
k

) =
(n−d)!

k!(n−d−k)!

n!
k!(n−k)!

=
(n− d)!

n!
(n− k)!

(n− d− k)!

≈ (n− d)n−d+0.5(n− k)(n−k+0.5)

n(n+0.5)(n− d− k)n−d−k+0.5

=
(

n2 − nd− nk + dk

n2 − nd− nk

)n+0.5

·
(

n− d− k

n− d

)d

·
(

1− d

n− k

)k

.

For moderately large values of n the first two factors are close
to 1. Thus, the expected value of the number of collisions is

E(C(u, v)) ≈ m ·
(

1− d

n− k

)k

Let c(u, v) = E(C(u, v))/m be the relative number of
collisions. Then, we estimate the distance between u and v
as

d(u, v) ≈ (n− k)(1− c(u, v)
1
k) (1)

Assume that m probes with k attributes are applied, where
1 ≤ m and 1 ≤ k ≤ n. Since we deal with binary data,
each attribute may take a value of either 0 or 1. Therefore, the
partition that corresponds to a k-probe may contain up to 2k

blocks.
Let n1, . . . , n2k be the sizes of the blocks that correspond to

a k-probe. For each block of the partition we need to update
the number of collisions of pairs. Therefore, for a block of
size ni we need to perform

(
ni

2

)
updates of the pair counters.

For example, for a block having three elements {a, b, c}, the
collision counts of the pairs: (a, b), (a, c), (b, c) are increased
by one. The total time required for this partition is no more
than

2k∑

i=1

(
ni

2

)
=

1
2




2k∑

i=1

ni
2 − n




≤ n2

2k
− n,

because the largest value of the expression
∑2k

i=1 n2
i under the

constraint
∑2k

i=1 ni = n is obtained when n1 = · · · = n2k =
n
2k . The process has to be repeated for each of m probes and

this requires a time proportional to m
(

n2

2k − n
)

.

III. EXPERIMENTS

We discuss the experimental setup and some implementation
details. We start with data in binary format where each row is
a bit vector. This data representation is very memory-efficient
and operations on bit vectors are fast.

A clustering, which corresponds to a probe, is represented
by a Java class that is parametrized by the projection size.
Components of a clustering include its clusters and members
of these clusters. In a clustering Java’s Random class is used
to select projected attributes randomly.

To produce a clustering, k attributes are randomly selected
and the objects are projected on the selected set of attributes.
A cluster C consists of those objects that have the same
projection p ∈ {0, 1}k on the set of attributes that constitutes
the probe. The value of bit vector p is the descriptor of
the cluster. The cluster itself is represented by a bit vector
bC ∈ {0, 1}N , where (bC)i = 1 if and only if the object ui

belongs to the cluster C.
Note that clusters (blocks) do not overlap, and the identifiers

of the objects are placed into appropriate clusters according
to the cluster descriptors.

The number of clusterings m is determined by the user
and is passed as an argument to the implementation. Both the
number of clusterings (which equals the number of probes m)
and the width k of the probes are set to positive integers by
the user.

All the clusterings are populated in one scan of the database
as follows. Each clustering may have at most 2k non-empty
clusters. First, empty clusterings are initialized, then each
object in the database D is passed to all the clusterings. Each
clustering projects the object on its own randomly selected
attributes and then places the object in the appropriate cluster
according to the cluster descriptors.

Assume a clustering projects on first, fifth, and tenth at-
tributes, then the object 1001011010, is placed in cluster
4 of this clustering. Similarly, if another clustering projects
on fourth, sixth, and seventh attributes, then the same object
1001011010, is placed in cluster 7 of this clustering. This
computation takes place for each data object. In one scan of
database D, m clusterings, each having 2k clusters can be
generated efficiently.

We use an N × N matrix referred to as the simultaneous
occurrence matrix to keep track of the number of collisions of
each of the object pairs. After obtaining the clusterings, each
cluster in every clustering is scanned once and the occurrence
matrix component that corresponds to each pair (u, v) of
objects in D that co-occur in the same cluster is incremented
by 1. Note that there are at most m2k clusters to scan.

For example, assume that we have a 5-object dataset D with
n = 4 attributes, the width of the probes is k = 1, and we
have m = 3 clusterings, whose bit vectors are




0
1
1
1
0




,




0
1
0
1
0




, and




1
0
1
0
0




.

The simultaneous occurrence matrix is shown below. For
example, objects 2 and 4 occur in the same clusters 3 times.

1 2 3 4 5
1 3 0 2 0 2
2 0 3 1 3 1
3 2 1 3 1 1
4 0 3 1 3 1
5 2 1 1 1 3

Using the simultaneous occurrence matrix, the approximate
distance matrix can be created using the formula (1). For the
current example the distance matrix is shown below.

1 2 3 4 5
1 0 3 1 3 1
2 3 0 2 0 2
3 1 2 0 2 2
4 3 0 2 0 2
5 1 2 2 2 0

We conducted a series of experiments on synthetically gen-
erated binary data using a Pentium 3.0GHz computer having
4GB of main memory running on Linux. Our algorithm is
implemented in Java. In Figure 3 the total time spent to
create our distance matrices, and Hamming distance matrix
are shown for varying size databases. Recall that k is the
projection size and m is number of clusterings.

In principle our algorithm requires quadratic time. However,
in practice, it scales (almost) linearly. Each cluster is repre-
sented by a bit vector, therefore the elements of clusters are
ordered. When incrementing the pairs in clusters we obey to
the order imposed by the bit vectors. Thus, our implementation
possess cache locality which yields high performance. On data
sets having up to 20,000 objects the parabolic growth is almost
invisible. We verified high cache hit rate by using debugging
and profiling tools on Linux (e.g. valgrind).

For calculating the Hamming distance we use bit vectors
and XOR operation on the bit vectors, which is the fastest way
to compute the Hamming distance. Only the upper half of the
Hamming distance matrix is computed because the matrix is
symmetric. It can be seen from Figure 3 that our approach is
17 times faster on some databases (20,000 object database).

Fig. 3. Scalability test and time comparison.

To evaluate the quality of our approximation we used

the cophenetic correlation coefficient [6] to calculate the
correlation between two distance matrices. This coefficient
takes a value between 0 and 1, where a higher value implies
better correlation. We calculated the cophenetic correlation
coefficient between our approximate distance matrix D , and
the Hamming distance matrix H . The averages of the matrices
D and H are denoted by d̄ and h̄, respectively. The coefficient
is given by

c =

∑
(Dij − d̄)(Hij − h̄)

√∑
(Dij − d̄)2

∑
(Hij − h̄)2

.

In Figure 4 we show the cophenetic correlation coefficient
for varying k and m. Note that best experimental results are
achieved when k = 2. Higher values of m produces better
correlations and the coefficient approaches 1 for reasonable
values of m. Figure 5 shows that for 200 probes the cophenetic
correlation coefficient is 0.963. 200 probes may seem extreme,
but each probe scans only 2 attributes out of the total 20
attributes. Therefore each probe scans 10 percent of the
database, and 200 probes correspond to a total of 20 full
scans of the database. On the other hand to compute a distance
matrix of 1000 points, around 500 full scans of the database
are required.

Fig. 4. Cophenetic correlation coefficient of a database having 1000 data
points, and 20 attributes.

The accuracy for data sets having considerably more at-
tributes does not degrade as shown in Figure 6. We observe
that when k = 2, setting m approximately to the number of
attributes produces very good results.

Our algorithm is highly parallelizable. We have used Java
threads on an Apple - Mac Pro having 2 Intel Xeon quad-core
64 bit processors. This server has 8 cores, 16GB main memory
and it can host 8 processes simultaneously. Each clustering is
implemented as a Java thread, and these threads are converted
to operating system native threads by the compiler. Note that
there is some overhead for creating operating system native
threads. We relied on the operating system (Mac OS X Leop-
ard) to distribute the work evenly. On a database having 15,000
data points, we computed approximative distance matrices for
k = 4 and varying number of probes m. In Figure 7 we report

Fig. 5. Cophenetic correlation coefficient of a database having 1000 data
points, and 20 attributes, k = 2 and higher values of m.

Fig. 6. Cophenetic correlation coefficient of a database having 1000 data
points, and 100 attributes.

the total time spent for these computations. The results are as
expected: total time stays almost stable for increasing values
of m.

probes (m) Total Time (ms)
2 2171
3 2045
4 2132
5 2269
6 2281
7 2442
8 2484

Fig. 7. Parallel computation results on a database having 15,000 data points.

IV. CONCLUSIONS AND FUTURE WORK

Computing the distance matrix of a database is a funda-
mental problem in clustering. We presented a novel approach
which is an efficient and approximative computation of the
distance matrix. Our technique relies on randomized hash

functions known as Locality Sensitive Hashing (LSH). Ex-
perimental results demonstrate that our method is fast and
accurate. Our technique is suitable for parallel computation,
which takes advantage of modern multiprocessor architectures.
We have implemented our approach for both single processor
and multiprocessor systems.

As mentioned earlier, each randomized hash function cre-
ates a clustering. Combining all the clusterings into a single
superior clustering in an efficient, and intelligent way will be
our future work.

REFERENCES

[1] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” Proceedings of the thirtieth annual
ACM symposium on Theory of computing, pp. 604–613, 1998.

[2] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high dimen-
sions via hashing,” Proceedings of the 25th International Conference on
Very Large Data Bases, pp. 518–529, 1999.

[3] T. Haveliwala, A. Gionis, and P. Indyk, “Scalable techniques for clustering
the web,” Proc. of the WebDB Workshop.

[4] H. Koga, T. Ishibashi, and T. Watanabe, “Fast agglomerative hierarchical
clustering algorithm using Locality-Sensitive Hashing,” Knowledge and
Information Systems, vol. 12, no. 1, pp. 25–53, 2007.

[5] R. Sibson, “SLINK: An optimally efficient algorithm for the single-link
cluster method,” The Computer Journal, vol. 16, no. 1, pp. 30–34, 1973.

[6] R. Sokal and F. Rohlf, “The comparison of dendrograms by objective
methods,” Taxon, vol. 11, no. 1, pp. 30–40, 1962.

