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The notion of entropy, the cornerstone of information theory, was
introduced by Claude Shannon in his 1948 double paper in Bell System
Technical Journal, as a limit of on lossless data compression in a noiseless
data transmission channel.

There exists an ample literature containing axiomatizations of the
notion of entropy for probability distributions.

Some of these axiomatizations involve the Shannon entropy
(Khinchin, Rényi, Fadeev,). Others, focus on generalizations of
entropy (Daroczy, Havrda, Tsallis, Furuichi, Simovici).
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We present on an axiomatization of entropy that leverages algebraic
properties of sets of partitions of finite sets in order to produce a simpler
system of axioms for entropy, and to extend this notion to a diverse
collection of data types.
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Partitions are fundamental for clustering algorithms were we seek to detect
groupings of objects that have similar properties or are geometrically close
to each other.
There is a vast literature that focuses on clustering algorithms and a great
diversity of approaches to clustering.
Evaluating cluster quality is an important and challenging task for
comparing appropriateness of clustering algorithms for various object
configurations.
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Why partitions?

Partitions of sets are more expressive than probability distributions.

Definition

Let S be a non-empty set. A partition of S is a collection of non-empty
subsets {Bi | i ∈ I} of S such that for i , j ∈ I we have Bi ∩ Bj = ∅, and⋃

i∈I Bi = S .

The set of partitions on S is denoted by PART(S).
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A probability distribution that describe a 3-valued random variable:

p : (0.3 0.2 0.5)

A three-block partition:

π = {{x1, x7, x8}, {x2, x6}, {x3, x4, x5, x9, x10}}

Obviously, we can extract the probability distribution from the partition;
the reverse process will not work because there are many partitions that
correspond to a probability distribution.
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Partition π ∈ PART({x1, . . . , x9):
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Compare the probability distribution (3/10, 2/10, 5/10) with the partition
π shown in the previous picture:

blocks are B1 = {x1, x7, x8}, B2 = {x2, x6}, B3 = {x3, x4, x5, x9, x10};
if the elements belong to a metric space, various metric parameters
(centroids, diameters, etc.) could be considered;

if xi are vertices of a graph and various edges exist between these
points, the configuration of these edges may help establish properties
of partitions.
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Partitions have a natural partial order and the set of partitions has a rich
algebraic structure.
If π ∈ PART(S) and x , y ∈ S belong to the same block of π we write
x ≡ y(π). The relation “≡” is reflexive, symmetric, and transitive and,
therefore, it is an equivalence relation on S . Conversely, if ρ is an
equivalence of S , the sets of the form [x ]ρ = {u ∈ S | (x , u) ∈ ρ}
constitute a partition πρ of S .
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A partial order “⩽” is defined on partitions in PART(S) by setting π ⩽ σ
if each block of π is included in a block of σ.

Example

Let σ be the partitions whose blocks are:

C1 = {x1, x7},C2 = {x8},C3 = {x2, x6},C4 = {x3, x4, x5},C5 = {x9, x10}

We have C1 ⊆ B1, C2 ⊆ B1, C3 = B2, C4,C5 ⊆ B3, hence π ⊆ σ.
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The partition αS = {{x} | x ∈ S} is the least element of the partially
ordered set (PART(S),⩽).

The one-block partition ωS = {S} is the largest element of
(PART(S),⩽).
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If π, σ ∈ PART(S), π ⩽ σ, and there is no partition τ ∈ PART(S)−{π, σ}
such that π ⩽ τ ⩽ σ, then we say that σ covers π and we write π � σ.
It is easy to show that π � σ if and only if σ is obtained from π by fusing
two of the blocks of π.

13 / 60



Let U,V be two non-empty, disjoint sets, and let σ ∈ PART(U), and
τ ∈ PART(V ), where σ = {B1, . . . ,Bm} and τ = {C1, . . . ,Cn}.
The sum of the partitions σ and τ is the partition σ + τ ∈ PART(U ∪ V )
defined as:

σ + τ = {B1, . . . ,Bm,C1, . . . ,Cn}.
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B3

C1

C2

C3

C4

σ

τ

σ + τ

U V
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For every two non-empty disjoint sets U and V we have:

αU + αV = αU∪V ,

ωU + ωV = {U,V } ∈ PART(U ∪ V ).
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Furthermore, if U,V ,W are non-empty disjoint sets, σ ∈ PART(U),
τ ∈ PART(V ) and υ ∈ PART(W ), we have

σ + (τ + υ) = (σ + τ) + υ,

a property referred to as the restricted associativity of partition addition.
The term “restricted” refers to the fact that the underlying sets U,V ,W
are supposed to be disjoint.
If σ = {B1, . . . ,Bm} ∈ PART(S) then we have:

σ = ωB1 + · · ·+ ωBm .

If the set S consists of a single element, S = {s}, then αS = ωS = {s}.
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Our axiomatization of partition entropies starts with monotonic functions
defined on sets of partitions. We present three examples of monotonic
functions defined on specialized collections of sets that will allow us to
generate a variety of entropy types.
Let µ : P(S) −→ R⩾0 be a non-negative monotonic function of sets, that
is, a function such that U ⊆ V implies µ(U) ⩽ µ(V ) for U,V ∈ P(S),
and |U| > 1 implies µ(U) > 0.
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Example

Let S be a finite set and let µ : P(S) −→ R⩾0 be given by µ(B) = |B|β
for B ∈ P(S) and some β > 0. The function is clearly monotonic and
B ̸= ∅ implies µ(B) > 0.
Furthermore, if |B| = 1, then µ(B) = 1.
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Example

Let W = {x1, . . . , xm} ⊆ Rn be a finite set and let d be a metric on Rn.
Define the centroid of W as cW = 1

|W |
∑

x∈W x.
The sum of square errors of the set W is defined as:

sse(W ) =
m∑
i=1

d2(xi , cW ) =
∑
x∈W

∥ x ∥2 −|W | ∥ cW ∥2 .
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Example cont’d

Example

If W is a finite subset of Rn and σ = {U,V } is a bipartition of W a
straightforward computation yields:

sse(W ) = sse(U) + sse(V ) +
|U| |V |
|W |

∥ cU − cV ∥2 .

This implies
sse(U) + sse(V ) ⩽ sse(W ). (1)

Note also that U,W are two subsets of Rn such that U ⊆ W , we have
sse(U) ⩽ sse(W ), which shows that sse is a monotonic function.
Furthermore, if |W | = 1, then µ(W ) = 0.

20 / 60



Example cont’d

Example

Another function that can be defined on finite subsets of (Rn, d) is the
diameter diam : P(Rn) −→ R⩾0, given by
diam(W ) = max{d(x, y) | x, y ∈ W }. It is immediate that diam is
monotonic.
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Example

Let G = (V ,E ) be a connected loop-free finite graph having V as its set
of vertices and E as its set of edges. For a set of vertices B define int(B),
the set of internal edges of B as

int(B) = {{x , y} ∈ E | {x , y} ⊆ B}.

This definition is extended to partitions of sets of vertices by defining

int(π) =
⋃
B∈π

int(B).

The set int(π) is the set of internal edges of π.
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Example

If π, σ ∈ PART(V ) then int(π ∧ σ) = int(π) ∩ int(σ).
The set ext(π) of external edges of π (also known as cut edges of π)
consists of edges that join vertices in distinct blocks and is given by:

ext(π) = E − int(π).

Thus, we have:

ext(π ∧ σ) = E − int(π ∧ σ)

= E − (int(π) ∩ int(σ))

= (E − int(π)) ∪ (E − int(σ))

= ext(π) ∪ ext(σ).
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Example

Note that
int(αV ) = ∅, ext(αV ) = E ,
int(ωV ) = E , ext(ωV ) = ∅

for every graph G = (V ,E ).
It follows from the above discussion that the function

int : PART(V ) −→ P(E )

is monotonic, while
ext : PART(V ) −→ P(E )

is dually monotonic.
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Starting from monotonic functions of sets we introduce a set of three
axioms that define an entropy associated to these functions.

Definition

Let S be a non-empty set and let µ : P(S) −→ R⩾0 be a non-negative
monotonic function defined on the subsets of S . A µ-entropy is a function
Hµ : PART(S) −→ R⩾0 that satisfies the following conditions:

(A0)-initialization axiom: For any set S , Hµ(ωS) = 0.

(A1)-monotonicity axiom: If π, σ ∈ PART(S) and π ⩽ σ, then
Hµ(π) ⩾ Hµ(σ).

(A2)-addition axiom: For every finite disjoint subsets U,V of a set S
such that S = U ∪ V , σ ∈ PART(U) and τ ∈ PART(V ) we have:

Hµ(σ + τ) =
µ(U)

µ(U ∪ V )
Hµ(σ) +

µ(V )

µ(U ∪ V )
Hµ(τ) +Hµ({U,V }).
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Lemma

If |S | = 1, then Hµ(αS) = 0.

Proof.

This follows from the fact that for a singleton set S = {a} we have
αS = ωS .
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Lemma

Let U,V be two non-empty, finite disjoint sets, µ : P(U ∪ V ) −→ R⩾0 be
a positive monotonic function of sets, and let σ be a partition of the set
U. Then,

Hµ(σ + αV ) = Hµ(σ + ωV ) +
µ(V )

µ(U ∪ V )
Hµ(αV ).

Proof.

By Lemma 11 we can write:

Hµ(σ + αV ) =
µ(U)

µ(U ∪ V )
Hµ(σ) +

µ(V )

µ(U ∪ V )
Hµ(αV ) +Hµ({S ,T}),

Hµ(σ + ωV ) =
µ(U)

µ(U ∪ V )
Hµ(σ) +Hµ({U,V }).

The equalities imply the desired result.
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Theorem

Let S be set such that |S | ⩾ 2 and let π = {B1, . . . ,Bm} be a partition of
S . For any non-negative monotonic function µ : P(S) −→ R⩾0 we have:

Hµ(π) = Hµ(αS)−
m∑
i=1

µ(Bi )

µ(S)
Hµ(αBi

). (2)
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Proof

Since π = ωB1 + ωB2 + · · ·+ ωBn , we can consider the descending
sequence of partitions of the set S :

π0 = ωB1 + ωB2 + · · ·+ ωBm = π

π1 = αB1 + ωB2 + · · ·+ ωBm

π2 = αB1 + αB2 + · · ·+ ωBm

...

πm = αB1 + αB2 + · · ·+ αBm = αS .

Define σi = αB1 + · · ·+ αBi
+ ωBi+2

+ · · ·+ ωBm ∈ PART(S − Bi+1) for
1 ⩽ i ⩽ m − 1. Note that

πi = σi + ωBi+1
and πi+1 = σi + αBi+1

are both partitions of the set S .
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Proof cont’d
By a previous Lemma we have:

Hµ(π1) = Hµ(π0) +
µ(B1)

µ(S)
Hµ(αB1),

Hµ(π2) = Hµ(π1) +
µ(B2)

µ(S)
Hµ(αB2),

...

Hµ(πm) = Hµ(πm−1) +
µ(Bm)

µ(S)
Hµ(αBm).

Therefore,

Hµ(πm) = Hµ(π0) +
m∑
i=1

µ(Bi )

µ(S)
Hµ(αBi

)

Equivalently, since πm = αS , we gave

Hµ(π) = Hµ(αS)−
m∑
i=1

µ(Bi )

µ(S)
Hµ(αBi

).
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Corollary

Let S be set such that |S | ⩾ 2. For any non-negative monotonic function
µ : P(S) −→ R⩾0 and any partition π = {B1, . . . ,Bn} ∈ PART(S) we
have:

Hµ(αS) ⩾
m∑
i=1

µ(Bi )

µ(S)
Hµ(αBi

). (3)

Proof.

By the initialization and monotonicity axioms π ⩽ ωS imply
Hµ(π) ⩾ Hµ(ωS) = 0, hence the µ-entropy of any partition is
non-negative. This fact combined with Theorem 13 yields the desired
result.
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Example

Let µ(S) = |S |β for any finite and non-empty set S and β > 0 and let

Hµ(αS) =
1− |S |1−β

1− 21−β
.

By Theorem 13 this choice of Hµ(αS) implies:

Hµ(π) =
1

1− 21−β

(
1−

∑
B∈π

|B|β

|S |β

)
,

which is the Havrda-Charvàt generalized entropy.
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Note that

lim
β−→1+

1− |S |1−β

1− 21−β
= ln |S |,

by a straightforward application of l’Hospital rule.
If π ⩽ σ the axiom (A1) is satisfied. It suffices to show that π � σ implies
Hµ(π) ⩾ Hµ(σ), so let π = {B1, . . . ,Bm−2,Bm−1,Bm} and let
σ = {B1, . . . ,Bm−2,Bm−1 ∪ Bm}. These choices imply:

Hµ(π) =
1

1− 21−β

(
1−

m∑
i=1

|Bi |β

|S |β

)
,

Hµ(σ) =
1

1− 21−β

(
1−

m−2∑
i=1

|Bi |β

|S |β

)
− |Bm−1 ∪ Bm|β

|S |β
,

and the axiom (A1) is satisfied because

|Bm−1|β + |Bm|β ⩽ |Bm−1 ∪ Bm|β.
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The special case β = 2 yields

Hµ(π) = 2

(
1−

m∑
i=1

|Bi |2

|S |2

)
,

which is the double of the Gini index.
By applying l’Hospital rule we obtain:

lim
β→1

Hµ(π) = −
m∑
i=1

|Bi |
|S |

ln
|Bi |
|S |

which is the Shannon entropy.
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Example

Let µ be the positive monotonic function, µ(B) = sse(B), where B is a
finite subset of Rn. Choose Hµ(αU) = 1 for every finite set U ∈ P(S).
The µ-entropy is:

Hµ(π) = 1−
m∑
i=1

sse(Bi )

sse(S)
,

which is the expression of the inertial entropy of a partition.
The satisfaction of axiom (A1) follows from the inequality
sse(U) + sse(V ) ⩽ sse(U ∪ V ).
With the alternative choice, µ(B) = diam(B) we obtain the entropy

Hµ(π) = 1−
m∑
i=1

diam(Bi )

diam(S)
,
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Example

If G = (V ,E ) is a connected loop-free finite graph having V as its set of
vertices and E as its set of edges, and µ(B) = |int(B)| for every set of
vertices B, then, choosing Hµ(αB) = 1 the expression of µ-entropy of a
partition π ∈ PART(E ) is:

Hµ(π) = 1−
m∑
i=1

|int(Bi )|
|int(V )|

=
|ext(π)|
|E |

.
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Example

•

•
•

• •

••

•
•

•

••

• •

•
•
•

•
B1 B2

B3

B4

Hµ(π) =
|ext(π)|
|E |

=
7

26
.
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Elementary properties of partition cut-sets of graphs allow us to obtain the
necessity of axiom A2 for graph entropies. Indeed, let κ = {U,W } be a
cut in the graph G and let σ ∈ PART(U) and τ ∈ PART(W ) be two
partitions of the sets U and W . The partition σ + τ of V consists of all
blocks of σ and all blocks of τ .
An external edge e of partition σ + τ may fall in one of the following
pairwise disjoint sets:

e is an external edge of σ but an internal edge of κ;

e is an external edge of τ but an internal edge of κ;

e is an external edge of κ.
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Since the sets ext(σ), ext(τ), and ext(κ) are disjoint we have:

ext(σ + τ) = ext(σ) ∪ ext(τ) ∪ ext(κ).

The last equality implies

|ext(σ + τ)|
|V |

=
|U|
|V |

|ext(σ)|
|U|

+
|W |
|V |

|ext(τ)|
|W |

+
|ext(κ)|
|V |

.

When this equality is expressed using the graph entropy we recover axiom
A2, namely:

Hµ(σ + τ) =
µ(U)

µ(U ∪W )
Hµ(σ) +

µ(W )

µ(U ∪W )
Hµ(τ) +Hµ({U,W }).
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A graph G = (V ,E ) is bipartite if there exists a bipartition π = {V1,V2}
such that ext(π) = E . This is equivalent to the existence of a bipartition π
such that Hµ(π) = 1.
In general, a graph G = (V ,E ) is k-colorable, if it has a partition
π = {B1, . . . ,Bk} such that if {x , y} ∈ E , then x and y belong to two
distinct blocks of π. In other words, G is k-colorable if and only if there
exists a partition of V having k blocks such that Hµ(π) = 1.
Since the graph k-coloring problem is known to be NP-complete, it follows
by direct transformation, that the problem of the existence of a partition
with k blocks of the set of vertices of a graph and has monotonic entropy
equal to 1 is NP-complete.
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Let π = {B1, . . . ,Bm} ∈ PART(S) and let C ⊆ S . The trace of π on C is
the partition

πC = {B ∩ C | B ∈ π and B ∩ C ̸= ∅} ∈ PART(C ).

Definition

Let π, σ ∈ PART(S), where σ = {C1, . . . ,Cn}. The µ-conditional entropy
of π and σ is given by:

Hµ(π|σ) =
n∑

j=1

µ(Cj)

µ(S)
Hµ(πCj

).
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Note that H(π|ωS) = H(π),

H(ωS |σ) =
n∑

j=1

µ(Cj)

µ(S)
Hµ(Cj),

and Hµ(π|αS) = 0 for every π ∈ PART(S).

Theorem

For conditional entropy of two partitions π, σ ∈ PART(S) we have

Hµ(π|σ) = Hµ(π ∧ σ)−Hµ(σ).
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Proof

For π = {B1, . . . ,Bm} and σ = {C1, . . . ,Cn} in PART(S) the conditional
entropy can be written as:

Hµ(π|σ) =
n∑

j=1

µ(Cj)

µ(S)
Hµ(πCj

)

=
n∑

j=1

µ(Cj)

µ(S)

(
Hµ(αCj

)−
m∑
i=1

µ(Bi ∩ Cj)

µ(Cj)
Hµ(αBi∩Cj

)

)

=
n∑

j=1

µ(Cj)

µ(S)
Hµ(αCj

)−
m∑
i=1

µ(Bi ∩ Cj)

µ(S)
Hµ(αBi∩Cj

)

= Hµ(π ∧ σ)−Hµ(σ).
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Theorem

The mapping δµ : PART(S)2 −→ R⩾0 defined as

δµ(π, σ) =
dµ(π, σ)

Hµ(π ∧ σ)

is a metric on PART(S) such that 0 ⩽ δµ(π, σ) ⩽ 1 for π, σ ∈ PART(S).
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Proof

The non-negativity and the symmetry of δµ are immediate. To prove the
triangular axiom we write:

δµ(π, τ) =
dµ(π, τ)

Hµ(π ∧ τ)

=
Hµ(π|τ) +Hµ(τ |π)

Hµ(π ∧ τ)

⩽
Hµ(π|σ)
Hµ(π ∧ σ)

+
Hµ(σ|τ)
Hµ(σ ∧ τ)

+
Hµ(τ |σ)
Hµ(τ ∧ σ)

+
Hµ(σ|π)
Hµ(σ ∧ π)

= δµ(π, σ) + δµ(σ, π),

Furthermore, since Hµ(π|σ) ⩽ Hµ(π ∧ σ) it follows that 0 ⩽ δµ(π, σ) ⩽ 1.
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For π, σ ∈ PART(S) we have:

δµ(π, σ) = 2− Hµ(π) +Hµ(σ)

Hµ(π ∧ σ)
.
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Example

For the graph-related entropy the distance δµ is given by:

δµ(π, σ) = 2− |ext(π)|+ |ext(σ)|
|ext(π ∧ σ)|

.
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We consider an analog of the Rand distance between partitions of sets of
edges in undirected graphs that can be introduced using our approach.
Let π, σ ∈ PART(V ); the graph Rand distance δ(π, σ) between these
partitions is:

δ(π, σ) = 2− |ext(π)|+ |ext(σ)|
|ext(π ∧ σ)|

=
|int(π) ∩ ext(σ)|+ |int(σ) ∩ ext(π)|

|ext(π ∧ σ)|
,

because

ext(π ∧ σ)− ext(π) = int(π) ∧ ext(σ)

ext(π ∧ σ)− ext(σ) = int(σ) ∧ ext(π).
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External clustering validation involves clustering data that is labeled.
Labels denote the correct cluster where a data item belongs and this
define a ground truth partition σ.

A clustering algorithm produces a partition π, and the goal of this
type of validation is to determine to what extend the partition π is
consistent with the ground truth partition σ.

The consistency is evaluated by using the normalized distance
δ(π, σ) ∈ [0, 1]. The smaller values of δ (close to 0) mean that the
clustering algorithm produces a result consistent with the ground
truth partition.

This approach allows us to determine the correct number of clusters
by determining the minimum of δ(π, σ) when the parameters that
define the partition π are variable.
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We examine the effectiveness of the partition distance δ as a method of
partition validation. We initially do so on the iris data set of the UC Irvine
Machine Learning Repository which has three natural classes that form the
reference partition σ.
The partition π is obtained via a hierarchical clustering, and the quality of
various hierarchical clusterings is evaluated through the distance δ(π, σ).
For each partition π we plot its values against the number of clusters in
that partition.
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For the well-known iris data set who has three clusters we obtain the
following results using a variety of hierarchical clustering algorithms:

The values of δ plotted against the number of clusters for the iris data set
using the Ward method. There are 3 clusters in the natural clustering of
the set, and the global minimum of δ also occurs at 3 with a value of .049.
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o

The values of δ plotted against the number of clusters for the iris data set
using the average link method. There are 3 clusters in the natural
clustering of the set, and the global minimum of δ also occurs at 3, with a
value of .043.
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The values of δ plotted against the number of clusters for the iris data set
using the single link method. The global minimum of δ occurs at 20 with
a value of .072. Results are clearly worse than in the previous cases since
single-link favors elongated clusters.
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Further tests were performed on a synthetic data set and on several UCI
data sets, some of which are notoriously difficult.
Each set was minimally processed by individually normalizing the features
to a 0-1 range and removing records with missing values.
After processing, each set was clustered according to the Ward hierarchical
method and its δ values computed with its true partition and plotted
against number of clusters.
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The values of δ plotted against the number of clusters for the synthetic
data set using the Ward method. There are 5 clusters in the natural
clustering of the set, and the global minimum of δ also occurs at 5, with a
value of .0003
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Clustering the balance scale data set using the Ward method. There are 3
clusters in the natural clustering of the set, but the global minimum of δ
occurs at 4 with a value of .630
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The values of δ plotted against the number of clusters for the breast
cancer Wisconsin data set using the Ward method.
There are 2 clusters in the natural clustering of the set, and the global
minimum of δ also occurs at 2, with a value of .073.
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The results are summarized in the table below.

Data Number of minimum Cluster
Set Clusters δ sizes

synthetic 5 .0003 40, 40, 40, 40, 40

iris 3 .049 50, 50, 50

wine 3 .066 59, 71, 48

breast cancer 2 .073 444, 239

zoo 7 .110 41, 20, 5, 13, 4, 8, 10

congressional 2 .408 108, 124
votes

glass 6 .624 70, 76, 17, 13, 9, 29

balance 3 .630 49, 288, 288
scale

58 / 60



Conclusions

We introduced monotonic entropy and formulated an axiomatization that
allows us to extend this type entropy to sets of objects that posses special
properties (such as being embedded in a metric space, or being defined by
partitions of undirected graphs).
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An application of our results is the induction of a metric structure on the
set of partitions (clusterings). In turn, this is helpful in the study of
stability of clustering algorithms, and for external validation of clusterings,
where an apriori data labeling can be compared with the product of a
clustering algorithm.
Additionally, by regarding a recommendation system as a bipartite graph
between the set of users and set of items, whose edges represent
recommendations of items to users, stability of such systems relative to
variations in recommendations could be investigated.
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