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Abstract Many real-world complex networks exhibit a power-law degree distribu-
tion. A dominant concept traditionally believed to underlie the emer-
gence of this phenomenon is the mechanism of preferential attachment
which originally states that in a growing network a node with higher
degree is more likely to be connected by joining nodes. However, a line
of research towards a naturally comprehensible explanation for the for-
mation of power-law networks has argued that degree is not the only key
factor influencing the network growth. Instead, it is conjectured that
each node has a “fitness” representing its propensity to attract links.
The concept of fitness is more general than degree; the former may be
some factor that is not degree, or may be degree in combination with
other factors. This chapter presents a survey of representative models
for generating power-law networks, that belong to this approach.
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1. Introduction

The last decade has seen much interest in studying complex real-
world networks and attempting to find theoretical models that elucidate
their structure. Although empirical networks have been studied for some
time, a surge in activity is often seen as having started with Watts and
Strogatz’s paper on “small world networks” [Watts and Strogatz, 1998].
More recently, the major focus of research has moved from small-world
networks to “scale-free” networks, which are characterized by having
power-law degree distributions [Barabási and Albert, 1999]; that is, if
p(k) is the fraction of nodes in the network having degree k (i.e. having
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Table 1.1. Real-world networks: power-law exponent (λ)

Case λ

Mathematics coauthorship 2.2
Film actor collaborations 2.1-2.3

WWW 2.1
Internet backbone 2.15-2.2
Protein interactions 2 - 2.4

ER graph NA
BA graph 3

k connections to other nodes) then (for suitably large k)

p(k) = ck−λ (1.1)

where c = (λ − 1)mλ−1 is a normalization factor and m is the mini-
mal degree in the network. This distribution is observed in many real-
world networks, including the WWW [Albert et al., 1999], the Internet
[Faloutros et al., 1999], metabolic networks [Jeong et al., 2000], protein
networks [Jeong et al., 2001], co-authorship networks [Neuman, 2001],
and sexual contact networks [Liljeros et al., 2001]. In these networks,
there are a few nodes with high degree and many other nodes with small
degree, a property not found in standard Erdós-Rényi random graphs
[Erdós and Rényi, 1959].

The near ubiquity of heavy-tailed degree distributions such as the
power-law (1.1) for real-world complex networks, together with the in-
adequacy of the Erdós-Rényi random graphs as a theoretical model for
such networks, brings into sharp relief the fundamental problem of ob-
taining a satisfactory theoretical explanation for how heavy-tailed degree
distribution can naturally arise in complex networks.

A dominant concept traditionally believed to underlie the emergence
of the power-law phenomenon is the mechanism of preferential attach-
ment, proposed by Barabási and Albert [Barabási and Albert, 1999]:
the higher degree a node has, the more likely it is to be connected by
new nodes. This model, hereafter referred to as the BA model, leads to
a growing random network which simulations and analytic arguments
show has a power-law degree distribution with exponent λ = 3. Despite
its elegance and simplicity, a deficiency of this mechanism is due to its
fixed power-law exponent. As real-world networks exhibit a wide range
of exponents, typically between 2 and 3 (see Table 1.1 for examples), the
BA model may only explain a small subset of complex networks.

Consequently, other mechanisms have been proposed. Some, e.g.,
[Dangalchev, 2004], are merely formulaic without a natural interpreta-
tion. Others use different connectivity information, not merely degree,
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of each node to influence the formation of a network, such as the mecha-
nism in [Kumar et al., 2000] and extensions of the BA model in [Bianconi
and Barabsi, 2001; Bedogne and Rodgers, 2006; Kong et al., 2009]. Still,
a universally accepted explanation that works for not just one network
but also others remains to be found. For example, if we use the BA-
based models to explain the sexual contact network studied in [Liljeros
et al., 2001], which is known to be power-law, a new individual will
prefer to have sexual contact with those individuals who already have
a large number of sexual contacts, while the explanation according to
[Kumar et al., 2000] will infer that a new individual will have sexual
contact with some existing partners of a randomly chosen individual.
These explanations seem bizarre for human sexual behavior.

In searching for a more natural explanation for the formation of power-
law networks in the real world, there is a line of research, e.g., [Bian-
coni and Barabsi, 2001; Bedogne and Rodgers, 2006; Caldarelli et al.,
2002; Vito et al., 2004; Ghadge et al., 2010], that is founded based on the
conjecture that in many complex networks each node will have associated
to it a “fitness” representing the propensity of the node to attract links.
Using the fitness concept to explain the sexual contact network above,
we could say that it is the fitness of an individual that attracts other
individuals; an individual wants to have sexual contact with another in-
dividual because of the latter’s fitness, not the latter’s connectivity. The
fact that a node has a high number of contacts may just be a consequence
of its high fitness. The key challenge in the design of fitness-based mod-
els is how fitness is defined; for example, what is fitness? what is it made
of? what is its influence? Fitness may be just degree, or something not,
or a combination of many factors, explicit or implicit. In the following
sections, three representative fitness-based models are described, which
differ fundamentally in the approach to addressing these questions.

2. Fitness-based Model by [Bianconi and
Barabsi, 2001]

An early fitness-based model for constructing power-law networks was
proposed in [Bianconi and Barabsi, 2001]. This model assumes that the
evolution of a network is driven by two factors associated with each node,
its node degree and its fitness, which jointly determine the rate at which
new links are added to the node. While node degree represents an abil-
ity to attract links that is increasing over time, node fitness represents
something attractive about the node, that is constant. For example, in
the WWW network, there can be two webpages published at the same
time (thus, same degree) but later one might be much more popular
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than the other; this might be because of something intrinsic about one
page, for example, its content, that makes it more attractive than the
other page.

In the proposed model, each node i has a fitness Φi which is chosen ac-
cording to some distribution ρ(Φi). The network construction algorithm
generalizes the BA algorithm as follows:

Parameters

– n0: the size of the initial network which can be any graph

– m ≤ n0: the number of nodes a new node connects to when
it joins the network

– n: number of nodes in the final network

Procedure

1 Initially, start with the initial network of n0 nodes, each as-
signed a random fitness according to distribution ρ

2 Each time a new node is added,

– Assign a random fitness to the new node according to
distribution ρ

– Add m edges linking the new node to m distinct existing
nodes such that the probability Πi for connecting to an
existing node i is taken to be proportional to its fitness
Φi:

Πi =
kiΦi

∑

j kjΦj
(1.2)

3 Stop after the nth node is added

If every node has the same fitness, this model is identical to the orignal
BA model, resulting in power-law networks of exponent λ = 3. In the
case that fitness is chosen uniformly in the interval [0, 1], using the
continutum theory one can infer that p(k), the fraction of nodes in the
network having degree k, follows a generalized power-law, with an inverse
logarithmic correction.

p(k) ∝ k−2.255

ln k
(1.3)

This prediction of the continuum theory has been confirmed by nu-
merical simulations [Bianconi and Barabsi, 2001]. It is found that the
degree of a node i over time, ki(t), follows a power-law for all fitness,
and the scaling exponent for this power-law is Φi/1.255, thus being larger
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for nodes with larger fitness. This allows a node with a higher fitness to
enter the network late but still become more popular than nodes that
have stayed in the network for a much longer period. A limitation of
this model, however, is that it results in only power-law distributions
with fixed exponents. Next, we will present a model that can generate
a wider range of exponents.

3. Fitness-Based Model by [Ghadge et al., 2010]

In a citation network such as [Neuman, 2001] the different nodes (i.e.
papers) will have different propensities to attract links (i.e. citations).
The various factors that contribute to the likelihood of a paper being
cited could include the prominence of the author(s), the importance of
the journal in which it is published, the apparent scientific merit of the
work, the timeliness of the ideas contained in the paper, etc. Moreover,
it is plausible that the overall quantity that determines the propensity of
a paper to be cited depends essentially multiplicatively on such various
factors. The multiplicative nature is likely in this case since if one or
two of the factors happen to be very small then the overall likelihood of
a paper being cited is often also small, even when other factors are not
small; e.g., an unknown author and an obscure journal were enough to
bury a fundamentally important scientific paper.

The lognormal fitness attachment model (LNFA), proposed in [Ghadge
et al., 2010], was motivated by the observation above. In this model, the
fitness Φi representing the property of each node i to attract links is
formed multiplicatively from a number of factors {φ1, φ2, ..., φL} as
follows:

Φi =
L

∏

l=1

φl (1.4)

where each factor φl is represented as a real non-negative value. Since
there may be many factors contributing to the a node’s attractiveness,
explicit or implicit, we assume that the number of factors φi is reasonably
large and that they are statistically independent. The fitness Φi will
therefore be lognormally distributed, irrespective of the manner in which
the individual factors are distributed. Indeed, we have

ln Φi =
L

∑

l=1

ln φl (1.5)

and the Central Limit Theorem implies that this sum will converge to a
normal distribution. Therefore, ln Φi will be normally distributed. Since
a random variable X has a lognormal distribution if the random variable
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Figure 1.1. Lognormal fitness distribution for three representative values of σ. The
extreme cases are when σ is small (0.1) or large (9). In most cases, the distribution
will have the shape similar to the case σ = 1.5. Figure 1.1(c) is plotted in the log-log
scale to emphasize that all the nodes except a few have fitness zero (or extremely
close) while the rest (very few) have high fitness.

Y = ln X has a normal distribution, Φi will be lognormally distributed.
The density function of the normal distribution is

f(y) =
1√
2πσ

e−(y−µ)2/(2σ2), (1.6)

where µ is the mean and σ is the standard derivation (i.e. σ2 is the
variance). The range of the normal distribution is y ∈ (−∞,∞). It
follows from the logarithmic relation Y = ln X that the density function
of the lognormal distribution is given by

f(x) =
1√

2πσx
e−(ln x−µ)2/2σ2

. (1.7)

It is conventional to say that the lognormal distribution has parameters µ
and σ when the associated normal distribution has mean µ and standard
deviation σ. The range of the lognormal distribution is x ∈ (0,∞).

The lognormal distribution is skewed with mean eµ+σ2/2 and variance
(eσ2 − 1)e2µ+σ2

.
Thus, the basic hypothesis that each of the nodes has associated to it

a fitness of the form (1.4) entails that under quite general conditions this
fitness will be lognormally distributed. In the LNFA model, without loss
of generality, one can assume that µ = 0; hence, the fitness distribution is
characterized by only a single parameter σ. This lognormal distribution

has mean eσ2/2 and variance (eσ2 − 1)eσ2

; examples are shown in Figure
1.1.

The network construction algorithm works as follows:

Parameters
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– σ: parameter for the lognormal fitness distribution

– n0: the size of the initial network which can be any graph

– m ≤ n0: the number of nodes a new node connects to when
it joins the network

– n: number of nodes in the final network

Procedure

1 Initially, start with the initial network of n0 nodes, each as-
signed a random fitness according to the lognormal distribu-
tion

2 Each time a new node is added,

– Assign a random fitness to the new node according to the
lognormal distribution

– Add m edges linking the new node to m distinct existing
nodes such that the probability Πi for connecting to an
existing node i is taken to be proportional to its fitness
Φi:

Πi =
Φi

∑

j Φj
(1.8)

3 Stop after the nth node is added

LNFA is almost identical to the BA model, the difference being that
fitness information is used in place of degree information. Although this
difference seems to be minor, it makes a fundamental shift in how the
network is formed. To make this point, recall that in the BA protocol,
the degree of a new node at the time it joins the network is small (m)
and so it takes this node a long time before it may become a preferential
choice for future new nodes to attach to. In LNFA, the new node may
have a large fitness at the time it joins the network, making itself a
preferential choice immediately. This is naturally reasonable because
the attractiveness of a node may not result from how many nodes it is
connected to; it may instead result from the “inner self” factors such as
the personality of a person in a friendship network and his or her age.

As demonstrated in Figure 1.2, LNFA can be used to generate a large
spectrum of networks as seen in the real world and it is possible to do so
by varying the parameter σ. Consider two extreme cases of this param-
eter. In the first case, if σ is zero, nodes have exact same fitnesses and
so, basing on Formula 1.8, each time a new node joins the network it
chooses an existing node as neighbor with equal chance. This construc-
tion is simply the random graph model of [Callaway et al., 2001] which
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(a) σ = 0.01: exponen-
tial

(b) σ = 1.5: power-law (c) σ = 1.6: power-law

(d) σ = 3.0: power-law (e) σ = 4.0: power-law (f) σ = 9: winner-take-
all

Figure 1.2. 2000-node networks resulting from increasing σ. Transitions from expo-
nential to power-law to winner-take-all graphs are observed

yields a network with exponential degree distribution. On the other ex-
treme, if σ is increased to reach a certain threshold, few nodes will stand
out having very large fitnesses while all the other nodes will have very
low fitnesses (zero or near zero; see Figure 1.1(c)). Consequently, an ex-
tremely high number of connections will be made to just a single node,
resulting in a monopolistic network; this “winner-take-all” degree pat-
tern is also observed in the real world [Barabási, 2001]. Between these
two extreme cases (exponential and monopolistic) we find a spectrum of
scale-free networks.

4. Fitness-based Model by [Caldarelli et al.,
2002]

It is argued in that in many cases of interest, the power-law degree
behavior is neither related to dynamical properties nor to preferential
attachment. Also, the concept of having the likelihood that a new node
creates a link to an existing node depend solely on the latter’s fitness
might be applicable only for certain networks. The model proposed
in [Caldarelli et al., 2002] is suited for complex networks where it is the
mutual benefit that makes two nodes link to each other. This model puts
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the emphasis on fitness itself without using the preferential attachment
rule. Further, it is a static model building a network by growing links
instead of growing nodes.

Specifically, the network construction algorithm starts with a set of n
isolated nodes, where n is the size of the network to be built. Similar to
the models discussed in the previous sections, each node i has a fitness
Φi drawn from some distribution ρ. Then, for every pair of nodes, i
and j, a link is drawn with a probability f(Φi,Φj) which is some joint
function of Φi and Φj. This model can be considered a generalization
of the Erdós-Rényi (ER) random graph model [Erdós and Rényi, 1959].
Rather than using an identical link probability for every pair of nodes as
in the ER model, here two nodes are linked with a likelihood depending
jointly on their fitnesses. A general expression for p(k) can be easily
derived. Indeed, the mean degree of a node of fitness η is

k(Φ) = n

∫

∞

0
f(Φ, x)ρ(x) dx = nF (Φ) (1.9)

Assuming F to be a monotonous function, and for large enough n,
the following form can be obtained for p(k):

p(k) = ρ

[

F−1
(

k

n

)]

d

dk
F−1

(

k

n

)

(1.10)

Thus, one can choose an appropriate formula for ρ and f to achieve
a given distribution for p(k). It is shown that a power law for p(k) will
emerge if fitness follows a power law and the linking probability for two
nodes is proportional to the product of their fitnesses. For example, one
can choose f(Φi,Φj) = (ΦiΦj)/Φ

2
M , where ΦM is the maximal fitness in

the network, and ρ(Φ) ∝ Φ−β (corresponding to a Zipf’s behavior with
Zipf coefficient α = 1/(β − 1)).

In the case that fitness does not follow a power law distribution, it
is possible to find a linking function that will result in a power-law
degree distribution. For example, considering an exponential fitness dis-
tribution, ρ(Φ) ∝ e−Φ (representing a Poisson distribution), one can
choose f(Φi,Φj) = θ[Φi +Φj −z(n)], where θ is the usual Heaviside step
function and z(n) is some threshold, meaning that two nodes are neigh-
bors only if the sum of their fitness values is larger than the threshold
z(n). Using these rules, the degree distribution has a power law with
exponent λ = 2. This is interesting because it shows that power-law
networks can emerge even if fitness is not power-law. The same behav-
ior also emerges if a more generic form of the linking function is used,
f(Φi,Φj) = θ[Φc

i + Φc
j − zc(n)] (where c is an integer number); however,

the power-law degree distribution has logarithmic corrections in some
cases.
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Closely related to the above model is the work of [Vito et al., 2004]
which also assumes the same concept that the linking probability is a
joint function of the fitnesses of the end nodes. In this related work, it
is concluded that for any given fitness distribution ρ(Φ) there exists a
function g(Φ) such that the network generated by ρ(Φ) and f(Φi,Φj) =
g(Φi)g(Φj) is power-law with an arbitrary real exponent.

5. Summary

This chapter has reviewed representative models for constructing power-
law complex networks, that are inspired by the idea that there is some
intrinsic fitness associated with a node to drive its evolution in the net-
work. This fitness might be causal to why a node has a high degree or
a low degree, or it can be an independent factor which together with
the node’s degree affect the node’s ability to compete for links. The
models discussed differ in how they interpret fitness and its influence on
growing the network. [Bianconi and Barabsi, 2001] argues for its model
that both degree and fitness jointly determine the growth rate of node
degree. This model may apply to complex networks such as a social
network where a person’s attractiveness is a combination of both his or
her experience (represented by node degree) and talent (represented by
fitness), or the WWW network where a webpage is popular because its
long time staying online (represented by node degree) and quality of its
content (represented by fitness). On the other hand, [Caldarelli et al.,
2002; Vito et al., 2004; Ghadge et al., 2010] propose that all the attrac-
tiveness factors associated with a node can be combined into a single
factor (fitness). While the models in [Caldarelli et al., 2002; Vito et al.,
2004] are motivated by static networks where two nodes require mutual
benefit in order to make a connection, the lognormal fitness model in
[Ghadge et al., 2010] is suitable to explain growing networks in which
a node wants to be a neighbor of another solely because of the latter’s
fitness, regardless of the former’s fitness. Although none of the these
models is one-size-fits-all, they do represent a vast population of com-
plex networks. The current models, however, assume that fitness is an
intrinsic factor that does not change over time. In practice, there are
cases of networks where the overall attractiveness of a node might in-
crease for one period of time and decrease for another. It is thus an
interesting research problem to explore fitness models that allow fitness
to have its own evolution. The future research should also pay great at-
tention to (in)validating theoretical models with the data collected from
real-world networks.
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