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The Vapnik-Chervonenkis dimension of a collection of sets was
introduced in [3] and independently in [2].
Its main interest for ML is related to one of the basic models of
machine learning, the probably approximately correct PAC learning
paradigm as was shown in [1].
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The Trace of a Collection of Sets on a Set

Let C ⊆ P(U).
The trace of C on K is the collection of sets

CK = {K ∩ C | C ∈ C}.

If CK equals P(K ), then we say that K is shattered by C. This means that
there are concepts in C that split K is all 2|K | possible ways. concepts.
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Main Definition

The Vapnik-Chervonenkis dimension of the collection C (called the
VC-dimension for brevity) is the largest size of a set K that is shattered by
C and is denoted by VCD(C).

Example

The VC-dimension of the collection of intervals in R is 2.
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Remarks

If VCD(C) = d , then there exists a set K of size d such that for each
subset L of K there exists a subset C ∈ C such that L = K ∩ C .
Since there exist 2d subsets of K , there are at least 2d sets in C, so
2d 6 |C|. Thus,

VCD(C) 6 log2 |C|.

If C is finite, then VCD(C) is finite. The converse is false: there exist
infinite collections C that have a finite VC -dimension.
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The tabular form of CK

Let U = {u1, . . . , un}, and let θ = (TC , u1u2 · · · un, r) be a table, where
r = (t1, . . . , tp). The domain of each of the attributes ui is the set {0, 1}.
Each tuple tk corresponds to a set Ck of C and is defined by

tk [ui ] =

{

1 if ui ∈ Ck ,

0 otherwise,

for 1 6 i 6 n. Then, C shatters K if the content of the projection r[K ]
consists of 2|K | distinct rows.
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Example

Let U = {u1, u2, u3, u4} and let C be the collection of subsets of U given
by C = {{u2, u3}, {u1, u3, u4}, {u2, u4}, {u1, u2}, {u2, u3, u4}}.

TC

u1 u2 u3 u4

0 1 1 0
1 0 1 1
0 1 0 1
1 1 0 0
0 1 1 1

K = {u1, u3} is shattered by C because

r[K ] = ((0, 1), (1, 1), (0, 0), (1, 0), (0, 1))

contains the all four necessary tuples (0, 1), (1, 1), (0, 0), and (1, 0).
On the other hand, it is clear that no subset K of U that contains at least
three elements can be shattered by C because this would require r[K ] to
contain at least eight tuples. Thus, VCD(C) = 2.
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Remarks

Every collection of sets shatters the empty set.
If C shatters a set of size n, then it shatters a set of size p, where
p 6 n.
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VC Classes

For C and for m ∈ N, let ΠC[m] be the largest number of distinct subsets
of a set having m elements that can be obtained as intersections of the set
with members of C, that is,

ΠC[m] = max{|CK | | |K | = m}.

We have ΠC [m] 6 2m; however, if C shatters a set of size m, then
ΠC[m] = 2m.

Definition

A Vapnik-Chervonenkis class (or a VC class) is a collection C of sets such
that VCD(C) is finite.
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Example

Example

Let S be the collection of sets {(−∞, t) | t ∈ R}.
Any singleton is shattered by S. Indeed, if S = {x} is a singleton,
then P({x}) = {∅, {x}}. Thus, if t > x , we have (−∞, t) ∩ S = {x};
also, if t < x , we have (−∞, t) ∩ S = ∅, so SS = P(S).
There is no set S with |S | = 2 that can be shattered by S. Indeed,
suppose that S = {x , y}, where x < y . Then, any member of S that
contains y includes the entire set S , so SS = {∅, {x}, {x , y}} 6= P(S).
This shows that S is a VC class and VCD(S) = 1.
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Example

Consider the collection I = {[a, b] | a, b ∈ R, a 6 b} of closed intervals.
We claim that VCD(I) = 2.

There exists a set S = {x , y} such that IS = P(S): consider the
intersections

[u, v ] ∩ S = ∅, where v < x ,

[x − ε, x+y
2 ] ∩ S = {x},

[x+y
2 , y ] ∩ S = {y},

[x − ε, y + ε] ∩ S = {x , y},
which show that IS = P(S).
No three-element set can be shattered by I: Let T = {x , y , z} be a
set that contains three elements. Note that any interval that contains
x and z also contains y , so it is impossible to obtain the set {x , z} as
an intersection between an interval in I and the set T .
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Example: Three-point sets shattered by half-planes
Let H be the collection of closed half-planes in R

2, that is, the collection
of sets of the form

{x = (x1, x2) ∈ R
2 | ax1 + bx2 − c > 0, a 6= 0 or b 6= 0}.

We claim that VCD(H) = 3.
Let P ,Q,R ∈ R

2 be non-colinear. The family of lines shatters the set
{P ,Q,R}, so VCD(H) is at least 3.

t

t

t

P

Q

R

{P ,Q}

{Q}{P ,R}

{P}

{Q,R}

∅ {P ,Q,R}

{R}
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No set that contains at least four points can be shattered by H.
Let {P ,Q,R ,S} be a set such that no three points of this set are collinear.
If S is located inside the triangle P ,Q,R , then every half-plane that
contains P ,Q,R will contain S , so it is impossible to separate the subset
{P ,Q,R}.
Thus, we may assume that no point is inside the triangle formed by the
remaining three points.
Any half-plane that contains two diagonally opposite points, for example,
P and R , will contain either Q or S , which shows that it is impossible to
separate the set {P ,R}.

u

u

u

u

P

Q

R

S

No set that contains four points may be shattered by H, so VCD(H) = 3.
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Example
Let R

2 be equipped with a system of coordinates and let R be the set of
rectangles whose sides are parallel with the axes x and y . Each such
rectangle has the form [x0, x1] × [y0, y1].
There is a set S with |S | = 4 that is shattered by R. Indeed, let S be a
set of four points in R

2 that contains a unique “northernmost point” Pn, a
unique “southernmost point” Ps , a unique “easternmost point” Pe , and a
unique “westernmost point” Pw . If L ⊆ S and L 6= ∅, let RL be the
smallest rectangle that contains L. For example, we show the rectangle RL

for the set {Pn,Ps ,Pe}.

r

r

r

r

Pn

P

Pe

Pw
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Example (cont’d)

This collection cannot shatter a set of points that contains at least five
points.
Indeed, let S be a set of points such that |S | > 5 and, as before, let Pn be
the northernmost point, etc. If the set contains more than one
“northernmost” point, then we select exactly one to be Pn. Then, the
rectangle that contains the set K = {Pn,Pe ,Ps ,Pw} contains the entire
set S , which shows the impossibility of separating the set K .

Prof. Dan A. Simovici (UMB) MACHINE LEARNING - CS671 - Part 2a The Vapnik-Chervonenkis Dimension 15 / 30



Major Result

If a collection of sets C is not a VC class (that is, if the
Vapnik-Chervonenkis dimension of C is infinite), then

ΠC[m] = 2m

for all m ∈ N.
However, we shall prove that if VCD(C) = d , then ΠC [m] is bounded
asymptotically by a polynomial of degree d .
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The Function φ
For n, k ∈ N and 0 6 k 6 n define the number

(

n
6k

)

as

(

n

6 k

)

=

k
∑

i=0

(

n

i

)

Clearly,
(

n
60

)

= 1 and
(

n
6n

)

= 2n.

Theorem

Let φ : N
2 −→ N be the function defined by

φ(d ,m) =

{

1 if m = 0 or d = 0

φ(d ,m − 1) + φ(d − 1,m − 1) otherwise.

We have

φ(d ,m) =

(

m

6 d

)

for d ,m ∈ N.
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Proof

The argument is by strong induction on s = i + m.
The base case, s = 0, implies m = d = 0.
Suppose that the equality holds for φ(d ′,m′), where d ′ + m′ < d + m. We
have:

φ(d ,m) = φ(d ,m − 1) + φ(d − 1,m − 1)
(by definition)

=
∑d

i=0

(

m−1
i

)

+
∑d−1

i=0

(

m−1
i

)

(by inductive hypothesis)

=
∑d

i=0

(

m−1
i

)

+
∑d

i=0

(

m−1
i−1

)

(since
(

m−1
−1

)

= 0)

=
∑d

i=0

(

(

m−1
i

)

+
(

m−1
i−1

)

)

=
∑d

i=0

(

m
i

)

=
(

m
6d

)

.
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Sauer-Shelah Theorem

Theorem

If C is a collection of subsets of S that is a VC-class such that
VCD(C) = d, then ΠC [m] 6 φ(d ,m) for m ∈ N, where φ is the function
defined above.
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Proof

The argument is by strong induction on s = d + m, the sum of the VCD
of C and the size of the set.

For the base case, s = 0 we have d = m = 0 and this means that
the collection C shatters only the empty set. Thus, ΠC[0] = |C∅| = 1,
and this implies ΠC [0] = 1 = φ(0, 0).
The inductive case: Suppose that the statement holds for pairs
(d ′,m′) such that d ′ + m′ < s and let C be a collection of subsets of
S such that VCD(C) = d .
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Proof (cont’d)

Let K be a set of cardinality m and let k0 be a fixed (but, otherwise,
arbitrary) element of K .
Consider the trace CK−{k0}. Since |K − {k0}| = m − 1, we have, by the
inductive hypothesis, |CK−{k0}| 6 φ(d ,m − 1).
Let C′ be the collection of sets given by

C′ = {G ∈ CK | k0 6∈ G ,G ∪ {k0} ∈ CK}.

C′ = C′
K−{k0}

because C′ consists only of subsets of K − {k0}.

The VCD of C′ is less than d . Indeed, let K ′ be a subset of K − {k0}
that is shattered by C′. Then, K ′ ∪ {k0} is shattered by C, hence
|K ′| < d .

By the inductive hypothesis, |C′| = |CK−{k0}| ≤ φ(d − 1,m − 1).
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The collection of sets CK is a collection of subsets of K that can be
regarded as the union of two disjoint collections:

those subsets in CK that do not contain the element k0, that is
CK−{k0};
those subsets of K that contain k0.
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If L is a second type of subset, then L − {k0} ∈ C′. Thus,

|CK | = |CK−{k0}| + |C′
K−{k0}

|,

so |CK | 6 φ(d ,m − 1) + φ(d − 1,m − 1), which is the desired conclusion.
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Lemma 1

Lemma

For d ∈ N and d > 2 we have

2d−1
6

dd

d !
.

The argument is by induction on d . The basis step, d = 2 is immediate.
Suppose the inequality holds for d . We have

(d + 1)d+1

(d + 1)!
=

(d + 1)d

d !
=

dd

d !
·
(d + 1)d

dd

=
dd

d !
·

(

1 +
1

d

)d

> 2d ·

(

1 +
1

d

)d

> 2d

(by inductive hypothesis)

because
(

1 +
1

d

)d

> 1 + d
1

d
= 2.
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Lemma 2

Lemma

We have φ(d ,m) 6 2md

d! for every m > d and d > 1.

The argument is by induction on d and n. If d = 1, then
φ(1,m) = m + 1 6 2m for m > 1, so the inequality holds for every m > 1,
when d = 1.
If m = d > 2, then φ(d ,m) = φ(d , d) = 2d and the desired inequality
follows immediately from the previous Lemma.
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Proof (cont’d)
Suppose that the inequality holds for m > d > 1. We have

φ(d ,m + 1) = φ(d ,m) + φ(d − 1,m)

(by the definition of φ)

6 2
md

d !
+ 2

md−1

(d − 1)!

(by inductive hypothesis)

= 2
md−1

(d − 1)!

(

1 +
m

d

)

.

It is easy to see that the inequality

2
md−1

(d − 1)!

(

1 +
m

d

)

6 2
(m + 1)d

d !

is equivalent to

d

m
+ 1 6

(

1 +
1

m

)d

and, so it is valid. This yields the inequality.
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Theorem

The function φ satisfies the inequality:

φ(d ,m) <
(em

d

)d

for every m > d and d > 1.
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Proof

By Lemma 2, φ(d ,m) 6 2md

d! . Therefore, we need to show only that

2

(

d

e

)d

< d !.

The argument is by induction on d > 1.
The basis case, d = 1 is immediate.
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Suppose that 2
(

d
e

)d
< d !. We have

2

(

d + 1

e

)d+1

= 2

(

d

e

)d (

d + 1

d

)d d + 1

e

=

(

1 +
1

d

)d 1

e
· 2

(

d

e

)d

(d + 1) < 2

(

d

e

)d

(d + 1),

because
(

1 +
1

d

)d

< e.

The last inequality holds because the sequence
(

(

1 + 1
d

)d
)

d∈N

is an

increasing sequence whose limit is e. Since 2
(

d+1
e

)d+1
< 2

(

d
e

)d
(d + 1),

by inductive hypothesis we obtain:

2

(

d + 1

e

)d+1

< (d + 1)!.
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Corollary

If m is sufficiently large we have φ(d ,m) = O(md).
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