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Several Remarks on Dissimilarities and
Ultrametrics

Dan A. Simovici1

Abstract

We investigate the relationships between tolerance relations, equiv-
alence relations, and ultrametrics. The set of spheres associated to
an ultrametric space has a tree structure that reflects a hierarchy on
the set of equivalences associated to that space. We show that ev-
ery ultrametric defined on a finite space is a linear combination of
binary ultrametric and we introduce the notion of ultrametricity for
dissimilarities, which has applications in many data mining problems.
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1 Introduction

Dissimilarity spaces constitute the natural framework for a number of ex-
ploratory techniques in machine learning and data mining such as certain
classification methods and clustering algorithms. We examine relationships
that exist between various types of dissimilarities and focus on ultrametrics.

Ultrametrics are dissimilarities that satisfy a stronger version of the
triangular inequality (usually associated with metrics) and they occur in
many data mining applications such as agglomerative hierarchical clustering
algorithms [4, 5, 2, 6], and have applications in the study of phylogenetic
trees in biology [10, 7], p-adic numbers in mathematics [12, 1], and certain
physical systems [11], etc.
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We evaluate the extent of the difference between dissimilarities and
ultrametrics defined on the same set by introducing the notion of ultra-
metricity of a dissimilarity. We show that dissimilarities can be modified to
increase or decrease their level of ultrametricity. An increase in ultrametric-
ity has an equalizing effect on dissimilarities and can be useful in certain
clustering algorithms; a decrease in ultrametricity is interesting for other
data mining applications such as the k-nearest neighbor technique and in
outlier detection, as we have shown in [14].

The set of real numbers is denoted by R; the set of non-negative reals
is denoted by R>0. Every other set considered in below is finite.

A quasi-dissimilarity on a set S is a function d : S × S −→ R such that
d(x, y) > 0, d(x, x) = 0, and d(x, y) = d(y, x) for every x, y ∈ X. We assume
that all dissimilarity spaces considered here are finite.

A quasi-dissimilarity d is a dissimilarity if d(x, y) = 0 implies x = y.

A quasi-dissimilarity d is a quasi-metric if it satisfies the triangular
inequality:

d(x, y) 6 d(x, z) + d(z, y). (1)

In addition, if d(x, y) = 0 implies x = y, then d is a metric. Inequality (1) is
known as the triangular inequality.

A quasi-ultrametric is a quasi-dissimilarity d : S × S −→ R>0 that
satisfies the inequality

d(x, y) 6 max{d(x, z), d(z, y)} (2)

for every x, y, z ∈ S. If, in addition, d(x, y) = 0 implies x = y, then d is an
ultrametric.

In Section 2 we discuss the link between ultrametrics and equivalence
relations and we include some preliminary results. In Section 3 we examine
properties of the collection of spheres of an ultrametric space. The relation-
ship between multivalued and binary ultrametrics is the object of Section 4.
In Section 5 we introduce the notion of ultrametricity of dissimilarities.
Finally, we present conclusions in Section 6.

2 Ultrametrics and Equivalences

A tolerance on the set S is a relation θ ⊆ S × S that is reflexive and
symmetric. In other words, (x, x) ∈ θ for every x ∈ S and (x, y) ∈ θ if and
only if (y, x) ∈ θ for x, y ∈ S. The set of tolerances on S is denoted by
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TOL(S). A tolerance on S that is transitive (that is, (x, y), (y, z) ∈ θ imply
(x, z) ∈ θ) is an equivalence. The set of equivalences on S is denoted by
EQ(S).

Let d be a quasi-dissimilarity on the set S. It is immediate that the
relation

θd,r = {(x, y) | d(x, y) 6 r}

is a tolerance on S for every r ∈ R.

If d is an ultrametric on S, the relation θd,r is an equivalence on S for
any r ∈ R>0. Indeed, if (x, y), (y, z) ∈ θd,r, then d(x, y) 6 r and d(y, z) 6 r.
Therefore,

d(x, z) 6 max{d(x, y), d(y, z)} 6 r

because of the ultrametric inequality. Thus, (x, z) ∈ θd,r, which proves that
θd,r is transitive, so it is an equivalence.

The equivalence relations αS and ωS on a set S are defined by:

αS = {(x, x) | x ∈ S} and ωS = S × S.

Let d : S × S −→ R>0 be a dissimilarity on S whose range is {0, 1}.
We designate such functions as binary dissimilarities. Note that d(x, y) 6
max{d(x, z), d(z, y)} for x, y, z ∈ S. Indeed, if d(x, y) = 0, the ultrametric
inequality is clearly satisfied. If d(x, y) = 1, then x 6= y (since, otherwise
we would have d(x, y) = 0). Thus, any z ∈ S must be distinct either
from x or from y, so at least one of the numbers d(x, z), d(z, y) is non-zero,
and the ultrametric inequality is satisfied. We conclude that every binary
dissimilarity is an ultrametric.

Let θ be an equivalence on S and let dθ be defined as the characteristic
function of θ as

dθ(x, y) =

{
0 if (x, y) ∈ θ,
1 otherwise,

for x, y ∈ S. Then, dθ is a quasi-ultrametric. Indeed, since (x, x) ∈ θ it
follows that dθ(x, x) = 0. If d(x, y) = 1, then (x, y) 6∈ θ, so for every z ∈ S
we have (x, z) 6∈ θ or (z, y) 6∈ θ. Thus, we have max{d(x, z), d(z, y)} = 1, so
the ultrametric inequality is satisfied by x, y, z.

In particular, for dαS we have

dαS (x, y) =

{
0 if x = y,

1 if x 6= y
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for x, y ∈ S.
If d is an ultrametric, the binary ultrametric dθd,r is given by

dθd,r(x, y) =

{
0 if d(x, y) 6 r,

1 otherwise

for x, y ∈ S.
Dissimilarities are closely related to certain families of tolerances.
Let R be a subset of R>0 and let β : R2 −→ R be an associative

operation on R. A β-directed family of tolerances on S is a collection
Tβ = {θr ∈ TOL(S) | r ∈ R}, where θr, θs ∈ T imply θrθs ⊆ θβ(r,s) ∈ T . Tβ
is a bounded family if there exists r ∈ R such that θr = ωS .

Example 2.1. Let d : S × S −→ R>0 be a metric on the finite set S.
Suppose that the range of d is Ran(d) = {r1, . . . , rm} and let θd,r be the
tolerance

θd,r = {(x, y) | d(x, y) 6 r}.

If r1 < r2 < · · · < rm the collection {θd,r | r ∈ Ran(d)} is a directed
β-family of tolerances, where β(a, b) = a+ b. Indeed, if (x, y) ∈ θd,rθs, there
exists t ∈ S such that (x, t) ∈ θd,r, (t, y) ∈ θd,s, that is, d(x, t) 6 r and
d(t, y) 6 s, which implies d(x, y) 6 r + s. Thus, (x, y) ∈ θd,r+s.

Conversely, if {θr | r ∈ R} is a β-family of tolerances, where β is
defined as above, then d : S × S −→ R>0 defined by d(x, y) = min{r ∈ R |
d(x, y) ∈ R} is a metric on S.

Indeed, if d(x, z) = a and d(z, y) = b, then (x, z) ∈ θa, (z, y) ∈ θb, so
(x, y) ∈ θaθb ⊆ θa+b, which implies d(x, y) 6 a+ b = d(x, z) + d(z, y)

Similarly, if β is replaced by β(a, b) = max{a, b}, then any β-directed
family of tolerances defines an ultrametric, and every ultrametric can be
obtained in this manner.

3 Spheres in Ultrametric Spaces

Let (S, d) be a dissimilarity space. The closed sphere centered in x0 and
having radius r is the set

Bd(x0, r) = {x ∈ X | d(x0, x) 6 r}.

A triangle in a dissimilarity space (S, d) is a triple (x, y, z) ∈ S3. To simplify
the notation, we denote t = (x, y, z) by xyz.
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The following properties of an ultrametric space (S, d) are well-known
(see [13]):

(i) for every triangle t = xyz ∈ S3, two of the numbers d(x, y), d(x, z), d(z, y)
are equal and the third is not larger than the largest two numbers;
thus, every triangle in an ultrametric space is isosceles;

(ii) if B(x0, a) ∩B(y0, a) 6= ∅, then B(x0, a) = B(y0, a);

(iii) two spheres B(x0, a) and B(y0, b) are either disjoint or one of them is
included in the other;

(iv) every s ∈ B(x0, a) is a center of the closed sphere B(x0, a);

(v) if x 6∈ B(x0, r), then the distance from x to any point of the sphere
B(x0, r) is the same.

It is interesting to note that for an ultrametric the equivalence classes
of θd,r coincide with the spheres of the form B(x, r) because (x, y) ∈ θd,r is
equivalent to y ∈ B(x, r). Thus, the ultrametric space (S, d) is partitioned
by the set of spheres of radius r. This yields the quotient space S/θd,r whose
elements are the spheres of radius r of (S, d).

Theorem 3.1. Let d be an ultrametric (a quasi-ultrametric) on a finite set
S. If |S| = n, then d takes at most n− 1 positive values.

Proof. The proof is by induction on n > 2. The base case, n = 2 is immediate.
Let n > 3 and suppose that the statement holds for m 6 n.

Suppose that S = {x1, x2, . . . , xn}. Without loss of generality we may
assume that d(x1, x2) = min{d(x, y) | x, y ∈ Sand d(x, y) > 0}. Then,
d(xk, x1) = d(xk, x2) for all k such that 3 6 k 6 n.

Let {a1, . . . , ar} = {d(xk, x1) | 3 6 k 6 n}, where 0 < a0 < a1 < · · · <
ar. Define

Bj = {xk | k > 3 and d(xk, x1) = aj}

for 1 6 j 6 r. The collectionB1, . . . , Br is a partition of the set {x3, x4, . . . , xn}.
Let mj = |Bj |; then m1 + · · ·+mr = n− 2.

If u ∈ Bi and v ∈ Bj with i < j, then d(u, x1) = ai < aj = d(v, x1),
hence d(u, v) = aj . Therefore, the values of d(u, v) for u, v in distinct
blocks of the partition belong to the set {a1, . . . , ar}. By the induction
hypothesis, for each k, 1 6 k 6 r, the restriction of d to Bk can take
at most mk − 1 distinct positive values; therefore, d can take at most
1 + r + (m1 − 1) + · · ·+ (mr − 1) = n− 1 distinct positive values on S.



160 D.A. Simovici

Table 1: Ultrametric defined by dendrogram

x1 x2 x3 x4 x5 x6 x7 x8
x1 0 2 2 3 3 3 3 3
x2 2 0 1 3 3 3 3 3
x3 2 1 0 3 3 3 3 3
x4 3 3 3 0 1 1 2 2
x5 3 3 3 1 0 1 2 2
x6 3 3 3 1 1 0 2 2
x7 3 3 3 2 2 2 0 1
x8 3 3 3 2 2 2 1 0

Let (S, d) be a finite ultrametric space. Since the range of values of d,
Ran(d) is a finite set that contains at most |S| − 1 values, the set SPH(S, d)
of spheres of this space SPH(S, d) = {B(x, r) | x ∈ S and r ∈ Ran(d)} is
finite. Consider the graph TS,d = (SPH(S), V ) having SPH(S, d) as its set of
vertices, where an edge (B(x, r), B(y, s)) exists if B(x, r) ⊂ B(y, s).

TS,d is a rooted tree. Indeed, if dm = max{d(x, y) | x, y ∈ S}, then the
root of the tree is the sphere B(x, dm), where x is an arbitrary element of S.
Since each sphere B(z, r) is included in B(x, dm), it follows that the graph
TS,d is connected. Furthermore, TS,d is acyclic. Indeed, if we would have a
cycle

B(x1, r1) ⊂ B(x2, r2) ⊂ · · ·
⊂ B(xm−1, rm−1) ⊂ B(xm, rm) = B(x1, r1),

an immediate contradiction would follow because of the strict inclusions that
exist between the spheres of this chain. The height of the tree of sphere TS,d
of an ultrametric space (S, d) cannot exceed the number of distinct values of
d.

Example 3.2. For the ultrametric space defined by Table 1 the tree of
spheres is shown in Figure 1.

4 Binary and Multivalued Ultrametrics

Let d, e be two dissimilarities on S. The dissimilarity e dominates d if
d(x, y) 6 e(x, y) for every x, y ∈ S. We denote this by d v e.

Theorem 4.1. The dissimilarity e dominates the dissimilarity d if and only
if θe,r ⊆ θd,r for every r ∈ R>0.
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Figure 1: Tree of spheres

Proof. Indeed, suppose that e dominates d. Let (x, y) ∈ θe,r, so e(x, y) 6 r.
Since d(x, y) 6 e(x, y) 6 r, it follows that (x, y) ∈ θd,r, so θe,r ⊆ θd,r.

Conversely, suppose that θe,r ⊆ θd,r for every r ∈ R>0. Since (x, y) ∈
θe,e(x,y) ⊆ θd,e(x,y) it follows that d(x, y) 6 e(x, y) for every x, y ∈ S, that is,
that e dominates d.

Lemma 4.2. If B(x0, a), B(y0, a) are two disjoint spheres in an ultrametric
space (S, d), then for x ∈ B(x0, a) and y ∈ B(y0, a) we have d(x, y) =
d(x0, y0).

Proof. Note that d(x0, y0) > a because the spheres B(x0, a) and B(y0, a) are
disjoint. Since d(x, x0) 6 a and the triangle xx0y0 is isosceles, we must have
d(x, y0) = d(x0, y0). On the other hand, the triangle xy0y is also isosceles
and d(x0, y) < a it follows that d(x, y) = d(x, y0), so d(x, y) = d(x0, y0).

Theorem 4.3. Let (S, d) be an ultrametric space, where Ran(d) = {0, r1, . . . , rm},
0 < r1 < · · · < rm, and m 6 |S| − 1. The quotient space S/θd,rk contains no
more than n− k spheres.

Proof. The positive distances between elements of S located inside a sphere
B(x, rk) range in the set {r1, . . . , rk}. If there are qk spheres of the form
B(x, rk) there exist at most qk − 1 distinct values of d between the centers
of these spheres. By Lemma 4.2 there are no more than k + qk − 1 values of
the distance d between the points of S and, therefore, k + qk − 1 6 n− 1,
which implies qk 6 n− k.
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We saw that starting from the characteristic function of an equivalence
relation we can build an ultrametric whose range is the set {0, 1}. The next
statement gives a method of constructing ultrametrics starting from chains
of equivalence relations.

Theorem 4.4. Let S be a finite set and let d : S × S −→ R>0 be a function
whose range is Ran(d) = {r1, . . . , rm}, where r1 = 0 such that d(x, y) = 0 if
and only if x = y.

The function d is an ultrametric on S if and only if the sequence of
relations θd,r1 , . . . , θd,rm is an increasing chain of equivalences on S such
that θd,r1 = αS and θd,rm = ωS.

Proof. Suppose that d is an ultrametric on S. We have (x, x) ∈ θd,ri because
d(x, x) = 0, so all relations θd,ri are reflexive. Also, it is clear that the
symmetry of d implies (x, y) ∈ θd,ri if and only if (y, x) ∈ θd,ri , so these
relations are symmetric.

The ultrametric inequality is essential for proving the transitivity of
the relations θd,ri . If (x, y), (y, z) ∈ θd,ri , then d(x, y) 6 ri and d(y, z) 6 ri,
which implies d(x, z) 6 max{d(x, y), d(y, z)} 6 ri. Thus, (x, z) ∈ θd,ri , which
shows that every relation θd,ri is transitive and therefore an equivalence.

It is straightforward to see that θd,r1 6 θd,r2 6 · · · 6 θd,rm ; that is, this
sequence of relations is indeed a chain of equivalences.

Conversely, suppose that θd,r1 , . . . , θd,rm is an increasing sequence of
equivalences on S such that θd,r1 = αS and θd,rm = ωS , where θd,ri =
{(x, y) ∈ S × S | d(x, y) 6 ri} for 1 6 i 6 m and r1 = 0.

Note that d(x, y) = 0 is equivalent to (x, y) ∈ θd,r1 = αS , that is, to
x = y.

We claim that

d(x, y) = min{r | (x, y) ∈ θd,r}. (3)

Indeed, since θd,rm = ωS , it is clear that there is an equivalence θd,ri such
that (x, y) ∈ θd,ri . If (x, y) ∈ θd,ri , the definition of θd,ri implies d(x, y) 6 ri,
so d(x, y) 6 min{r | (x, y) ∈ θd,r}. This inequality can be easily seen to
become an equality since (x, y) ∈ θd,d(x,y). This implies immediately that d
is symmetric.

To prove that d satisfies the ultrametric inequality, let x, y, z be three
members of the set S. Let p = max{d(x, z), d(z, y)}. Since (x, z) ∈ θd,d(x,z) ⊆
θd,p and (z, y) ∈ θd,d(z,y) ⊆ θd,p, it follows that (x, y) ∈ θd,p, due to the
transitivity of θd,p. Thus, d(x, y) 6 p = max{d(x, z), d(z, y)}, which proves
the triangular inequality for d.
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Theorem 4.5. Let S be a finite set and let d : S × S −→ R>0 be a a quasi-
ultrametric whose range is Ran(d) = {r1, . . . , rm}, where r1 = 0. Then d is
a linear combination with positive coefficients of binary quasi-ultrametrics,

d(x, y) = a1d1(x, y) + a2d2(x, y) + · · ·+ am−1dm−1(x, y)

for x, y ∈ S.

Proof. Note that the range of d consists of m− 1 positive values, so m 6 |S|
by Theorem 3.1. Assume that 0 = r1 < r2 < · · · < rm.

Consider the equivalences θd,ri for 1 6 i 6 m and the corresponding
binary quasi-ultrametrics di given by

di(x, y) =

{
0 if d(x, y) 6 ri,

1 otherwise

for (x, y) ∈ S × S. Note that dm(x, y) = 0 for every x, y ∈ S.

We claim that there exist m− 1 numbers a1, . . . , am−1 such that

d(x, y) = a1d1(x, y) + a2d2(x, y) + · · ·
+am−1dm−1(x, y)

for x, y ∈ S.

Indeed, note that d(x, y) ∈ {r1, . . . , rm} by the definition of the range
of d. Suppose that we have

r1 < · · · < rk−1 < d(x, y) = rk < rk+1 < · · · < rm.

This implies

di(x, y) =

{
0 if k 6 i 6 m

1 otherwise,

so rk = a1 + · · · + ak−1 for 1 6 k 6 m. This implies a1 = r2, a2 =
r3 − r2, . . . , am−1 = rm − rm−1 and we obtain the necessary equality.

5 Ultrametricity of Dissimilarities

Let Fp : R2
>0 −→ R>0 be the function defined by Fp(a, b) = (ap+ bp)

1
p , where

p > 0.
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An p-dissimilarity is a dissimilarity d : S2 −→ S such that

d(x, y) 6 Fp(d(x, z), d(z, y)) (4)

for x, y, z ∈ S. We denote by Dp(S) the collection of Fp-dissimilarities
on S. The ultrametricity of a dissimilarity space (S, d) is the number
u(S, d) = sup{p ∈ R>0 | d ∈ Dp}.

We note that every dissimilarity on a set S belongs to D0(S). Also, every
dissimilarity in D1(S) satisfies the triangular axiom d(x, y) 6 d(x, z)+d(z, y)
for x, y, z, so it is a metric on S.

Lemma 5.1. Let p, q be two positive numbers. If p > q then we have
Fp(a, b) 6 Fq(a, b).

Proof. Consider the function φ : R>0 −→ R>0 given by

φ(p) = (ap + bp)
1
p .

We have
φ′(p)

φ(p)
=
ap ln a+ bp ln b

p(ap + bp)
− ln(ap + bp)

p2
.

Since ap

ap+bp ln ap

ap+bp + bp

ap+bp ln bp

ap+bp < 0 it follows that φ′(p) < 0, which
shows that φ is a decreasing function and this implies the statement of the
lemma.

Note also that for any p > 0 the function Fp is monotonic in each of its
arguments.

Lemma 5.1 implies that if p > q, then Dp(S) ⊆ Dq(S).

Theorem 5.2. Let d be a dissimilarity on a set S. We have d ∈
⋂
r>0Dr if

and only if d is an ultrametric on S.

Proof. If d ∈
⋂
r>0Dr we have d(x, y) 6 (d(x, z)r + d(z, y)r)

1
r for every

r > 0 and x, y, z ∈ S. Therefore, d(x, y) 6 limr→∞(d(x, z)r + d(z, y)r)
1
r =

max{d(x, z), d(z, y}, which implies that d is an ultrametric.
Conversely, if d is an ultrametric, we have d(x, y) 6 max{d(x, z), d(z, y)} 6

(d(x, z)r+d(z, y)r)
1
r for every r > 0, so d ∈ Dr for every r > 0. Since d ∈ D0,

it follows that d ∈
⋂
r>0Dr.

Theorem 5.3. Let r, s be two positive numbers such that s < r, let d ∈ Ds.
The family of r-dissimilarities dominated by d has a largest element.
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Proof. Let D = {di | i ∈ I} be a collection of dissimilarities on a set S such
that D ⊆ Dr. Then, the dissimilarity d defined by d(x, y) = maxi∈I di(x, y)
for x, y ∈ S belongs to Dr.

It is immediate that d itself is a dissimilarity on S and we have

d(x, y) 6 di(x, y) 6 Fr(di(x, z), di(z, y))

(for every i ∈ I because di ∈ Dr)
6 Fr(d(x, z), d(z, y))

(because Fr is monotonic in both

its arguments),

so d ∈ Dr.
Let e be a dissimilarity in Ds and let D be the set of dissimilarities in

Dr dominated by e. If d′(x, y) = max{d ∈ D, d 6 e}, then d′ 6 e and d 6 d′

for every d ∈ D, so d′ is the largest dissimilarity in D.

Theorem 5.3 implies that given a dissimilarity d on a set S there exists
a largest metric (in D1) that is dominated by d. Another, well-known result
that follows from this theorem is the fact that given a dissimilarity, there
exists the largest ultrametric that is dominated by this dissimilarity [8, 13].
This ultrametric is obtained by clustering the metric space using the single-
link hierarchical clustering.

Let r, s be two positive numbers. An (r, s)-transformation is a function
g : R>0 −→ R>0 such that

(i) g(x) = 0 if and only if x = 0;

(ii) g is a strictly monotonic function on R>0, and

(iii) g(Fr(a, b)) 6 Fs(g(a), g(b)) for a, b ∈ R>0.

Theorem 5.4. If d is a dissimilarity on S such that d ∈ Dr and g is an
(r, s)-transformation, then gd is a dissimilarity in Ds.

Proof. Let d be an r-dissimilarity. It is immediate that gd is a dissimilarity.
Since g is an (r, s)-transformation, we have

Fs(g(d(x, z)), g(d(z, y))) > g(Fr(d(x, z), d(z, y))

> g(d(x, y)),

so gd is an s-dissimilarity.
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Example 5.5. The function g given by g(x) = ln(x + 1) for x > 0 is a
(2, 1)-transformation. Indeed, for a, b > 0 we have the immediate inequality:

g(F2(a, b)) = ln(
√
a2 + b2 + 1)

6 ln(a+ 1) + ln(b+ 1).

Note that if g is an (r, s)-transformation, then g−1 is an (s, r)-transformation.
Therefore, the function h(x) = ex − 1 is a (1, 2)-transformation.

Example 5.6. Let α > 0 and let g : R>0 −→ R>0 be the monotonic function
defined by g(x) = xα for x > 0. If s 6 r

α , then g is an (r, s)-transformation.
Indeed, we have

Fs(g(a), g(b)) = (aαs + bαs)
1
s

= (Fαs(a, b))
α

> (Fr(a, b))
α

(by Lemma 5.1)

= g(Fr(a, b)),

which shows that g is an (r, s)-transformation. For this transformation

we have u(S, gd) = u(S,d)
α . Thus, by choosing α we can modulate the

ultrametricity of the transformed dissimilarity space.

The notion of ultrametricity introduced above involves satisfying In-
equality (4) for all triangles xyz of the dissimilarity space. Therefore, a few
triangles in the dissimilarity space which have very different side lengths can
unduly influence the value of the ultrametricity. This motivates considering
yet another variant of ultrametricity of dissimilarities.

Let t = xyz ∈ S3 be a triangle in the is a dissimilarity space (S, d).
Following Lerman’s notation in [9], if d(x, y) > d(x, z) > d(y, z), we write
Sd(t) = d(x, y) for the longest side of t, Md(t) = d(x, z) for the middle side
of t, and Ld(t) = d(y, z) for the shortest side of the triangle. We consider
two local variants of ultrametricity of a triangle.

The strong ultrametricity of t is the number ud(t) = max{r > 0 |
Sd(t) 6 Fr(Md(t), Ld(t))}. The weak ultrametricity of t is the number wd(t)
given by

wd(t) =


1

log2
Sd(t)

Md(t)

if Sd(t) > Md(t)

∞ if Sd(t) = Md(t).
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If wd(t) =∞, then t is an ultrametric triple.
The weak ultrametricity of the dissimilarity space (S, d) is the number

w(S, d) defined by

w(S, d) = median{wd(t) | t ∈ S3}.

For a triangle t we have

0 6 Sd(t)−Md(t) =
(

2
1

wd(t) − 1
)
Md(t) 6

(
2

1
w(S,d) − 1

)
Md(t)

Thus, if wd(t) is sufficiently large, the triangle t is almost isosceles. For
example, if wd(t) = 5, the difference between the length of longest side Sd(t)
and the median side Md(t) is less than 15%.

For every triangle t ∈ S3 in a dissimilarity space we have ud(t) 6
wd(t). Indeed, since Sd(t)

ud(t) 6Md(t)
ud(t) + Ld(t)

ud(t) we have Sd(t)
ud(t) 6

2Md(t)
ud(t), which implies immediately ud(t) 6 wd(t).

Theorem 5.7. Let (S, d) be a dissimilarity space and let f : R>0 −→ R>0

be a strictly increasing function on R>0.
If the function g : R>0 −→ R>0 given by

g(a) =

{
f(a)
a if a > 0,

0 if a = 0

is strictly decreasing, then the function e : S×S −→ R>0 defined by e(x, y) =
f(d(x, y)) for x, y ∈ S is a dissimilarity and wd(t) 6 we(t) for every triangle
t ∈ S3.

Proof. It is immediate that e(x, y) = e(y, x) and e(x, x) = 0 for x, y ∈ S. Let
t = xyz ∈ S3 be a triangle. Since Sd(t) > Md(t) and g is strictly decreasing,

g(Sd(t)) 6 g(Md(t)), which implies f(Sd(t))
Sd(t)

6 f(Md(t))
Md(t)

. Since f is a strictly

increasing function we have Se(t) = f(Sd(t)) and Me(t) = f(Md(t)). This
allows us to write:

Se(t)

Me(t)
=

f(Sd(t))

f(Md(t))
6

Sd(t)

Md(t)
.

Therefore,

wd(t) =
1

log2
Sd(t)
Md(t)

6
1

log2
Se(t)
Me(t)

= we(t).
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Example 5.8. Let (S, d) be a dissimilarity space and let e be the dissimilarity
defined by e(x, y) = d(x, y)r, where 0 < r < 1. If f(a) = ar, then f is strictly
increasing and the function g : R>0 −→ R>0 given by

g(a) =

{
f(a)
a if a > 0,

0 if a = 0
=

{
ar−1 if a > 0,

0 if a = 0

is strictly decreasing. Therefore, the weak ultrametricity we(t) is greater
than wd(t), where e(x, y) = (d(x, y))r for x, y ∈ S.

Example 5.9. Let f : R>0 −→ R>0 be defined by f(a) = a
a+1 . It is easy to

see that f is strictly increasing on R>0 and

g(a) =

{
1

1+a if a > 0,

0 if a = 0

is strictly decreasing on the same set. Therefore, the weak ultrametricity of
a triangle increases when d is replaced by e given by

e(x, y) =
d(x, y)

1 + d(x, y)

for x, y ∈ S.

Example 5.10. For a dissimilarity space (S, d), the Schoenberg transform
of d described in [3] is the dissimilarity e : S2 −→ R>0 defined by

e(x, y) = 1− e−kd(x,y)

for x, y ∈ S. Let f : R>0 −→ R> be the function f(a) = 1 − e−ka that is
used in this transformation. It is immediate that f is a strictly increasing
function. For a > 0 we have g(a) = 1−e−ka

a , which allows us to write

g′(a) =
e−ka(ka+ 1)− 1

a2

for a > 0. Taking into account the obvious inequality ka + 1 < eka for
k > 0, it follows that the function g is strictly decreasing. Thus, the weak
ultrametricity of a triangle relative to the Schoenberg transform is greater
than the weak ultrametricity under the original dissimilarity.
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6 Conclusions and Future Work

Theorem 5.3 highlights the common nature of the results used in two rather
areas of data mining: obtaining the subdominant ultrametric for a dis-
similarity through the single-link hierarchical clustering, and obtaining a
configuration of points in a metric space whose distances approximate object
dissimilarities. The later process is known as non-metric multidimensional
scaling. We propose to explore computing the largest metric that approxi-
mates a dissimilarity between objects without the intermediate calculation
of a representation of the objects in Rn equipped with a Minkowski metric.

We introduced the notion of ultrametricity of dissimilarities. Trans-
formations that increase or diminish ultrametricity, decrease or accentuate
discrepancies between dissimilarity values, respectively. We will examine
the impact of these transformations on various clustering algorithms and
classification methods (such as the kth nearest neighbor). Another possible
application of these transformations lies in the area of outlier detection.
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