
Information-Theoretical Mining of Determining Sets for Partially
Defined Functions

Dan A. Simovici, Dan Pletea, Rosanne Vetro
Univ. of Massachusetts Boston,

Dept. of Comp. Science,
100 Morrissey Blvd.

Boston, Massachusetts
02125 USA

{dsim,dpletea,rvetro}@cs.umb.edu

Abstract

This paper describes an algorithm that determines the
minimal sets of variables that determine the values of a
discrete partial function. The algorithm is based on the
notion of entropy of a partition and is able to achieve an
optimal solution. A limiting factor is introduced to restrict
the search, thereby providing the option to reduce running
time. Experimental results are provided that demonstrate
the efficiency of the algorithm for functions with up to 24
variables. The effect of the limiting factor on the optimality
of the algorithm for different sizes of partial functions is
also examined.

1 Introduction
Partially defined finite functions are studied by both math-
ematicians and engineers due to their many technical appli-
cations, particularly in designing switching circuitry. They
model such diverse circuits as logical programmable ar-
rays, or content addressable memory. The performance of
such circuits (including wiring complexity, power dissipa-
tion, etc.) is heavily influenced by the number of arguments
on which the function implemented by the circuit depends
effectively.

The goal of this paper is to present an algorithm to
generate various sets of input variables on which a partial
function depends using the conditional entropy between
sets of attributes.

This problem has been addressed in T. Sasao’s seminal
paper [Sas08] using an algebraic minimization algorithm
that is applied to functions that depend on small number of
variables. Our approach is distinct and involves techniques
inspired by data mining. Additionally, it has the advantage
of being independent of the values of the input or output

radix of the partial function f .
In [SPV09] we developed an Apriori-like algo-

rithm [AIS93, MT97, ZH05] that computes the entire col-
lection of determining sets of a partially defined function
by traversing the entire lattice of subsets of the set of vari-
ables, which is usually a rather large search space. The
current approach applies techniques based on entropy of
partitions and limits the search space by using a limiting
factor. This improves considerably the running time. The
algorithm presented in this paper is based on the partial or-
der that is naturally defined on the set of partitions of a set
and on the properties of conditional entropy of partitions
of finite sets. Determining sets are computed by evaluat-
ing the conditional entropy of the output variable relative
to subsets of the set of input variables of a partial func-
tion. Experimental results show the effectiveness of the
algorithm.

The paper is organized as follows. In Section 2, the no-
tion of determining set for a partial function is introduced
and a few properties of these sets that play a role in our
algorithm are examined. Section 3 introduces the condi-
tional entropy of partitions that is used to find determining
sets. The algorithm is presented in Section 4. Section 5 dis-
cusses experimental work related to the algorithm. Finally,
Section 6 presents our conclusions.

2 Determining Sets for Partially Defined Functions
We denote the finite set {0, 1, . . . , n− 1} by n. The partial
functions that we study have as domain a subset of the finite
set rn and as range a subset of the finite set p for some
positive natural numbers r and p, referred to as the input
radix and the output radix of the function, respectively. The
set of all such partial functions is denoted by PF(rn, p). If
f ∈ PF(rn, p) we denote by Dom(f) the set of all n-tuples
(a1, . . . , an) in rn for which f(a1, . . . , an) is defined.

Table 1. Tabular Representation of a Partial
Function

x1 x2 x3 y

0 1 1 0
0 1 2 1
0 2 1 2
0 2 2 2
1 0 1 3
1 0 2 3
2 0 1 3
2 0 2 3
1 1 0 2
1 2 0 2
2 1 0 1
2 2 0 0

A partial function f ∈ PF(rn, p) is specified as a
table Tf having columns labelled by the argument variables
x1, . . . , xn and by the output variable y. The set of
variables that occur in a table Tf is denoted by Varf .

If f(a1, . . . , an) = b we have in the table Tf the
(n + 1)-tuple t = (a1, . . . , an, b). For example, in Table 1
we show a partial function defined on all triplets in 33 that
contain at least two non-zero elements, and ranging in the
set 4: The number of rows of the table that represents a
partial function defined on rn can range between 0 and
rn. Usually, the number of rows of such a function is
smaller than rn and, often this number is much smaller.
Tuples (a1, . . . , an) that do not belong to the definition
domain of f are considered as “don’t care” tuples, that is,
as input sequences that are unlikely to occur as inputs of
the functions, or the output of the function for such inputs
is indifferent to the designer.

For a tuple t in Tf and a set of variables U ⊆ Varf

we denote by t[U] the projection of t on U , that is, the
restriction of t to the set U . If U = {u1, u2, . . . , um}
is a set of variables we will use the alternative notation
U = u1u2 . . . um.

DEFINITION 2.1. A set of variables V =
{xi0 , . . . , xip−1} ⊆ Varf is a determining set for the
partial function f if for every two tuples t and s from Tf ,
t[V] = s[V] implies t[y] = s[y].

In other words, V is a determining set for the partial func-
tion f if t = (a0, . . . , an−1, b) and s = (c0, . . . , cn−1, d)
in Tf such that aik

= cik
for 1 ≤ k ≤ p implies b = d. The

collection of determining sets for f is denoted by DS(f).
V is a minimal determining set for f if V is a deter-

mining set for f and there is no strict subset of V that is
a determining set for f . The set of minimal determining

sets of f is denoted by MDS(f). Our main purpose is to
present an algorithm that extracts the minimal determining
sets for a partially specified function.

We introduce a partial order relation “v” on the set
PF(rn, p) by defining f v g if Dom(f) ⊆ Dom(g) and
f(a1, . . . , an) = g(a1, . . . , an) for every (a1, . . . , an). In
other words, we have f v g if g is an extension of f .

The following simple statement is crucial to the pro-
posed algorithm.

THEOREM 2.1. Let f and g be two partial functions in
PF(rn, p). If V ∈ DS(f) and V ⊆ W , then W ∈ DS(f).
Furthermore, if f v g, then DS(g) ⊆ DS(f).

Note that if f v g and V ∈ MDS(g), then there exists
Z ∈ MDS(f) such that Z ⊆ V .

3 Entropies Associated with Partial Functions
Entropy is a probabilistic concept that lies at the foundation
of information theory. The entropy of a partition takes
advantage of the partial order that is naturally defined on
the set of partitions of a set. In [SD08] a generalized notion
of entropy for partitions, with Shannon entropy as a special
case, is introduced.

A partition on a set S is a collection π of nonempty,
pairwaise disjoint sets

π = {B1, . . . , Bm}

such that ∪m
i=1Bi = S. The sets Bi are referred to as

the blocks of π. The set of partitions of S is denoted by
PART(S). If π, ρ ∈ PART(S) we say that π ≤ ρ if
every block of π is included in a block of ρ; equivalently,
π ≤ ρ if every block of ρ is a union of blocks of π. For
π, ρ ∈ PART(S) we say that ρ covers π if π ≤ ρ and
there is no σ ∈ PART(S) distinct from π and ρ such that
π ≤ σ ≤ ρ. This is denoted by π ≺ ρ. It can be shown that
π ≺ ρ if the blocks of ρ coincide with the blocks of π, with
the exception of one block of ρ which is the union of two
blocks of π.

The partially ordered set (PART(S),≤) is actually a
lattice. If π, ρ ∈ PART(S), π = B1, ..., Bm and ρ =
(C1, . . . , Cn), the greatest lower bound of π and ρ is the
partition π ∧ ρ given by

π ∧ ρ = {Bi ∩ Cj | Bi ∩ Cj 6= ∅}.

If C is a subset of S and π = {B1, . . . , Bm} ∈
PART(S), the trace of π on C is the partition {C ∩
B1, . . . , C ∩ Bm} ∈ PART(C). Unless stated otherwise,
all logarithms are in base 2.

DEFINITION 3.1. Let S be a finite set and let π =
B1, ..., Bn be a partition of S. The Shannon entropy of

π is the number:

H(π) =
m∑

i=1

|Bi|
|S| log

|Bi|
|S| .

The Shannon entropy can be used to evaluate the unifor-
mity of the distribution of elements of S in the blocks π
since the entropy value increases with the uniformity of the
distribution of the elements of S.

In [SJ02] we have shown that the entropy of a partition
is a dually monotonic function. In other words, if π ≤ ρ,
we have H(ρ) ≤ H(π).

If π, ρ ∈ PART(S), π = B1, ..., Bn and ρ =
(C1, . . . , Cn), then the conditional entropy of π on ρ is the
number

H(π|ρ) =
n∑

j=1

|Cj |
|S| H(πCj

),

that is, the weighted average of the entropies of the traces
of π on the blocks of ρ.

An equivalent expression of the conditional entropy
can be obtained after elementary transformations as

H(π|σ) = H(π ∧ ρ)−H(σ).

Our algorithm uses the conditional entropy of partitions of
sets of variables defined as follows. If U, V are two sets
of attributes, the entropy of U conditioned upon V is the
difference

H(U |V) = H(UV)−H(V). (3.1)

The monotonicity of H implies that the function H(·|·) :
P(Varf) −→ R is monotonic in its first argument U .

THEOREM 3.1. Let S be a set and let π, σ ∈ PART(S).
The conditional entropy H(π|σ) is monotonic relative to
σ.

DEFINITION 3.2. Let f be a partial function, f ∈
PF(rn, p) and let V be a set of variables of f , V ⊆
{x1, . . . , xn, y}. Define the partition πV of Dom(f) by
its corresponding equivalence ∼V , where u ∼V w if
u[V] = w[W].

The entropy of V H(V) is the entropy H(πV) of the
partition πV .

Note that if V and V ′ are two sets of variables such that
V ⊆ V ′, then πV ′ ≤ πV . Thus, V ⊆ V ′ implies
H(V) ≥ H(V ′), so the entropy is monotonic with respect
to inclusion of attribute sets.

The role of the conditional entropy in detecting deter-
mining sets is highlighted by the next statement.

THEOREM 3.1. Let f be a partial function, f ∈ PF(rn, p)
and let U be a set of variables of f . Then, X is a
determining set of f if and only if H(y|X) = 0.

Table 2. Partially Defined Function Example
x1 x2 x3 x4 y

0 1 0 1 1
1 2 1 2 3
0 3 1 0 2
0 0 0 1 1
2 2 1 3 3
1 3 1 2 3
0 1 1 0 2
2 0 0 1 2
0 1 0 2 1
0 1 0 2 1

4 An Algorithm for Mining MDSs using Entropy
The algorithm uses the conditional entropy H(y|X) de-
scribed in the previous section to find determining sets. It
starts evaluating H(y|X) for single element subsets X = x
and increases the size of the subsets with each successive
iteration. In this way, all possible subsets of variables with
size α are evaluated before any subset of S with size β > α.
The algorithm is not redundant because it does not evalu-
ate H(y|X) for a subset of variables X more than once.
For instance, if both subsets X1 = {1} and X2 = {2}
are expanded in a subsequent iteration, then the subset
s3 = {1, 2} common to both expansions will be evaluated
once.

The proposed algorithm takes as input a partially
defined function f and a limiting factor ` in the range (0, 1]
used to reduce the search space. The output is a collection
of determining sets for f . The algorithm performs a search
on the power-set of the set of variables V = x1x2 · · ·xn

of f . The limiting factor ` defines the subsets of variables
that are expanded among all subsets within a given size.
Namely, ` corresponds to a fraction of subsets X with equal
size and lowest H(y|X) value. When the limiting factor
equals 1, all the possible subsets are evaluated until one or
more solution sets with equal size are found. The search
stops when H(y|X) = 0 for all the possible subsets X
with a given size; these sets are referred to as determining
sets for f . The minimum number found corresponds to the
size of the first solution set since the search proceeds with
increasing order of the subsets size and all the remaining
subsets that have not been checked have a greater size.

Example. Table 2 shows another example of a partially
defined function. The values of conditional entropies

involved are given by:

H(y|x1) = H(yx1)−H(x1) = 7.229,

H(y|x2) = H(yx2)−H(x2) = 12.381,

H(y|x3) = H(yx3)−H(x3) = 6.703,

H(y|x4) = H(yx4)−H(x4) = 7.229,

H(y|x3x1) = H(yx3x1)−H(x3x1) = 0,

H(y|x4x1) = H(yx4x1)−H(x4x1) = 0.

When the limiting factor takes a value equal to 0.25, the
algorithm only indicates x1x3 as a determining set for the
partially defined function presented in Table 2. Note that
x1x4 is also a determining set for the given function and is
part of the solution when the limiting factor takes a value
that is at least 0.5.

Next, we discuss the algorithm Computing MDS(f, `)
given in Figure 1, where f is a partial function and ` is the
limiting factor.

We use a list of sets of variables L. The set of variables
of f is denoted by S. The variable SETLIST contains
a list of sets of variables. A list of sets of variables with
the lowest entropy values among the ones in SETLIST is
contained by LOW ENTROPY SETLIST .

The method ADD(L,X) inserts set X in L, while
REMOVE(L, idx) deletes the set at index idx from L. The
roles of CLEAR(L), NEXT(L), SIZE(X) and GET(L, idx)
are clear. INDEX MIN(E) obtains the index of the first
element on the list E with lowest conditional entropy value.
COLLECTIONADD(D, X) inserts set X in the collection
of determining sets D. The core of the algorithm is
the method COMPUTE ENTROPY(X) that evaluates the
entropy value of a set of variables X .

The core of the algorithm is the function
COMPUTE ENTROPY(f, X) that has as input argu-
ments a partial function f and a set of variables X . This
function returns the Shannon Entropy corresponding to X .
The function presented in Figure 2 defines the methods and
variables used in function COMPUTE ENTROPY(f, X).

We use two hash maps, MAP X and MAP Y X ,
which store the keys corresponding to the values of the
set of variables X and of the set of variables X ∪ {y}
and the number of their occurrences, respectively. The
function ENTROPY(M) evaluates the entropy of the sets
of variables in map M .

The method GET XKEYS(v, X) gets the values as-
signed in a registered vector v of a partial function f to the
set of variables X; similarly, GET YXKEYS(v, X) gets
the values assigned in a registered vector v of a partial func-
tion f to the set of variables X∪{y}. ADD(M, k, o) inserts
into M the record with key k and number of occurrences o.

Figure 1. Computing MDS(f, `)
Input: A partially defined function and a limiting

factor
Result: A collection D of determining variables

sets
begin1

D ←− ∅2

set size ←− 13

dset found ←− false4

foreach var ∈ S do5

X ←− var6

ADD(SETLIST,X)7

entropy ←− COMPUTE ENTROPY(X)8

ADD(ENTROPY LIST,entropy)9

if entropy = 0 then10

COLLECTIONADD(D,X)11

dset found ←− true12

while set size ≤ SIZE(S) and13

dset found = false do
lf ←− `∗ BINOMIAL(SIZE(S), set size)14

repeat15

index ←−16

INDEX MIN(ENTROPY LIST)
X ←− GET(SETLIST,index)17

ADD(LOW ENTROPY SETLIST,X)18

REMOVE(SETLIST,index)19

REMOVE(ENTROPY LIST,index)20

lf ←− lf − 121

until lf = 022

CLEAR(SETLIST)23

CLEAR(ENTROPY LIST)24

set size ←− set size + 125

while LOW ENTROPY SETLIST 6= ∅ do26

X ←−27

NEXT(LOW ENTROPY SETLIST)
foreach var ∈ S do28

if X ∪ var 3 SETLIST and29

var 3 X then
ADD(SETLIST, X ∪ var)30

entropy ←−31

COMPUTE ENTROPY(X ∪
var)
ADD(ENTROPY LIST,entropy)32

if entropy = 0 then33

COLLECTIONADD(D,X ∪34

var)
dset found ←− true35

CLEAR(LOW ENTROPY SETLIST)36

end37

Figure 2. COMPUTE ENTROPY(f, X)
Input: A partially defined function, a subset X of

the complete set of variables of the partially
defined function given

Output: An entropy value
begin1

foreach v ∈ F do2

keyX ←− GET XKEYS(v,X)3

if keyX ∈ MAP X then4

val ←− GET(MAP X,keyX)5

ASSIGN(MAP X,keyX ,val + 1)6

else7

ADD(MAP X,keyX, 1)8

keyY X ←− GET XYKEYS(v, X)9

if keyY X ∈ MAP Y X then10

val ←− GET(MAP YX,keyY X)11

ASSIGN(MAP YX,keyY X ,val + 1)12

else13

ADD(MAP YX,keyY X, 1)14

entropyX ←− ENTROPY(MAP X)15

entropyY X ←− ENTROPY(MAP YX)16

entropy ←− entropyY X − entropyX17

return entropy18

end19

5 Experimental Results
We carried out experiments on a Windows Vista 64-bit
machine with 8Gb RAM and 2 × Quad Core Xeon Proc
E5420, running at 2.50 GHz with a 2×6Mb L2 cache. The
algorithm was written in Java 6.

We analyze the results in terms of running time and
minimum number of variables of a determining set found
as a function of the number of tuples in Tf and the limiting
factor `.

A program that randomly generates comma separated
text files representing partially defined functions with a
prescribed number of variables was developed. These
values were chosen based on the experiments made in the
related work of T. Sasao [Sas08] and in [SPV09].

One hundred files were randomly generated for each
type of partially defined function (with 8 and 24 variables)
using an input radix r = 3 and an output radix p = 5.

Note that a totally defined function with 8 variables
and r = 3 has 38 = 6561 tuples. In our experiments, we
randomly generated 1000 tuples for each of the partially
defined functions with 8 variables. For functions that
depend on 24 arguments we generated 5000 tuples because
the number of tuples for completely defined functions with
24 variables is much higher.

In the experiments, we evaluate the performance of

Figure 3. Dependency of average time on
number of tuples and limiting factor for 8
variables.

the algorithm with a varying number of tuples and limiting
factor. By Theorem 2.1, if (f1, f2, . . . , fk) is a sequence of
functions such that

f1 v f2 v · · · v fk,

we have

DS(fk) ⊆ · · · ⊆ DS(f2) ⊆ DS(f1).

In other words, when we start with a partial function f1

with a small specification table Tfk
and we expend se-

quentially the specification of the functions, the number
of determining sets will decrease. The experiments com-
pare the results for files with 8 and 24 variables and they
contain averages of the values corresponding to time and
number of variables the function depends on as a function
of the number of tuples and limiting factor. In our case,
k ∈ {10, 20, 30, 50, 90, 100, 200}. The averages are eval-
uated over 100 functions within each group of generated
functions (8 and 24 variables).

As shown in Figures 3 and 4, the running time in-
creases with the number of tuples because in most cases,
the larger the subset of variables X , the greater is the con-
ditional entropy H(y|X). Likewise, the running time in-
creases with the limiting factor ` since the search space
increases as ` increases. Also, the time increases expo-
nentially with the number of variables. It is clear that the
number of subsets evaluated during the search depends on
the original number of variables of a partial function f1.

Finally, Figures 5 and 6 show that the number of vari-
ables the function depends on is related to the number of
tuples k. As k increases, the constraints imposed on the
problem become more extensive, and the number of vari-
ables that determines the value of the function increases.

We observed that the limiting factor ` has a remarkable
insignificant impact on the size of determing sets. There-
fore, the algorithm provides solutions that are optimal or

Figure 4. Dependency of average time on
number of tuples and limiting factor for 24
variables.

Figure 5. Average size of minimal determin-
ing set for 8 variables, as a function of the
number of tuples and limiting factor.

near optimal, even when ` takes an extremely low value.
This is an important result since as previously mentioned,
the running time for the algorithm to find a solution is
highly affected by the limiting factor chosen.

6 Conclusions
We developed an algorithm that identifies the sets of vari-
ables that determine a partially defined function and oper-
ates within a reasonable time by using partition conditional
entropy. The search and evaluation proceed in increasing
order of subset size and involve a fraction of the total search
space defined by a limiting factor. When this factor is 1, all
sets of variables of the partially defined function are evalu-
ated, until the determining sets with smallest size are found.
In this case the algorithm determines the minimum number
of variables on which a partially defined function depends
on, as well as all sets of variables with minimum number
of elements that define the function. A limiting factor that

Figure 6. Average size of minimal determin-
ing set for 24 variables, as a function of the
number of tuples and limiting factor.

takes values between 0 and 1 generates a search that is not
complete but significantly faster depending on the factor
chosen. Nevertheless, the effect caused by the limiting fac-
tor on the optimality of the algorithm is remarkably small.
We believe that the algorithm will be helpful for digital cir-
cuit design since it allows to determine the possible sets of
variables on which a partial function depends starting from
a tabular specification of the function.

References

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun N.
Swami. Mining association rules between sets of items in
large databases. In Peter Buneman and Sushil Jajodia, ed-
itors, Proceedings of the 1993 International Conference on
Management of Data, pages 207–216, Washington, D.C.,
1993. ACM, New York.

[MT97] H. Mannila and H. Toivonen. Levelwise search and
borders of theories in knowledge discovery. Technical
Report C-1997-8, University of Helsinki, 1997.

[Sas08] T. Sasao. On the number of variables to represent sparse
logic functions. In 17th International Workshop on Logic
and Synthesis (IWLS-2008), pages 233–239, Lake Tahoe,
California, USA, 2008. IEEE-CS.

[SD08] D. A. Simovici and C. Djeraba. Mathematical Tools for
Data Mining – Set Theory, Partial Orders, Combinatorics.
Springer-Verlag, London, 2008.

[SJ02] D. A. Simovici and S. Jaroszewicz. An axiomatization
of partition entropy. IEEE Transactions on Information
Theory, 48:2138–2142, 2002.

[SPV09] D. Simovici, D. Pletea, and R. Vetro. Mining determin-
ing sets for partially defined functions. In P. Perner, edi-
tor, Advances in Data Mining, LNAI 5633, pages 353–360.
Springer-Verlag, 2009.

[ZH05] M. J. Zaki and C.J. Hsiao. Efficient algorithms for
mining closed itemsets and their lattice structure. IEEE
Transactions on Knowledge and Data Engineering, 17:462–
478, 2005.

