
Query-Adaptive Online Partitioning of Associated
Data for Efficient Retrieval

Ting Zhang Duc A. Tran
Computer Science Department,

University of Massachusetts, Boston
Email: {ting.zhang001,duc.tran}@umb.edu

Abstract—Data partitioning is a crucial component of any

distributed storage system that wants to scale. For retrieval

efficiency, data frequently requested together in the same query

should be placed on the same server as much as possible.

Although intuitive, this is not easy to be implemented if con-

strained by load balancing; computationally, it is an NP hard

problem. Existing research has offered approximate solutions

optimized for a given workload of queries, in which the order

as to when each query is received is not considered. This paper

initiates a new study on online partitioning algorithms that are

sequentially optimized for a query sequence. In the new problem,

the queries arrive in a stream manner, unknown, and given the

option to revise the partition after each query, the objective is to

minimize the total query processing cost and data migration cost.

We formulate this problem formally, investigate several online

heuristics, and evaluate them using simulation.

I. INTRODUCTION

We consider a distributed storage system where the data
items need to be partitioned across a number of servers. For
optimal server performance, a rule of thumb is to preserve
data locality; that is, those data items that are often retrieved
for the same query should be placed on the same server. This
rule helps avoid the Multiget Hole problem, a well-known
phenomenon originally experienced in Facebook’s network of
memcached servers [1].

The conventional approach to preserving data locality is
to store “similar” data on the same server. Here, “similar”
refers to some attribute space, such as similar content, similar
location, similar time, and same ownership. However, it is
difficult to quantify data similarity effectively. If the data
partition is optimized to preserve similarity defined on certain
data attributes, this is unfair to queries looking for similar
data in other attribute spaces. On the other hand, the quality
of similarity will degrade if we include all the data attributes
to define similarity. This is not to mention the existence of
time-varying attributes, e.g., location data of mobile users,
that result in expensive frequent updating of the similarity
scores (two users are geographically close now, hence their
data collocated on the same server, but they may be far away
from one another soon).

This paper presents a study on data partitioning without any
presumption about similarity. To preserve locality, “associated-
ness” among the data items is based merely on their co-
appearance in the same query. Associated data can be data
that belong to the same social community in an online social

network, data that are near a given location in location-based
services, or data that are about the items frequently purchased
together in e-commerce transactions. In general, this study
can support both similarity (range/knn) and non-similarity
(skyline/itemset) queries.

Research on associated data placement in distributed servers
started gaining traction only recently. For example, Curino et
al. [2] and Yu and Pan [3] consider this problem assuming
known request patterns (how often certain items are requested
in the same query). In contrast, we initiate a novel study
without this assumption. Furthermore, while earlier research
attempts to optimize for a “batch” workload of queries re-
gardless of the order they are issued, ours is focused on
“sequential” optimization: place the data items on the servers
adaptively such that it is most efficient for evaluating the
next query. A partitioning solution optimal for a batch of
queries may not offer the best sequential costs incurred when
processing the queries sequentially in a certain order. Vice
versa, a partitioning solution optimal in these sequential costs
for a given order may not be optimal in the batch cost.

We call the proposed problem “Query-Adaptive Online
Partitioning”. Taking as input a stream of queries, each of
which can be an arbitrary itemset, we want to devise an
efficient online partitioning scheme that determines a balanced
partition most beneficial for each next query in the sequence.
This decision has to be made on the fly, irrevocably, unknown
of future queries, yet aiming to minimize the total sequential
costs which consist of the number of servers read and number
of items migrated during the entire process.

The contributions made in this paper are as follows. First,
the proposed problem is a novel problem, for which we are
aware of no earlier research. Unfortunately, it has no optimal
solution due to its online nature. There is simply no way
to compute a partition that is optimal for the next queries
since we do not know what group of data items will be
requested next. Even in the offline setup where the entire query
sequence is known in advance the problem is already NP-hard.
Second, we show that the proposed problem can fit partially
into some existing frameworks but there are fundamental
challenges that are not even explored in the literature of these
frameworks. Third, we present and compare several heuristic
online algorithms to assess the benefit of item migration during
the query sequence in order to reduce the read cost. We are
interested in the following questions:

• Since the future queries are unknown and so is any data
association pattern, is there really a benefit of revising
the current partition in hopes of better serving future
queries? Should we keep the same partition as it is at
the beginning? (At least this incurs zero moving cost.)

• If it is worth revising the current partition upon each
query, which items should be migrated and whereto
among the existing servers? Should the moved items be
among those items requested in the current query or can
they be arbitrary?

• Do the answers to the above questions apply to different
query sequences? Should we disregard any heuristic that
is consistently ineffective or is there one that always
works better than the others?

The remainder of the paper is structured as follows. Related
work is discussed in Section II. The problem’s formulation
and its correspondence to two well-known frameworks are
presented in Section III. Approximate online algorithms are
proposed in detail in Section IV. The results of our evaluation
study using real-world datasets are analyzed in Section V. The
paper concludes in Section VI with pointers to our future work.

II. RELATED WORK

On top of a distributed infrastructure of commodity servers,
the common practice for partitioning is based on hashing, e.g.,
range-based hashing used in Twitter’s Gizzard [4] or consistent
hashing in Facebook’s Cassandra [5] and Amazon’s Dynamo
[6]. Hashing is random and blind to the desired locality of
associated data. As such, the system may suffer from an
overwhelming CPU bottleneck on the server side that cannot
be resolved just by adding more servers; this is known as the
Multiget Hole problem [1]. It has been shown that we can
avoid this problem by keeping all of the relevant data of each
query local to the same server [7].

Hence arose a series of works aimed to preserve local-
ity in the data partition. SCHISM [2] is a workload-driven
partitioning scheme for transactional databases that partitions
the data based on transaction patterns such as how often two
data items are retrieved together. Partitioning schemes such as
SPAR [7], S-PUT [8], and DAROS [9] are aimed to preserve
social locality in the data storage of online social networks, so
that the data of two socially connected users are located on the
same server. Locality preservation that takes into account both
social and geographic properties is considered in COSPLAY
[10]. For non-social data, as an example, that of a large RDF
(Resource Description Framework) graph, subgraph search can
be made efficient if the graph is distributed across a number
storage nodes, e.g., pages on a disk [11] or compute servers
in a cluster [12], such that cross-reference between different
storage nodes is minimized.

The underlying approach in these works is to preserve local-
ity based on a preset similarity measure and, consequently, the
data partitioning problem can be seen as a graph partitioning
problem: model the set of data items as a similarity graph
G where each item is a vertex and a weighted edge exists
between two vertices to reflect their similarity, and apply a

graph partitioning technique to partition G into balanced min-
cut clusters, each assigned to a unique server.

Recently, as in [3], hypergraph has been adopted to model
data associated-ness, thus allowing associated data to involve
any arbitrary number of items, not just two as in earlier
works. A hypergraph partitioner [13], [14] can then be used
to assign the data to their corresponding servers. In [15],
a re-partitioning hypergraph model is introduced for cases
where the hypergraph needs to be re-partitioned over the time
to adapt to workload changes. Although incorporating both
read cost and migration cost in each partition adjustment,
this model is not truly “online” and “query-adaptive”. Each
repartitioning requires a wait window long enough to form a
quality hypergraph to represent the query workload during this
epoch. In contrast, we focus on minimizing the sequential cost
- the immediate cost - to process each query, not a window of
queries. Thus, the arrival order of the queries matters.

Our problem can be seen as a constrained version of online
hypergraph partitioning where the set of vertices is known but
the hyperedges (representing queries) are inserted in a stream
manner. Partitioning algorithms exist for streaming standard
graphs [16] and streaming hypergraphs [17]. In contrast, ours
is the first not only to process a stream of hyperedges as input,
but also to cope with constraints (w.r.t cost to change each
partition) that make the problem even more challenging.

III. PROBLEM FORMULATION

Suppose that we have N data items, O = [N] that need to
be distributed among M servers, S = [M]; here, [z] denotes
the set {1, 2, ..., z}. Each item is placed on a server according
to an initial partition. Over the time, queries are submitted to
the system one by one, each asking for an itemset (a subset of
items). Due to changing query workload, the initial partition
may no longer be efficient. After each query is processed,
we can keep the same partition, or revise it in hopes of
reducing the future read costs. On the other hand, this should
be done without having to move too many items from one
server to another. Consequently, we propose the following data
partitioning problem.

Definition 1 (Query-Adaptive Online Partitioning). Denote
the query sequence (unknown in advance) by q1q2...qT , where
q
t

⇢ [N] is the query at time t to retrieve a subset of items
from the servers; for example, query {3, 5, 10} is for retrieving
items 3, 5, and 10 from their respective servers. Start with
a given initial partition at time t = 0, f0 : [N] ! [M],
assigning each item i to some server j = f0(i). At each
subsequent time t � 1 once query q

t

is received, knowing
only queries received thus far, q1q2...qt, we need to compute
a new partition, f

t

: [N] ! [M], to assign each item i to
some server j = f

t

(i).
Let r(t) =

���
S

i2qt
{f

t�1(i)}
��� be the read cost (num-

ber of different servers to read) of query q
t

and m(t) =P
N

i=1 [ft(i) 6= f
t�1(i)] the move cost (number of items mi-

grated to a different server due to the adjustment) to obtain
partition f

t

from partition f
t�1; notation [.] is the Iverson

bracket. Over the entire query sequence, the objective is to
minimize the total sequential read cost and the total sequential
move cost while keeping the partition balanced:

min

{ft}T
t=1

8
>>>>><

>>>>>:

⇤ =

TX

t=1

������

[

i2qt

{f
t�1(i)}

������
| {z }

r(t)

9
>>>>>=

>>>>>;

(1)

min

{ft}T
t=1

8
>>>><

>>>>:

� =

TX

t=1

NX

i=1

[f
t

(i) 6= f
t�1(i)]

| {z }
m(t)

9
>>>>=

>>>>;

(2)

s. t.
NX

i=1

[f
t

(i) = j]  C 8j 2 [M], t 2 [T]. (3)

Here, C is the maximum storage capacity allowed for each
server. We assume that the set of data items and the set of
servers do not change during the query sequence.

It is easy to see that Objective (1) and Objective (2) cannot
concurrently be achieved. The move cost is minimum (zero)
if the initial partition is never changed during the entire query
sequence. The read cost of the initial partition, however, is
not optimal. We show below how this problem can be cast
as extended versions of the Online Hypergraph Partitioning
problem and the Metrical Task Systems problem.

A. Correspondence to Hypergraph Partitioning
Consider a simplified case where we know the entire query

sequence in advance and stick with the initial partition f0 for
the entire query sequence (f

t

= f0 8t); hence, no migration
allowed (� = 0). The total read cost (see Eq. (1)) becomes:

⇤0 =

TX

t=1

������

[

i2qt

{f0(i)}
������
. (4)

We will show that the best f0 minimizing ⇤0 is one that is a
solution to a min-cut hypergraph partitioning problem.

A hypergraph is a generalized graph where an edge, called
a hyperedge, can consist of any arbitrary non-empty subset
of vertices, not necessarily a pair of vertices as in standard
graphs. Our hypergraph to be partitioned is G = (V,E) where
V = [N] represents the set of items and E = {q1, q2, ..., qT }
represents the set of queries. In other words, each item is
a vertex and each query is an hyperedge consisting of all
the items of this query. Given a partition, a hyperedge of
connectivity k (i.e., spanning k parts) is said to be cut if k � 2

and the weight of this cut is (k � 1). A min-cut partition is
one that minimizes the total cut weight.

Consider a partition f : [N] ! [M]. Using this partition,
each query q

t

requires reading
���
S

i2qt
{f(i)}

��� servers and, ac-

cordingly, the cut weight of hyperedge q
t

is (
���
S

i2qt
{f(i)}

����
1). Therefore, minimizing the total read cost is equivalent

to minimizing the total cut weight in the hypergraph. To
find a partition f0 that is balanced with minimal total read
cost is equivalent to finding a balanced min-cut partition for
hypergraph G. The latter problem in general is known to be
NP-hard [18], but effective heuristic algorithms have been
developed; e.g., hMetis [13] and PaToH [14]. We can use one
such algorithm to obtain f0.

Now, consider the original scenario where queries arrive
sequentially, unknown in advance, and migration is allowed
so that we can adapt the partition upon receipt of each query.
The corresponding hypergraph G is therefore a streaming
hypergraph where the set of vertices is known but the set of
hyperedges not; instead, the hyperedges are inserted to the
hypergraph one at a time. Not only that we need to compute
an online balanced min-cut partitioner for this streaming
hypergraph, but also this partitioner should incur the least
move cost. In the literature of online hypergraph partitioning,
this problem is not yet explored.

B. Correspondence to Metrical Task Systems

As an online problem seeking an optimal solution for
sequential input, our proposed problem can be viewed in the
framework of metrical task systems (MTS). An MTS is a
multi-state system for processing sequential tasks, in which
the cost to process a task depends on the state of the system
and the system can change its state anytime subject to a
transition cost metric. The MTS problem, introduced in [19],
is to compute an efficient schedule = 1 2... T

for a task
sequence � = �1�2...�T , where

t

is the system state in
which �

t

will be processed, such that the total processing and
transition cost is minimized,

min {C
transition

() + C
processing

(,�)} ,
where C

transition

() =

P
T

i=1 costtransition(t�1, t

) and
C

processing

(,�) =
P

T

i=1 costprocessing(t

,�
t

). Here, 0 is
the initial state (given).

An online scheduling algorithm must compute
t

knowing
only �1�2...�t�1. In competitive analysis, an online algorithm
is said to be k-competitive iff, given any task sequence input,
its cost is at most k times that of an optimal offline algorithm
(plus a constant depending only on k). It is known [19] for any
MTS with n states that a deterministic online algorithm can
be constructed with (2n-1) competitive ratio, which is optimal
among all deterministic algorithms.

Our partitioning problem can be cast into a MTS. We
combine Objective (1) and Objective (2) into a single objective
(↵⇤+(1�↵)�), where weight ↵ 2 [0, 1] indicates the priority
between read cost versus move cost. Then, the MTS to be
optimized is as follows:

• States: The set of states is the set of all partitions f :

[N] ! [M] that satisfy Ineq. (3). The initial state is 0 =

f0 (the initial partition in our problem).
• State transition cost: Cost function cost

transition

(f, f 0
)

is defined to be (1 � ↵) times the move cost to change
from partition f to partition f 0.

• Task processing cost: Task �
t

at time t is the query
q
t

. Cost function cost
processing

(f, q
t

) is defined to be
↵ times the read cost for query q

t

using partition f .
By solving this MTS, we can derive an optimally-competitive
online algorithm for our partitioning problem. Unfortunately,
the number of states is roughly n ⇡ N !

(N/M)!MM !
(number of

partitions when the capacity C is precisely N/M), too large to
be computationally practical. In the literature of metrical task
systems, we are aware of no research aimed to substantially
downsize the state set to obtain a more efficient algorithm that
remains as competitive.

IV. APPROXIMATE ALGORITHMS

As discussed in the previous section, the proposed online
partitioning problem poses fresh challenges. To investigate this
problem, our focus is on approximate greedy algorithms. The
greedy heuristic applies when each query arrives and we need
to decide where to move which data items. In practice, if two
items are included together in a query, it is more likely than
not that they will be requested together again. Also, the 80/20
rule suggests that the total set of requested items should be a
small portion of the total data set. As we do not know which
items will be requested in the future, we conjecture that if
some items are to be moved in hopes of reducing read cost
for future queries, the best candidates should be the items
that are just requested in the current query. Consequently, we
investigate several greedy algorithms that either are based on
the above intuition or borrow ideas from greedy algorithms
for standard streaming graphs.

A. Greedy Heuristics
We define the following quantities:
• Association Score at(i, j): the total number of times item

i and item j have been co-requested up to time t (after
receipt of q

t

). This count is incremented each time these
two items appear in a new query.

• Demand Score bt(i, s): the sum of association scores of
item i with the items hosted in server s at time t (after
receipt of q

t

), representing how much demand server s
has for item i. Hence, it is always true that bt(i, s) =P

j:ft�1(j)=s

at(i, j).
Four heuristics are considered in our study:
• All-To-Same-Least-Move (ALL-LM): After receipt of

query q
t

, move all the requested items to the same server
with the least move cost. This server is the one hosting
the most among the requested items:

s⇤ = arg max

s2[M]
|q

t

\ {i 2 [N] : f
t�1(i) = s}|

• All-To-Same-Highest-Demand (ALL-HD): After receipt
of query q

t

, move all the requested items to the same
server with the highest demand total for the requested
items. This server is the below:

s⇤ = arg max

s2[M]

0

@
X

i2qt

bt(i, s)

1

A

• Individual-Highest-Demand (IND-HD): After receipt of
query q

t

, move each individual requested item i to the
server having the highest demand for i:

s⇤ = arg max

s2[M]
bt(i, s)

• Individual-Most-Associated (IND-MA): After receipt of
query q

t

, move each individual requested item i to the
server hosting i’s most associated item:

j⇤ = arg max

j2[N]
at(i, j); s⇤ = f

t�1(j
⇤
)

The last two heuristics borrow the ideas from partitioning of
standard streaming graphs where we try to put each vertex in
the same part with the most neighbors (IND-HD) or with the
nearest neighbor (IND-MA).

When applying the above heuristics, to satisfy the balancing
constraint (Constraint (3)) at any time, candidate servers can
only be among those that will not exceed the capacity after
the migration.

B. Implementation Efficiency
In terms of computation, the above heuristic algorithms can

be implemented in an efficient manner. The association and
demand scores are incrementally updated over the time after
each query q

t

is received. This is done as follows in O(|q
t

|2)
time: (|.| denotes the cardinality)

8i, j 2 q
t

^ i 6= j :

at(i, j) = at�1
(i, j) + 1

bt(i, f
t�1(j)) = bt�1

(i, f
t�1(j)) + 1

With the above information already computed, to find the
desired server(s) takes no worse than O(|q

t

| ⇥ M) time for
all the heuristic algorithms.

V. EVALUATION

We evaluate the heuristic algorithms using four real-world
datasets, arXiv, github, retail, and actor-movie, obtained from
the dataset repositories at http://konect.uni-koblenz.de and
http://fimi.ua.ac.be/data. We transform these datasets into a
diverse set of “transaction” hypergraphs so that we can use
each vertex to represent a data item and each hyperedge
a query. A query sequence in our simulation is a random
permutation of the hyperedge set. Some statistics of these
datasets are summarized in Table I and Table II.

We compare ALL-LM, ALL-HD, IND-HD, and IND-MA
using the benchmark where the initial partition f0 is obtained
by a random partitioning of the items among the servers and
is used unchanged for the entire query sequence. This bench-
mark, referred to as RAND-NoMove hereafter, represents a
hash-based partition assignment that does not adapt to the
queries. We are interested in how ALL-LM, ALL-HD, IND-
HD, and IND-MA compare to each other and how much of an
improvement they each offer compared to RAND-NoMove.

The comparison is in terms of read cost and move cost. In
the plots discussed below (Figures 1, 2, 3, and 4), the x-axis
is the read cost as a percentage of the read cost incurred by

TABLE I
SUMMARY OF DATASETS USED IN EVALUATION

Dataset No. Items (N) Query Sequence Length (T) Min Query Size Max Query Size Avg. Query Size Notes
arXiv 16, 264 17,837 2 18 3 small N , N ⇠ T

Github 42,444 37,837 2 3675 9 medium N , N ⇠ T
Retail 16,407 85,146 2 76 10 small N , N << T

Actor-movie 382,218 118,476 2 294 12 large N , N >> T

TABLE II
NUMBER OF ITEMS FOR EACH RANGE OF REQUEST FREQUENCIES

Dataset Total % of Total for Each Request Frequency
1 2 3 4 5+

arXiv 16264 47.4% 17.3% 9.6% 5.8% 19.8%
Github 42444 45% 13% 7.1% 4.8% 30.2%
Retail 16407 13.4% 8.3% 6.4% 5.1% 66.8%

Actor-movie 382218 63.8% 12.2% 5.6% 3.4% 15%

the RAND-NoMove benchmark and the y-axis is the average
move cost as a percentage of the average query size in the
dataset. For each dataset, five permutations of the set of queries
are randomly generated to serve as five query sequences; the
results are averaged over these sequences.

Given the sizes of the datasets, two reasonable cases for
the number of servers are considered, M 2 {8, 16}. The max-
imum server capacity C is set to be a factor of M(

b+50
100)

log2M

times of the average capacity per server, where b 2 (0, 50) is
the tunable balance parameter; this formula is used in hMetis
[13]. We consider two cases: b = 1 and b = 2. With M = 8

servers and b = 1, we allow for capacity C to be 6% higher
than the average capacity per server (N/M); when b = 2, this
percentage is 12%. With M = 16, these figures are 8% and
16% for b = 1 and b = 2, respectively.

A. Results for the arXiv dataset (Figure 1)

For this dataset, the following is observed. First, the read
cost reduction of each online heuristic seems greater as more
servers are deployed (M is increased from 8 to 16) or the
balancing constraint is less strict (b is increased from 1 to 2).
Using an online heuristic, the read cost ranges from 76% to
83% of that of RAND-NoMove, while the average move cost
varies 30%-50% of the average query size.

Second, there is a clear performance gap: the better per-
forming heuristics are ALL-HD and IND-MA and the clearly
worse heuristics are IND-HD and ALL-LM. In all four config-
urations, the best heuristic is IND-MA which offers a read cost
that is about 77% of RAND-NoMove and a move cost only
30% of the average query size. Note that the average query
size is 3.1 items per query for this dataset, meaning that by
moving one item or so in each query time on average, IND-
MA offers a read cost that is 23% better than the benchmark.

B. Results for the Github dataset (Figure 2)

Like the previous case, we also observe in Github that the
read cost reduction of each online heuristic seems greater as
more servers are deployed or the balancing constraint is less
strict. Another similar observation is that ALL-HD and IND-
MA seem comparable to each other. However, the read cost
improvement in Github is not as high as that in the arXiv case;
it is 83.5% of the RAND-NoMove cost at best (when M = 16

and b = 2; see Figure 2(d)). The move cost is also higher; the
best move cost is more than 60% of the average query size
(9.3). Furthermore, while IND-MA is the best for arXiv, ALL-
LM is the best for the Github dataset. ALL-LM is the only
heuristic that is Pareto-optimal in all configurations. Not only
that, ALL-LM is clearly better than the other heuristics in three
out of four configurations.

Note that the Github dataset is larger than the arXiv dataset
in every category (number of items, number of queries, max-
imum query size, and average query size), but they share a
common property that the number of hyperedges is similar to
the number of vertices.

C. Results for the Retail dataset (Figure 3)

The benefit of applying online heuristics on the Retail
dataset is less significant compared to the previous two
datasets. At best, the read cost is 89% (of the RAND-NoMove
cost) and the move cost is 70% (of the average query size).
This could be because the transaction hypergraph is highly
dense, where the number of hyperedges is much higher than
that of vertices.

However, still, the performance gap is somewhat clear
between the heuristics. The best, that are Pareto-optimal in all
configurations, are ALL-LM (best move cost) and IND-MA
(best read cost). The worst is always IND-HD.

D. Results for the Actor-Movie dataset (Figure 4)

This dataset is the largest in terms of the number of items
and the number of queries. It represents a large hypergraph
that is highly sparse, in which the number of hyperedges is
much smaller than the number of vertices.

Interestingly, compared to the other datasets which are
smaller, the read cost improvement is found much more
substantial for this dataset (read cost as low as 62% of the
benchmark) while the move cost remains moderate (less than
60%). However, there is no clear overall winner. If minimizing
read cost is the priority, the best heuristic is ALL-HD. On the
other hand, if the move cost is of importance, the best heuristic

(a) 8 servers, max capacity 6% above average per server (b) 8 servers, max capacity 12% above average per server

(c) 16 servers, max capacity 8% above average per server (d) 16 servers, max capacity 16% above average per server

Fig. 1. Comparative results for the arXiv dataset

TABLE III
SUMMARY OF RESULTS: HERE, A HEURISTIC IS MARKED ‘X’ IF IT IS
“RECOMMENDED” FOR THE CORRESPONDING DATASET (PERFORMS

CONSISTENTLY BEST), AND ‘O’ IF “NOT RECOMMENDED” (CLEARLY
WORSE THAN MOST OTHER HEURISTICS)

Dataset arXiv Github Retail Actor-movie
Read Cost 76%-83% 83%-91% 89%-97% 62%-86%
Move Cost 30%-50% 60%-80% 70%-90% 40%-60%
ALL-LM x x
ALL-HD x
IND-HD o o o
IND-MA x x x

is IND-MA. We would not recommend ALL-LM because it
is always worse than IND-HD.

E. Summary of Results
Table III summarizes the read cost range, the move cost

range, and the recommended/not-recommended heuristic(s)
when applied on each dataset. The online heuristics are effec-
tive for arXiv and Actor-movie datasets, but not so for Github
and Retail. It seems that IND-MA (“stored where the nearest
neighbor is” heuristic) is a safe choice for the online heuristic
whereas IND-HD (“stored where the most neighbors are”
heuristic) is a risky choice. However, this suggestion is weak
due to the limited set of the datasets evaluated. A stronger
conclusion would be that if we can move some items, fewer
than the average query size, during the process of each query,
the presented online heuristics can be effective; it is shown in

our study always better than RAND-NoMove. Furthermore,
we should not disregard any of these heuristics because our
evaluation observes no consensus winner.

VI. CONCLUSIONS

This paper initiates a novel problem on online partitioning
that minimizes the sequential read and move costs of pro-
cessing a query sequence. Although the online decision must
be made optimal for the next query which has yet to arrive,
our study has shown consistently that there is a real benefit
by migrating items between the servers during the query
sequence. Four efficient online heuristic algorithms have been
presented, all offering better read cost than does the “move-
nothing” hash-based partitioning approach, while incurring
moderate move costs. Although we do not recommend any
specific heuristic as always best, and better heuristics may exist
beyond this paper, our study validates the worthiness of the
proposed partitioning problem and opens room for future re-
search. Specifically, our work will be extended in several ways:
(1) evaluate with more datasets at larger scale, (2) explore
online algorithms assuming some known probability pattern
about the query sequence, (3) incorporate other constraints
such as geo-location related constraints, and (4) albeit the most
challenging, provide a competitive analysis on the theoretical
bounds of online algorithms for this problem.

REFERENCES

[1] WWW, “Facebook’s memcached multiget hole: More machines != more
capacity,” Source: http://highscalability.com/blog/2009/10/26/facebooks-
memcached-multiget-hole-more-machines-more-capacit.html.

(a) 8 servers, max capacity 6% above average per server (b) 8 servers, max capacity 12% above average per server

(c) 16 servers, max capacity 8% above average per server (d) 16 servers, max capacity 16% above average per server

Fig. 2. Comparative results for the Github dataset

[2] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden, “Schism: a
workload-driven approach to database replication and partitioning,”
PVLDB, vol. 3, no. 1, pp. 48–57, 2010.

[3] B. Yu and J. Pan, “Location-aware associated data placement for geo-
distributed data-intensive applications,” in Computer Communications
(INFOCOM), 2015 IEEE Conference on, April 2015, pp. 603–611.

[4] N. Kallen, R. Pointer, E. Ceaser, and J. Kalucki, “Introducing gizzard, a
framework for creating distributed datastores,” Twitter Engineering Web-
site, April 2006, http://engineering.twitter.com/2010/04/ introducing-
gizzard-framework-for.html.

[5] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” SIGOPS Oper. Syst. Rev., vol. 44, pp. 35–40, April
2010.

[6] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” SIGOPS Oper. Syst. Rev.,
vol. 41, pp. 205–220, October 2007.

[7] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris, P. Chhabra,
and P. Rodriguez, “The little engine(s) that could: scaling online social
networks,” in Proceedings of the ACM SIGCOMM 2010 Conference.
New York, NY, USA: ACM, 2010, pp. 375–386.

[8] D. A. Tran and T. Zhang, “S-PUT: an EA-based
framework for socially aware data partitioning,” Computer
Networks, vol. 75, pp. 504–518, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.comnet.2014.08.026

[9] T. Duong-Ba, T. Nguyen, B. Bose, and D. Tran, “Distributed client-
server assignment for online social network applications,” Emerging
Topics in Computing, IEEE Transactions on, vol. 2, no. 4, pp. 422–
435, Dec 2014.

[10] L. Jiao, J. Li, T. Xu, and X. Fu, “Cost optimization for online social
networks on geo-distributed clouds,” in Proceedings of IEEE ICNP
(ICNP 2012), 2012, pp. 1–10.

[11] M. Broecheler, A. Pugliese, and V. Subrahmanian, “Dogma: A disk-
oriented graph matching algorithm for rdf databases,” in 8th Interna-
tional Semantic Web Conference (ISWC2009), October 2009.

[12] K. Lee and L. Liu, “Scaling queries over big rdf graphs
with semantic hash partitioning,” Proc. VLDB Endow., vol. 6,

no. 14, pp. 1894–1905, Sep. 2013. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2556549.2556571

[13] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,”
in Proceedings of the 36th Annual ACM/IEEE Design Automation
Conference, ser. DAC ’99. New York, NY, USA: ACM, 1999, pp. 343–
348. [Online]. Available: http://doi.acm.org/10.1145/309847.309954

[14] Ü. Çatalyürek and C. Aykanat, PaToH (Partitioning Tool for Hyper-
graphs). Boston, MA: Springer US, 2011, pp. 1479–1487.

[15] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdağ,
R. T. Heaphy, and L. A. Riesen, “A repartitioning hypergraph
model for dynamic load balancing,” J. Parallel Distrib. Comput.,
vol. 69, no. 8, pp. 711–724, Aug. 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.jpdc.2009.04.011

[16] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:
Streaming graph partitioning for massive scale graphs,” in Proceedings
of the 7th ACM International Conference on Web Search and Data
Mining, ser. WSDM ’14. New York, NY, USA: ACM, 2014, pp. 333–
342. [Online]. Available: http://doi.acm.org/10.1145/2556195.2556213

[17] D. Alistarh, J. Iglesias, and M. Vojnovic, “Streaming min-max
hypergraph partitioning,” in Advances in Neural Information Processing
Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 1900–
1908. [Online]. Available: http://papers.nips.cc/paper/5897-streaming-
min-max-hypergraph-partitioning.pdf

[18] L. Lyaudet, “Np-hard and linear variants of hyper-
graph partitioning,” Theoretical Computer Science, vol. 411,
no. 1, pp. 10 – 21, 2010. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397509006252

[19] A. Borodin, N. Linial, and M. E. Saks, “An optimal on-line algorithm
for metrical task system,” J. ACM, vol. 39, no. 4, pp. 745–763, Oct.
1992. [Online]. Available: http://doi.acm.org/10.1145/146585.146588

(a) 8 servers, max capacity 6% above average per server (b) 8 servers, max capacity 12% above average per server

(c) 16 servers, max capacity 8% above average per server (d) 16 servers, max capacity 16% above average per server

Fig. 3. Comparative results for the Retail dataset

(a) 8 servers, max capacity 6% above average per server (b) 8 servers, max capacity 12% above average per server

(c) 16 servers, max capacity 8% above average per server (d) 16 servers, max capacity 16% above average per server

Fig. 4. Comparative results for the Actor-Movie dataset

