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Abstract—Conventional location fingerprint techniques usually
require a prebuilt training set of fingerprints sampled at known
locations, so that locations of future fingerprints can be deter-
mined by comparing to this set. For good accuracy, the training
set should be large enough to appropriately cover the area.
However, it is not always feasible to obtain a quality training
set in practice, and so recent studies have resorted to utilizing
fingerprints that are available but without location information.
This paper investigates how these so-called unlabeled fingerprints
can be useful for location tracking of a mobile device as it is
moving. Specifically, we propose a fingerprint-based tracking
approach based on Hodrick-Prescott filtering and substantiate
its potential via an evaluation study.

I. INTRODUCTION

Location information is valuable to a myriad of applications
of wireless networks. In a surveillance sensor network, it is
crucial to know the location of an incident caught by a sensor,
such as fire in a building or oil spill in a coastal water. The
demand is also high for mobile apps providing navigation
and other location-based services in hospitals, shopping malls,
airport terminals, and campus buildings, to name a few. GPS
is the most effective way to get location information but does
not work indoors. Even for outdoor environments where this
service is available, it is not energy-efficient to have to turn it
on continuously all the time.

Consequently, numerous efforts have been made towards
GPS-free localization solutions, most adopting the fingerprint
approach. This approach usually consists of two phases: train-
ing (offline) and positioning (online). In the offline phase,
a number of sample locations are surveyed to build a map
corresponding each location to a “fingerprint” which is a
vector of measurements observed between the mobile device
at this location and a set of “reference points” (RPs). For
example, these RPs can be a set of Wi-Fi access points
[1], FM broadcasting towers [2], or cellular towers [3], and
measurements can be the received signal strength indices
(RSSI) observed between them and the mobile device. In the
online phase, when we need to compute a location in real
time, the current fingerprint of the device is compared against
the fingerprint map to find the best location match. Recently,
fingerprint modalities other than radio have been suggested,
such as sound [4] and geomagnetic field [5]. By combining
these different features where they apply, we can obtain a rich
set of discriminative features for the fingerprint information.

The localization accuracy of the fingerprint approach largely
depends on the quality of the training data. Due to the tedium
and labor cost of the calibration task in the offline phase, it
is not always feasible to obtain a quality fingerprint map. In
such a case, a viable approach [6]–[10] for better accuracy is to
apply a semi-supervised learning method taking into account
the availability of “unlabeled” fingerprints (whose location is
unknown), not just the set of “labeled” fingerprints (whose
location is known). Unlabeled fingerprints are abundant and
can easily be obtained without manual location labeling.

This paper is focused on the problem of tracking a mobile
device based on its sequentially obtained fingerprints. We do
not require a prebuilt map of labeled fingerprints. Instead, we
only assume that once in a while a fingerprint is observed
with a known location. This assumption is necessary for
otherwise it is impossible to make any inference about the
device’s location. It is noted that while there have been
earlier research works on mobile location tracking, most of
them make additional assumptions, such that those about
special sensors built in the device (e.g., gyroscope, accelerom-
eter, compass, camera) [11], [12], those about mobility-
specific constraints (e.g, speed, predefined map) [13] and
those that are network-specific (e.g., vehicular or wireless
sensor networks) [14], [15]. In contrast, we are interested
in fingerprint-based tracking and aim to devise a tracking
framework with universal applicability in the sense that it
can work orthogonally with any type of fingerprint space;
i.e., applicable where fingerprint information can be of radio
signals, acoustic, or geomagnetic, etc and can contain any
other information that is location-discriminative.

Our intuition is that as the device is moving its fingerprints
should satisfy two properties: spatial smoothness and temporal
smoothness. Fingerprints having similar values, regardless of
their observation time, should correspond to nearby locations
(spatial smoothness) and fingerprints observed in consecutive
movements of the device should also correspond to nearby lo-
cations resulted from a constant speed (temporal smoothness).
The spatial smoothness property has been exploited in earlier
location fingerprint techniques [6]–[10]. They commonly for-
mulate the localization problem as a manifold regularization
problem [16] which includes a regularizer term to maximize
spatial smoothness. In this paper, we want to investigate how
useful the temporal smoothness property can be in order to
improve localization accuracy. Specifically, we formulate the978-1-4799-3060-9/14/$31.00 c©2014 IEEE



fingerprint-based tracking problem as a regularization problem
extended with a Hodrick-Prescott (HP) filter [17] term to
regulate the temporal smoothness. The location estimation
algorithm, as a solution to this problem, is faster than the
manifold regularization based algorithm, and as shown in our
evaluation study, more accurate.

The remainder of the paper is structured as follows. §II
provides a brief survey of the related work. §III presents
the details of our proposed approach to the fingerprint-based
tracking problem. Evaluation results are discussed in §IV. The
paper is concluded in §V with pointers to our future work.

II. RELATED WORK

GPS-free localization in wireless networks has been a
long-studied problem. There exist many techniques to date,
which differ in the type of network environment (e.g., sensor
networks [18], wireless LANs [19], vehicular ad hoc networks
[14]), the modality of information used to infer location (e.g.,
infrared [20], radio [1], sound [4], geo-magnetic [5], light
[21]), or the type of algorithmic method (e.g., range-based
[22], range-free [23]).

Radar [1] is the world’s first Wi-Fi RSS-based indoor
positioning system, which demonstrates the viability of using
RSS information to locate a wireless device. This system
works using a radio map, a lookup table that maps building
locations to the corresponding RSS fingerprints empirically
observed at these locations. The reference points are the Wi-
Fi access points within the user’s Wi-Fi range. The radio map
is searched to find the closest RSS readings and the centroid
of the corresponding locations will be used as the estimate for
the user’s location. Radar represents the fingerprint approach
where kNN is used to determine the location. One can also em-
ploy other learning methods to relate a fingerprint to a location,
such as probabilistically using Bayesian inference [24] or non-
probabilistically using an Artificial Neural Network (ANN)
[25] or a Support Vector Machine (SVM) [26].

When there are only a small number of sample fingerprints
for training, we can utilize unlabeled fingerprints as a supple-
ment to the original ones by solving a manifold regularization
problem, a widely-used semi-supervised learning method of
by Belkin et al. in [16] in the area of Machine Learning,
to propagate the labels for the unlabeled fingerprints based
on their similarity with the labeled. Pan et al. [6], [7] apply
manifold regularization with a Laplacian regularization term
reflecting the intrinsic manifold structure of the fingerprints;
here the manifold is a weighted graph of fingerprints in which
the weight of an edge connecting two fingerprints represents
the similarity between them. Other regularization terms have
also been investigated. For example, e.g., Total Variation [27]
considered in the recent work of Tran and Truong [10]; this
work, however, suggests that manifold regularization with the
Laplacian term offers better localization accuracy than TV.

Our research in this paper also applies a regularization
framework for learning the location labels for the unlabeled
fingerprints, but our regularization term is based on the
Hodrick-Prescott filter [17]. Our focus of attention is on the

effectiveness of temporal smoothness in the fingerprint space
for the location estimation, whereas the conventional manifold
regularization approach focuses only on spatial smoothness.
HP is an effective tool for trend estimates in time series.
It has been used in the work of Rallapalli et al. [28] for
mobile tracking, which solves an optimization problem with
constraints and assumptions about device-to-device distance.
In contrast, ours is the first effort to explore HP for fingerprint-
based location tracking.

III. FINGERPRINT-BASED LOCATION TRACKING

Suppose that we need to compute the instant location
of a given fingerprint that is obtained in a stream manner,
x1,x2, ...,xt, ..., where the time is discretized into time steps
1, 2, ..., t, ... Each fingerprint is a m-dimensional point,
xt ∈ X ⊂ Rm, where m is the number of fingerprint features,
e.g., RSSI from different Wi-Fi APs, readings from inertial
measurement units (accelerometer, gyroscope, magnetometer),
and any location-discriminative feature that is available with
the device, etc. Denote by yt ∈ Rd the location corresponding
to xt, where d is the dimensionality of the location space. For
ease of presentation, let d = 1 and so yt = yt is a real-valued
number; we will discuss the case d > 1 later.

We use the notation ht to represent whether a fingerprint xt
is labeled with location (ht = 1) or unlabeled (ht = 0). The
labeled fingerprints become available only once in a while,
one at a time but totally unpredictable. We want to find a
real-time location estimator f : X → R that, upon receipt of
a new fingerprint xt at the current time t, needs to output its
corresponding location f(xt). We formulate this problem as a
regularization problem which utilizes information about both
labeled and unlabeled fingerprints that have been obtained by
the current time. In what follows, we present two approaches
to this formulation. The first approach is the conventional
formulation based on manifold regularization. The latter is the
proposed formulation using Hodrick-Prescott filtering.

A. Manifold Regularization

Ideally, the location estimator f if applied on a labeled
fingerprint should result in an estimate that matches its given
location. Therefore, in search of f , a reasonable goal is to
minimize the estimation error with respect to the labeled
fingerprints. This is quantified by minimizing

min
f

{
E(f) =

1

t

t∑
i=1

hi(f(xi)− yi)2
}
. (1)

Another goal is to maximize the spatial smoothness in
the fingerprint space. As aforementioned, similar fingerprints,
regardless of when they are observed, should correspond
to nearby locations. We quantify this by, first, organizing
the fingerprints into an undirected weighted graph, where
each vertex is a fingerprint and each edge has a weight
w(xi,xj) = exp

(
− |xi−xj |2

2σ2

)
(for some constant σ) reflecting

the similarity between xi and xj , and, second, minimizing the



Laplacian quadratic form of this graph:

min
f

S(f) = 1

t2

t∑
i=1

i∑
j=1

w(xi,xj)(f(xi)− f(xj))2
 . (2)

To optimize these two goals, we combine them into a single
objective function using Belkin et al.’s manifold regularization
framework [16]. Specifically, the location estimator f is the
solution minimizing the following risk:

min
f
{J(f) = E(f) + λSS(f)} , (3)

where coefficient λS > 0 reflects the importance of spatial
smoothness maximization.

The beauty of this approach is that we can easily derive
a closed form for the location estimator f . Denote the fol-
lowing vectors and matrices: f = [f(x1), f(x2), ..., f(xt)]

ᵀ,
y = [y1, y2, ..., yt]

ᵀ (yi is set to zero by default for un-
labeled xi), H = diag(h1, h2, ..., ht), the identity matrix
I = diag(1, 1, ..., 1︸ ︷︷ ︸

t

), and the Laplacian matrix L of the

weighted fingerprint graph. Then we can express the func-
tionals in Eqs. (1) and (2) in matrix form as follows, E(f) =
1
t (f − y)ᵀH(f − y) and S(f) = 1

t2 f
ᵀLf . Thus, the risk J(f)

in Eq. (3) can be expressed in matrix form as

J =
1

t
(f − y)ᵀH(f − y) + λS

1

t2
fᵀLf

=
1

t

fᵀ(H+
λS
t
L︸ ︷︷ ︸

Q

)f − 2yᵀHf + yᵀHy


To minimize J, set its derivative with respect to f to zero,

∂J

∂f
=

1

t
[(Q+Qᵀ)f − 2Hy] = 0. (4)

Because of the symmetry of matrices H and L, we have Q+
Qᵀ = 2Q and so Eq. (4) leads to

f =

(
H+

λS
t
L

)−1
Hy︸ ︷︷ ︸

fMR

. (5)

With this location estimator, the location estimate for finger-
print xt will be the corresponding element (last element) in
vector f .

B. Hodrick-Prescott Filtering

The Hodrick-Prescott (HP) filter [17] is a mathematical
tool used to obtain a smoothed-curve representation of a time
series, one that is more sensitive to long-term than to short-
term fluctuations. We propose to apply HP to our location
tracking problem because the trajectory of a moving device
should be smooth over time and should exhibit a trend; real-
world mobility often exhibits moving at a constant velocity for
a long period of time before changing speed [28]. Treating the
sequence of fingerprints as a time series, and if the locations

of all these fingerprints are known, HP can be used to obtain
a smoothed trajectory of locations, by solving the following
problem:

min
f

t∑
i=1

(f(xi)−yi)2+λT
t∑
i=3

(f(xi)+f(xi−2)−2f(xi−1))2.

Here, the second term is added to penalize variations in the
growth rate of the trend component. The argument appearing
in the second term, f(xi)+f(xi−2)−2f(xi−1), is the second
difference of the time series at time t; it is zero when and only
when the points f(xi), f(xi−1), and f(xi−2) are on a line.
The HP trend estimate, as the solution to this optimization
problem, is, in matrix form,

f = (I+ λTDDᵀ)
−1

y,

where D is the second-order difference matrix

D =



0 0 ... ... ... ... ... ... 0
0 0 0 ... ... ... ... ... 0
1 −2 1 0 ... ... ... ... 0
0 1 −2 1 0 ... ... ... 0
0 0 1 −2 1 0 ... ... 0
... ... ... ... ... ... ... ... ...
0 ... ... 0 1 −2 1 0 0
0 ... ... ... 0 1 −2 1 0
0 ... ... ... ... 0 1 −2 1


t×t

Coefficient λT > 0 controls the smoothness of the trend
estimation. If λT → 0, the trend converges to the original
time series data. On the other hand, if λT →∞, the trend is
the best straight line fit to the time series data.

HP assumes that every point in the time series is labeled,
whereas we do not know the location of every fingerprint
in the fingerprint sequence. To integrate HP, we revise the
optimization problem to find the location estimator as follows:

min
f

t∑
i=1

hi(f(xi)−yi)2+λT
t∑
i=3

(f(xi)+f(xi−2)−2f(xi−1))2

or
min
f
{J(f) = E(f) + λTT (f)} , (6)

where

T (f) =
1

t

t∑
i=3

(f(xi) + f(xi−2)− 2f(xi−1))
2. (7)

In matrix form, we have T (f) = fᵀDDᵀf . Thus, the risk
J(f) in Eq. (6) is

J = (f − y)ᵀH(f − y) + λT f
ᵀDDᵀf

= fᵀ(H+ λTDDᵀ)f − 2yᵀHf + yᵀHy

⇒ ∂J

∂f
= 2 (H+ λTDDᵀ) f − 2Hy.

Setting ∂J/∂f = 0, we have our location estimator as

f = (H+ λTDDᵀ)
−1

Hy︸ ︷︷ ︸
fHP

. (8)



(a) Floor plan (208 sample locations) (b) Trajectory 1 (60 locations)

(c) Trajectory 2 (107 locations) (d) Trajectory 3 (185 locations)

Fig. 1. Floor plan (68m × 63m) with 208 sample locations, each represented by a black dot. The hallways are marked with white color and stairs with
green. Black and blue areas are not penetrable. Three trajectories of different patterns and path lengths are shown in red color.

We have so far assumed that the location is 1D. For
2D or 3D localization, we simply apply the same algorithm
separately for each coordinate. The computation of fMR in
Eq. 5 involves inverting matrices of t × t. Its computational
complexity, therefore, is O(t3). The HP-based approach is
much faster though. Note that

DDᵀ =



1 −2 1 0 ... ... ... ... 0
−2 5 −4 1 0 ... ... ... 0
1 −4 6 −4 1 0 ... ... 0
0 1 −4 6 −4 1 0 ... 0
0 0 1 −4 6 −4 1 ... 0
... ... ... ... ... ... ... ... ...
0 ... ... 0 1 −4 6 −4 1
0 ... ... ... 0 1 −4 5 −2
0 ... ... ... ... 0 1 −2 1


t×t

is a pentadiagonal matrix and so is the matrix (H+λTDDᵀ).

The inverse of a pentadiagonal matrix can be computed in
O(t) time; hence, O(t) time to compute fHP in Eq. 8. This
is a clear advantage of the HP-based approach in comparison
to the manifold regularization approach.

IV. EVALUATION

We discuss the evaluation results in this section. We
compare the HP filtering based approach to the manifold
regularization approach, which for ease of presentation are
referred to as HP and MR, respectively. As HP is obviously
better than MR in terms of computation time, we focus on
their location error as metric for comparison. This error (up
to time t) is computed as the average “individual” location
error for unlabeled fingerprints over the path traveled from the
beginning (up to time t). The “individual” error corresponding
to a fingerprint xt is the Euclidean distance between its
location estimate at time t and its ground-truth location.
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(a) Trajectory 1
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(b) Trajectory 2
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(c) Trajectory 3
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(d) HP’s error as a fraction of MR’s

Fig. 2. Location error of MR vs. that of HP for the entire trajectory. The unit for the y-axis is 10cm.

The evaluation was conducted with a dataset collected in
an experiment on the floor of our Computer Science depart-
ment (Figure 1(a)). This dataset consists of 208 WiFi RSSI
fingerprints at 208 locations sampled throughout this floor,
respectively. There are in total 138 Wi-Fi access points and
from those unreachable the corresponding RSSI is set to -
100db. At each sample location, the corresponding fingerprint
is the average of the RSSIs observed at this location. RSSI
was measured by a person carrying an Android phone in no
particular heading direction.

We consider three trajectories shown in Figure 1(b), Figure
1(c), and Figure 1(d), each being a path connecting sample
locations. For each trajectory, the labeling status of each point
is determined based on a label rate pl ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
and, for each choice of pl, the results are averaged over
five random runs. We set γ = 1 for the weight function.
For each case of study (sample trajectory, same label rate,
same random run), we perform a cross-validation procedure to
choose the best regularization coefficient λS for MR; i.e., that
results in the best error. Similarly we have a separate cross-
validation procedure to choose the coefficient λT for HP. The
range of possible coefficient values in the cross-validation is
{10−7, 10−6, ..., 10−1, 1, 10}, representing ten different scales.
The comparison is between HP using its best coefficient λT
versus MR using its best coefficient λS .

Figure 2(a), Figure 2(b), and Figure 2(c) show the location
errors of MR and HP for each of the three trajectories,
respectively. It is expected that the error should decrease as
the label rate increases. What is more noticeable, however, is
the obvious superiority of HP’s accuracy compared to MR’s.
For example, when only 50% of the fingerprints are labeled,
for all three trajectories, HP has an error of roughly 5m while
MR’s error is more than 15m. In most cases, compared to MR,
HP consistently cuts the error down by a factor of 1.5 times or
more. This can be observed in Figure 2(d) showing the error
of HP as a fraction of the error of MR.

Figure 3 shows the evolution of location error of each
approach over the time, here showing the result for the 185-
fingerprint trajectory for different cases of label rate pl. It is
observed again that throughout the travel path HP is obviously
better than MR by a large margin, and this is regardless of
whether the label rate is small (Figure 3(a)) or large (Figure
3(e)). Figure 3(f) plots the result averaging over all five cases
of label rate. Another observation favoring HP is that its error
converges to a stable value quickly as more fingerprints are
observed whereas MR’s error keeps increasing before showing
any sign of convergence. This observation is clearer for the
case of large label rates (pl ≥ 0.3) than that for the case of
small label rate (pl = 0.1).

Figure 4 draws the estimated trajectories resulted from
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(b) 30% labeled

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

Time

L
o

c
a

ti
o

n
 E

rr
o

r

p
l
 = 0.5

 

 

HP

MR

(c) 50% labeled
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(e) 90% labeled
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Fig. 3. Evolution of location error over time for the 185-trajectory. The unit for the y-axis is 10cm. Not only HP is more accurate than MR throughout the
trajectory, HP does not get worse as quickly as MR does. Instead, HP converges to a stable error.

applying MR and HP to the 185-fingerprint sequence for
three cases of label rates: 10% of the fingerprints are labeled
(pl = 0.1), 50% labeled (pl = 0.5), and 90% labeled
(pl = 0.9). Here, we show the location estimated for a
fingerprint instantly at the time it is observed. The first point
is always put at the center because in the sequence generated
it happens to be unlabeled and there is no labeled fingerprint
available for learning. As can be seen in this figure, in all
cases of label rate, HP’s trajectory resembles the ground-truth
trajectory more closely than MR does. Even in the case only
50% of the fingerprints are labeled, HP results in a trajectory

(Figure 4(d)) comparable to the trajectory produced by MR
for the case 90% labeled (Figure 4(e)). It is noted that, after
all the fingerprints in the sequence are observed, we can use
the latest location estimator to obtain better estimates for all
the unlabeled fingerprints in the past, including, for example,
the first fingerprint. These estimates are useful if there is a
need for a posterior fix of the trajectory.

V. CONCLUSIONS

We have shown convincingly that temporal smoothing is an
important property we should take into account for fingerprint-
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(b) HP: 10% labeled
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(c) MR: 50% labeled
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(d) HP: 50% labeled
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(e) MR: 90% labeled
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(f) HP: 90% labeled

Fig. 4. Drawing of the estimated 185-trajectory. Red-colored points are location estimates for unlabeled fingerprints and blue-colored points are the ground-truth
locations of the labeled fingerprints. The numbers represent the ID of the fingerprints sorted in time of measurement.



based location tracking. We have investigated the use of
Hodrick-Prescott filtering as a way to integrate temporal
smoothness in the location estimation. Not only computation-
ally faster, but this approach has consistently been shown in
our evaluation study to be more accurate than the conven-
tionally used manifold regularization approach which factors
in only the spatial smoothness property. For future work, we
plan to investigate online/streaming algorithms that can locate
each fingerprint in real time as it arrives without requiring to
store the entire set of previously observed fingerprints. We also
want to evaluate with more comprehensive experiments over
larger time and spatial scales.
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