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Abstract – As P2P is a popular networking paradigm in today’s Internet, many research 
and development efforts are geared toward services that can be useful to the users of P2P 
networks. An important class of such services is that based on the publish/subscribe 
paradigm to allow the nodes of a network to publish data and subscribe data interests 
efficiently. This chapter is focused on the techniques that enable these services in P2P 
networks. 
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INTRODUCTION 
 
A publish/subscribe networking system is one in which the nodes can serve the role of a 
publisher or a subscriber to publish data or subscribe for data of interest, respectively. 
The publish/subscribe model differs from other request/response models in that a query 
of the former model is submitted and stored in advance, for which the result may not yet 
exist but the query subscriber expects to be notified if and when the result later becomes 
available. The publish/subscribe model is thus suitable for search applications where 
queries await future information, as opposed to the traditional applications where the 
information to be searched must pre-exist. 
 
Enabling publish/subscribe services in peer-to-peer (P2P) networks is a topic that has 
received a lot of attention in recent years. As P2P can be adopted for distributed 
networking as an effective way to share resources, minimize server costs, and promote 
boundary-crossing collaborations, a publish/subscribe functionality should be useful to 
these networks. For example, a monitoring operator in a P2P-based geographical 
observation network [Teranishi et al. (2008)] will be able to subscribe a query to receive 
alerts of fire occurrences so that necessary rescue efforts can be dispatched quickly; or, in 
a P2P-based scientific information sharing network [Shalaby & Zinky (2007)], a 
subscriber will be notified when new scientific information is published. 
 
Usually, a publisher node does not know who is interested in its data, and, vice versa, a 
subscriber node does not know where in the network its data of interest is available. 
Thus, a challenging problem is to design mechanisms for the subscribers and publishers 
to find each other quickly and efficiently. A simple way is to broadcast each query to all 
the nodes in the network or to employ a centralized index of all the queries subscribed 
and information published. This mechanism is neither efficient nor scalable if applied to a 
large-scale network.  
 
Consequently, a variety of distributed publish/subscribe mechanisms have been proposed. 
They follow two main approaches: gossip-based and structure-based. The first approach 
is designed for any unstructured networks, in which the subscriber nodes and publisher 



nodes find each other via exchanges of information using the existing peer links, typically 
based on some form of randomization. The other approach organizes the nodes into some 
overlay structure and develops publish/subscribe methods on top of it. Examples of such 
an overlay are those based on Distributed Hash Tables (e.g., CAN [Ratnasamy et al. 
(2001)], Chord [Stoica et al. (2001)]). The gossip-based approach’s advantage is its 
applicability to any unstructured network, while the structure-based approach is favored 
for better efficiency. 
 
This chapter provides a survey on the publish/subscribe techniques for P2P networks. 
First, we will provide some necessary preliminaries. We then discuss several 
representative techniques in each of the following categories: structure-based, gossip-
based, and a hybrid of these two. We conclude the chapter with some remarks. 
 
PRELIMINARIES 
 
Peer-to-Peer Networks 
 
A P2P network is a decentralized network of equivalent-role nodes. A node can serve in 
either a “server” role or a “client” role, or both, depending on circumstances. Unlike 
traditional client/server networks, P2P networks have no limit for growth and no single 
point of failure. The capability to share resources and the freedom to join and leave the 
network at any time are among the properties that make P2P networks very popular on 
the Internet today.  
 
There are two main types of P2P networks: structured and unstructured. In unstructured 
P2P networks, e.g., [Gnutella] and [Freenet], the links between nodes are formed in an ad 
hoc manner without any predefined structure. Unstructured P2P networks are easy to 
maintain under network dynamics. They are fully decentralized with a high degree of 
fairness. However, they are not efficient in search operations. Search in a unstructured 
network usually requires broadcasting of the query, thus incurring a high communication 
cost. 
 
Structured P2P networks are designed for better search operations. In such a network, the 
nodes are arranged in an overlay structure which provides efficient routing and lookup 
mechanisms. Distributed Hash Tables (DHT) is the most popular structure for structured 
P2P networks (e.g., CAN [Ratnasamy et al. (2001)], Chord [Stoica et al. (2001)], Pastry 
[Rowstron & Druschel (2001)], and Tapestry [Zhao et al. (2004)]). As CAN is used later 
in this chapter, let us describe briefly how it works. In CAN (abbr. of “Content 
Addressable Networks”), the network is viewed virtually as a multi-dimensional 
geometric space, called the CAN space, in which each node is assigned a location. The 
CAN space is partitioned into rectangular zones and the node location assignments are 
determined such that there is only one node in each zone. An overlay neighbor link is 
created between two nodes if their zones are adjacent. The control overhead for each 
node is therefore small because a node only needs to keep track of its neighbors and the 
number of these neighbors is at most twice the CAN space dimensionality which is a 
constant.  



 
Data storage and retrieval in CAN work as follows. Each data object is hashed into a 
location in the CAN space and its index is stored at the node whose zone contains this 
hash location. When a query for an object is initiated, the hash location of the object is 
computed and the query is sent to the node owning this location and thus can find the 
object there. Routing to a location in the CAN space is based on geometry-based greedy 
routing via the overlay neighbor links: in each forwarding step, the message is always 
forwarded to a neighbor node that is closer to the destination node, geometrically. The 
distance between two nodes, which defines “close-ness”, is computed using their 
corresponding CAN locations. 
 
Figure 1 provides an illustration of indexing and retrieval in a two-dimensional CAN 
network. Here, the CAN space is a square [0, 1] x [0, 1]. Each node (1�9) owns a zone, 
which is a rectangle. Node 1 has a file associated with key K. The pointer (K, 1) 
(meaning that node 1 has a file with key K) is stored in the node whose zone contains 
h(K) - the hashing location of K, which is node 4. Once a node 3 request a file with key 
K, it needs to route the query to location h(K) and thus will reach node 4, where every 
file with key K will be found. Routing from node 3 to node 4 is by relaying via neighbor 
nodes, greedily getting as close geometrically to the destination as possible. 
 
 

 
 

Fig. 1. Indexing and retrieval in CAN. 
 

 
Figure 2 illustrates the construction and routing procedures of CAN. Suppose that node 
10 want to join the CAN network. This node chooses a random location, which, we 
suppose, currently resides in the zone of node 9. Node 10 then contacts node 9 and asks 
for a share of the latter' zone. Node 9 halves its zone into two smaller zones, retaining one 
and giving the other to node 10.  



 
Routing in CAN is even simpler. Suppose that node 1 is looking for some data, whose 
hashing location is in the zone of 7. Node 1 chooses among its neighbors the one node 
that is geometrically closest to 7 to forward the message; in this case, node 2. Node 2 
then repeats the same procedure. Eventually, the routing path from node 1 to node 7 is 
1�2�3�6�7. 
 

 
 

Fig. 2. CAN constructing and routing 
 
The advantage of structured P2P networks is their scalability and lookup efficiency. 
However, they incur the cost of constructing and maintaining the overlay structure, most 
of which are due to node departures, arrivals, or failures. 
 
Publish/Subscribe Services 
 
Event and Query Representation 
 
An event in a publish/subscribe system is usually specified as a set of d attribute-value 
pairs {(attr1, v1), (attr2, v2), ..., (attrd, vd)} where d is the number of attributes, {attr1, 
attr2, ..., attrd}, associated with the event. For example, consider a P2P network to 
monitor fire in a large region. Each peer records temperature, humidity, wind speed, and 
air pressure in its area over time, thus d is four – representing these four data attributes: 
attr1 = ‘temperature’, attr2= ‘humidity’, attr3 = ‘wind speed’, and attr4 = ‘air pressure’. 
In generic expression, the constraints in a query can be specified in a predicate of 
disjunctive normal form – a disjunction of one or more condition clauses, each clause 
being a conjunction of elementary predicates. Each elementary predicate, denoted by 
(attri ?  pi), is a condition on some attribute attri with ‘?’  being the filtering operator. As 
used in the literature of publish/subscribe techniques, a filtering operator can be a 
comparison operator (one of {=, <, >}) or a string operator such as “prefix of”, “ suffix of”, 
and “substring of” if the attribute is of string type. Thus, to be notified of all locations 
with temperature above 100oF, humidity below 20%, and wind speed above 50 mph, no 
mater what air pressure, the query can be expressed as (‘temperature’ > 100) AND 
(‘humidity’ < 20) AND (‘wind speed’ > 50). An event x satisfies a query q, denoted by x 



∈ q, if and only if x satisfies all the elementary predicates specified in at least one 
condition clause of q.  
 
The publish/subscribe scheme above allows a flexible way to specify a query as a 
disjunction of any number of conjunctive clauses and the filtering operator ‘?’  can be any 
of the aforementioned, including the string operators. However, for simplicity of 
implementation, most schemes assume that a query is a single conjunctive clause of 
elementary predicates that can only use the comparison operators {=, <, >}. This form of 
query can thereffore be called the rectangular form because if an event is modeled as a 
point in a d-dimensional coordinate system, each dimension representing an attribute, a 
query can be considered a d-dimensional box with the vertices defined based on the 
attribute constraint values provided in the query clause. 
 
It is sometimes a tedious process to specify the lower and upper bounds for all the 
attributes of a query. In such cases, it is more convenient to provide an event sample as 
the query and request to be notified of all the events similar to this sample. For example, 
consider a camera remote surveillance network deployed over many airports to detect 
criminal suspects. If a particular suspect is searched for, his or her picture is submitted as 
a subscription to the network in hopes of finding the locations where similar images are 
captured. A query of this kind can be represented by a sphere, in which the sample is the 
center of the sphere and similarity is constrained by the sphere’s radius. This query is said 
to have the spherical form. 
 
Subject-based vs. Content-based 
 
There are two main types of publish/subscribe designs: subject-based or content-based. In 
the subject-based design, events are categorized into a small number of known subjects. 
There must be an event attribute called ‘subject’, or something alike, that represents the 
type of the event and a query must include a predicate (‘subject’ = s) to search only 
events belonging to some known subject s. The occurrence of any event of subject s will 
trigger a notification to the query subscriber. The subscription and notification protocols 
are mainly driven by subject match rather than actual-content match.  
 
The content-based design offers a finer filtering inside the network and a richer way to 
express queries. A subscriber wants to receive only the events that match its query 
content, not all the events that belong to a certain subject (which could result in too many 
events). For example, many Bostonians are only interested in the Celtics and do not want 
to be bothered by any event published regarding the Lakers. A query with subject “NBA” 
would result in receiving all US professional basketball events including those about the 
Celtics and the Lakers. A content-based query is therefore more desirable. A node upon 
receipt of a query or event message needs to extract the content and makes a forwarding 
decision based on this content. We can think of the subject-based model as a special case 
of the content-based model and because of this simplification a subject-based system is 
less challenging to design than a content-based system is. 
 
STRUCTURE-BASED PUBLISH/SUBSCRIBE TECHNIQUES 



 
A popular approach among structure-based publish/subscribe techniques is to employ a 
Distributed Hash Table (DHT) to build an overlay structure on top of the P2P network. 
This overlay provides efficient methods to route queries and events to their corresponding 
nodes that are determined based on the hashing function. The goal is that the node storing 
a subscription and that receiving a satisfactory event are either identical or within a 
proximity of each other. Scribe [Castro et al. (2002)] uses Pastry [Rowstron & Druschel 
(2001)] to map a subscription to a node based on topic hashing, thus those subscriptions 
and data objects with the same topic are mapped to the same node. Instead of Pastry, the 
CAN [Ratnasamy et al. (2001)] and Chord [Stoica et al. (2001)] DHT structures are 
employed in [Gupta et al. (2004)] and [Terpstra et al. (2003)], respectively. A technique 
that can be used atop any such DHT structure was proposed in [Aekaterinidis & 
Triantafillou (2005)]. Non-DHT techniques also exist, such as Sub-2-Sub [Voulgaris et 
al. (2006)] and R-tree-based [Bianchi et al. (2007)]. 
 
To illustrate the structure-based approach, we discuss how publish/subscribe services can 
be deployed in a P2P network structured using the CAN overlay [Ratnasamy et al. 
(2001)] discussed earlier in this chapter. Although CAN is an efficient overlay for 
traditional retrieval in P2P networks, deploying a publish/subscribe service on top of 
CAN is not as straightforward. From the database perspective, because we typically 
model a data object as a point and a query as a range of points, we need to address the 
range indexing problem in publish/subscribe systems. From the networking perspective, 
due to its range, a subscription query may be replicated at multiple nodes to wait for 
notification of all possible matching data objects. Hence, the number of subscriptions 
stored in the network can be large, resulting in not only high communication cost to 
replicate the subscriptions, but also high storage cost for each node and long time to 
match an object against a subscription query. We need to minimize unnecessary 
replications, yet at the same time store the queries in the network intelligently so that data 
notification remains efficient. 
 
Because of the low dimensionality of the CAN space, another challenge to a CAN-based 
publish/subscribe system is due to the mismatch between the CAN dimension and the 
data dimension. Data can, and usually, be of high dimension, such as in applications 
searching documents, multimedia, and sensor data, which normally are associated with 
many attributes. It is difficult to hash similar high-dimension data objects into zones in a 
low-dimension space which are close to each other, making the search for a continuous 
range of data highly inefficient. 
 
Meghdoot [Gupta et al. (2004)] is a CAN-based publish/subscribe technique that works 
for multi-dimensional data space. In Meghdoot, each subscription query in d dimensions 
is mapped a point in 2d dimensions and the P2P network is virtualized in a CAN space of 
2d dimensions. In the case that d is large, the CAN dimension is large, making CAN very 
inefficient.  In addition, Meghdoot does not allow publish/subscribe applications with 
different data dimensions to run on the same CAN network.  
 



Next, we describe a technique [Tran & Nguyen (2008)] using Random Projection (RP) to 
map queries and events to appropriate rendezvous nodes in the network.  This technique 
can deploy a publish/subscribe application of any data dimensionality on any existing 
CAN network.  
 
RP Based Publish/Subscribe 
 
Suppose that the data (event) space D is d-dimensional, and CAN space is k-dimensional. 
The idea of RP is to project a d-dimensional data object in the original data space onto 
the CAN space to get a new data object in k dimensions such that the distance between 
two data objects after the projection remains within a small constant factor of the original 
distance. 
 
Let {u1,…,uk} be k random vectors, each being a d-dimensional orthonormal vector. 
Consider a subscription query Q = (s,r), which is a sphere centered at point s ∈ D with 
radius r, asking for all events that are within a distance r from the sample event s. 
Projecting this sphere on the k random vectors, we obtain a k-dimensional hyper-
rectangle  u(Q) = u1(s, r) × u2(s, r) × ... × uk(s, r), where each edge ui(s, r) is the interval 
[<s, ui> - r, <s, ui> + r]  (here, <.,.>  denotes the inner product of two vectors). The 
center of this rectangle is the point centeru(Q) = (<s, u1> , <s, u2>, …, <s, uk>). 
 
A strategy for query subscription is to store the query q in the nodes Vi whose CAN-zone, 

denoted by zone(Vi),  intersects Q’s CAN-projection (i.e., zone(Vi) ∩ u(Q) ≠ ∅). This 
strategy can be implemented as follows:  
 

1) Use CAN routing to send Q to the node VQ such that zone(VQ) contains 
centeru(Q).  

2) Each node V that receives Q forwards this query to each neighbor node V’ such 

that zone(V’) ∩ u (Q) ≠ ∅; node V’ follows the same procedure as V does.  
 
When an event x becomes available, using CAN routing, we advertise x to the node Vx 
such that zone(Vx) contains the point u(x) =  (<x, u1> , <x, u2>, …, <x, uk>). It is obvious 
that if x satisfies a query Q, then u(x) must be a point inside rectangle u(Q). 
Consequently, zone(Vx) must intersect u(Q) and the query Q must have been stored at 
node Vx. Thus, given an event x and subscription query Q, that match each other, they are 
guaranteed to always find each other at some rendezvous node. 
 
The above strategy allows for quick and cost-effective event notification because each 
event is advertised to only one node. However, there might incur a large amount of 
subscription replicas in the network. Since subscription queries are likely to overlap, we 
should take advantage of this property to minimize their replication in the network. 
Observe that if query Q’ covers query Q, it must be true that u(Q’) covers u(Q). 
Therefore, if a new query Q is covered by an existing query Q’, the nodes that the new 
query is mapped to must have already stored the existing query. Because those events 
that satisfy Q' will be returned to notify Q’ anyway, which can be filtered to match Q, 
there is no need to replicate query Q further. Based on this observation, a more efficient 



strategy is proposed in [Tran & Nguyen (2008)], which differs from the aforementioned 
strategy in that a query Q is not replicated at a node if this node has stored an existing 
query Q’ such that u(Q’) contains u(Q). The query subscription for a query Q works in 
detail as follows: 
 

1) Use CAN routing to send Q to the node VQ such that zone(VQ) contains 
centeru(Q). 

2) If there does not exist a query Q’ currently stored at node VQ such that u(Q’) 
covers u(Q): 

a) Node VQ will store Q and is called the home node of Q, denoted by 
home(Q).  

b) Forward Q to adjacent nodes whose zone intersects Q. Such a node V’ 
performs the following steps: 

i. Store Q at V’ 
ii.  For each existing query Q’ stored at V’ such that u(Q) covers 

u(Q’), remove query Q’ from node V’  
iii.  Forward Q to adjacent nodes whose zone intersects Q as in step b) 

3) If node VQ stores a query Q’ satisfying the condition of 2), query Q will be routed 
to and stored at node home(Q’).  

 
To illustrate this revised strategy, we consider the following scenario. In Figure 4, queries 
q1, q2, q3 are submitted into the network at times in that order. Query q1 is submitted first, 
which intersects the zones of nodes 7, 13, 11, 9, 10, 8, and 2. Therefore, q1 is stored at 
these nodes and the home node of q1 is node 7 (because the projection center centeru(q1) 
lies in the zone of node 7). When q2 is submitted, it is sent to node 10 whose zone 
contains the projection center of q2. Because node 10 already stores query q1 and u(q1) 
covers u(q2), query q2 will be stored at the home node of query q1, i.e., node 7 only; 
hence, a significant reduction in subscription load. When query q3 is submitted, because 
its projection is not covered by any other’s, it is stored at nodes 2 and 3 because their 
zones intersect u(q3), node 2 serving as the home node of query q3. 
 



 
 

Fig. 4. Query subscription and event notification. 
 
When an event x becomes available, the notification procedure works as follows:  
 

1) Use CAN routing to advertise x to the node Vx such as u(x) ∈  zone(Vx) 
2) For each query Q stored at node Vx such that u(x) ∈ u(Q), forward x to node 

home(Q) – the home node of Q. At each home node V that receives x, search for 
and notify all the queries that match x and that call V home. 

 
For example, continuing the previous illustration with Figure 6, suppose that an event x 
satisfying query q2 is available such that u(x) lies in the zone of node 11. An 
advertisement will be sent to node 11, where it is found that u(x) ∈ u(q1). Consequently, 
the advertisement of x is routed to the home node 7 of query q1, where we will find query 
q2. 
 
GOSSIP-BASED PUBLISH/SUBSCRIBE TECHNIQUES 
 
Structure-based techniques are capable to grow the network and adaptable to network 
dynamics, but they incur an additional cost to maintain the overlay. In addition, some of 
these techniques require different overlays for different publish/subscribe applications. 
The gossip-based approach [Terpstra et al. (2007)], [Wong & Guha (2008)], [Gkantsidis 
et al. (2006)] can work with any unstructured networks and thus does not have these 
limitations. 
 
The word “gossip” gives the intuition of its use in publish/subscribe techniques: 
subscriber nodes and publisher nodes find each other by gossiping with their respective 
neighbors. An example is to use random walks. A query follows a random walk in the 
network and is replicated at each node visited. Another random walk is used to publish an 



event. If these two random walks are long enough, they have a good chance to intersect. 
As such, there is a high probability that an event will reach every query and thus find all 
the matching queries. The tradeoff, however, is due to the high cost (communication, 
storage) to disseminate each query or event. The main question, therefore, is how to 
design a gossiping mechanism that offers the best balance between efficiency and 
effectiveness. BubbleStorm [Terpstra et al. (2007)] is a recent technique aimed to address 
this challenge. 
 
BubbleStorm 
 
BubbleStorm replicates each query in a given number of nodes within a number of hops 
from the source. This set of nodes called a query bubble. Similarly, an event is also 
replicated in an event bubble. These bubbles need to be large enough to share at least a 
rendezvous node where the query and event can find each other.  
 
To reach a given bubble size, nodes chosen to disseminate a query (or event) should be 
independent and the bubbles should be formed without cycles. For this purpose, a random 
multi-graph is proposed, in which self-loops and double-edges are allowed and a node’s 
degree is proportional to its bandwidth. Figure 5(a) illustrates a random multi-graph of 7 
nodes. The degree of node 1 is 3, of node 7 is 4, etc. 
 

 
 

Fig. 5. Random multi-graph example 
 
When a new node joins the network, it firstly contacts the bootstrap node and then uses a 
random walk to find a proper edge. The chosen edge will be split and the node is inserted 
between the vertices connecting this edge. Suppose that node 8 contacts its bootstrap 
node, which is node 3, and eventually found an edge between node 5 and 6. The creation 
of new links is illustrated in Figure 5(b). If a node leaves, its neighbors need to adjust 
their connections to maintain degrees. For example, in Figure 5(c), node 2 departs from 
the network and as a result new links (2-3, 7-7) are created to maintain the degrees of 
nodes 2, 3, and 7. 
 
The communication primitive used by BubbleStorm to replicate queries and events in the 
bubbles is called BubbleCast. BubbleCast defines a split factor f which controls how 
many neighbor nodes should receive a forwarded query or event. Suppose that a query, 
starting at a node V needs to be replicated at nq nodes. Node V will store a replica of the 
query and forwards the query to f neighbor nodes, chosen randomly. Each such a 



neighbor node is responsible for (nq – 1)/f remaining replicas of the query; the same 
replication procedure as at node V is applied. The dissemination of an event is similar.  
 
Figure 6 provides an example of how BubbleCast works. In this example, suppose the 
number of replicas for a query is 17, and the split factor is 2. Each time, the number of 
replicas is reduced by 1 and then divided by split factor 2. From the initial subscriber, the 
number of remaining replicas is 17-1 = 16, divided by split factor of 2. Each new 
forwarder will continue with 8 as the number of replicas, including itself. The process 
continues until the number of replicas becomes 1. So the procedure will end up with 
totally 17 replicas as the desired size of the bubble. This process is the hybrid of random 
walks and flooding. 
 

 
 

Fig. 6. How BubbleCast works. 
 

Choosing a desirable bubble size is a key factor of BubbleStorm. It is proposed that if a 
query is replicated at nq = O(sqrt(n)) nodes and an event is disseminated to c2n/nq nodes, 
the probability that the query and the event can find each other at an intersection of their 
bubbles is 1-exp(c2) , where c is the certainty factor (e.g., c = 3 � probability = 99.99%). 
 
HYBRID PUBLISH/SUBSCRIBE TECHNIQUES 
 
The gossip-based approach offers more flexibility than the structure-based approach 
because the former requires no overlay structure in advance and allows queries and 
events to be expressed in any format. On the other hand, as queries and events are spread 
randomly in the network, there is no guarantee that they will meet each other. To make 
any gossip-based system effective, we need to publicize the queries and events widely in 
the network, leading to the trade-off between efficiency and effectiveness. In addition to 
that, the guarantee that every query meets every event is unnecessarily strong. Indeed, we 
only need to guarantee that ever query meets every matching event.  
 
In this section, we introduce Pub-2-Sub [Tran & Pham (2010)], a technique combining 
the strengths of both structure-based and gossip-based approaches. Pub-2-Sub can be 
considered a hybrid approach that can work in any unstructured P2P network, yet having 
the efficiency of structure-based techniques. It allows any number of independent 
publish/subscribe applications to run simultaneously on the same underlying P2P 
network. Because Pub-2-Sub is based on directed routing, it has the potential to be more 



efficient than the gossip-based approach. Pub-2-Sub results in lower storage and 
communication costs in comparison to BubbleStorm. In terms of computation cost, Pub-
2-Sub requires only a node in the network that needs to evaluate its local queries to find 
those matching a given published event. The technique also incurs small notification 
delay and is robust under network failures. 
 
Pub-2-Sub 
 
Pub-2-Sub is based on two key design components: the virtualization component and the 
indexing component. The virtualization component assigns to each node a unique virtual 
address. The indexing component determines the corresponding subscription and 
notification paths for given queries and events, in which routing is based on the virtual 
addresses of the nodes. 
 
Virtualization 
 
A virtualization procedure can be initiated by any node to result in a “virtual address 
instance” (VA-instance), where each node is assigned a virtual address (VA) being a 
binary string chosen from {0, 1}*. Suppose that the initiating node is S*. In the 
corresponding VA-instance, denoted by INSTANCE(S*), we denote the VA of each node 
Si by VA(Si : S*). To start the virtualization, node S* assigns itself VA(S*: S*) = ∅ and 
sends a message inviting its neighbor nodes to join INSTANCE(S*). A neighbor Si 
ignores this invitation if already part of the instance. Otherwise, by joining, Si is called a 
“child” of S* and receives from S* a VA that is the shortest string of the form VA(S*: S*) 
+ ‘0*1’  unused by any other child node of S*. Once assigned a VA, node Si forwards the 
invitation to its neighbor nodes and the same VA assignment procedure continues 
repeatedly. In general, the rule to compute the VA for a node Sj that accepts an invitation 
from a node Si is that VA(Sj : S*) is always the shortest string of the form VA(Si : S*) + 
‘0*1’  unused by any other child node currently of Si. 
 
Eventually, every node is assigned a VA and the VAs altogether form a prefix-tree rooted 
at node S*. We call this tree a VA-tree and denote it by TREE(S*). For example, Figure 7 
shows the VA-tree with VAs assigned to the nodes as a result of the virtualization 
procedure initiated by node 1. The nodes’ labels (1, 2, ..., 24) represent the order they join 
the VA-tree. Each time a node joins, its VA is assigned by its parent according to the VA 
assignment rule above. Thus, node 2 is the first child of node 1 and given VA(2 : 1) = 
VA(1 : 1) + ‘1’ = ‘1’ , node 3 is the next child and given VA(3 : 1) = VA(1 : 1) + ‘01’ = 
‘01’ , and node 4 last and given VA(4 : 1) = VA(1 : 1) + ‘001’ = ‘001’. Other nodes are 
assigned VAs similarly. For example, consider node 18 which is the third child of node 8 
(VA ‘011’). The VA of node 18 is the shortest binary string that is unused by any other 
child node of node 8 and of the form VA(8 : 1) + ‘0*1’. The other children 16 and 17 
already occupy ‘0111’ and ‘01101’, therefore the VA of node 18 will be ‘011001’. 
 

 
 



 
 

Fig. 7. Pub-2-Sub: Virtualization and Indexing 
 
In INSTANCE(S*), each node Si is associated with a “zone”, denoted by ZONE(Si : S*), 
consisting of all the binary strings str such that: (i) VA(Si : S*) is a prefix of str, and (ii) 
no child of Si has VA a prefix of str. In other words, among all the nodes in the network, 
node Si is the one whose VA is the maximal prefix of str. We call Si the “designated 
node” of str and use NODE(str : S*) to denote this node. For example, using the virtual 
instance TREE(1) in Figure 7, the zone of node 11 (VA ‘00101’) is the set of binary 
strings ‘00101’, ‘001010’, and all the strings of the form ‘0010100...’, for which node 11 
is the designated node. 
 
Indexing 
 
Pub-2-Sub supports publish/subscribe applications that can have any data dimensionality 
and allows any number of them to run on the network simultaneously, whose dimension 
can be different from one another. For ease of presentation, we assume for now that 
events are one-dimensional. 
 
In Pub-2-Sub, an event x is expressed as a k-bit binary string (the parameter k should be 
chosen to be larger than the longest VA length in the network). A query Q is represented 
as an interval Q = [ql, qh] , where ql, qh ∈ {0, 1}k, subscribing to all events x belonging to 
this interval (events are “ordered” lexicographically). As an example, if k = 3, the events 
matching a query [‘001’, ‘101’]  are {‘001’, ‘010’, ‘011’,‘100’, ‘101’, 111’} . Supposing 
that every node has been assigned a VA as a result of a virtualization procedure initiated 
by a node S*, we propose that (i) each query Q is stored at every node Si such that 
ZONE(Si : S*) ∩  Q  ≠ ∅; and (ii) each event x is sent to NODE(x : S*) – the designated 
node of string x. It is guaranteed that if x satisfies Q then Q can always be found at node 
NODE(x : S*) (because this node’s zone must intersect Q). The routing of queries and 
events to their destination nodes is facilitated by the VA structure based on the matching 
between the node VAs and query/event content. 
 



Figure 7 shows an example with k = 7. Suppose that node 12 wants to subscribe a query 
Q = [‘0110001’, ‘0110101’], thus looking to be notified upon any of the following 
events {‘0110001’, ‘0110010’, ‘0110011’, ‘0110100’, ‘0110101’}. Therefore, this query 
will be stored at nodes {8, 17, 18}, whose zone intersects with Q. For example, node 8’s 
zone intersects Q because they both contain ‘0110001’. The path to disseminate this 
query is 12�5�2�1�3�8�{17, 18} (represented by the solid arrow lines in Figure 
11). Now, suppose that node 22 wants to publish an event x = <‘0110010’>. Firstly, this 
event will be routed upstream to node 8 – the first node that is a prefix with ‘0110010’ 
(path 22�16 �8). Afterwards, it is routed downstream to the designated node 
NODE(‘0110010’:1), which is node 18 (path 8�18). Node 18 searches its local queries 
to find the matching queries. Because query Q = [‘0110001’, ‘0110101’] is stored at 
node 18, this query will also be found. The storage and communication costs for a 
query’s subscription depend on its range; the wider the range, the larger costs.  
 
Multiple VA Instances 
 
Because query subscription and event notification procedures are based on the VA-tree, 
the root node and those nearby become potential hotspots. To alleviate this bottleneck 
problem, a solution is to build, not one, but multiple VA instances. We can build m VA-
instances initiated by dedicated nodes randomly placed in the network {S1*, S2*,…, Sm*} . 
After m virtualization procedures, each node Si will have m VAs, VA (Si : S1*), VA(Si : 
S2* ), ..., and VA(Si : Sm*) , respectively corresponding to the m VA-instances. 
 
In the presence of multiple VA-instances, each query is subscribed to a random VA-
instance and each event is published to every VA-instance. A node near the root of a VA-
tree may likely be deep in other VA-trees and so the workload and traffic are better 
shared among the nodes. Using multiple VA-instances also increases reliability. Because 
an event is notified to every VA-tree, the likelihood of its finding the matching queries 
should remain high even if a path this event is traveling is disconnected because of some 
failure. 
 
Multi-Dimensionality 
 
In the description of Pub-2-Sub we have expressed an event as an one-dimensional k-bit 
binary string and a query as an one-dimensional interval. In practice, however, an event 
can have multiple attributes and as such it is usually represented as a numeric value in d 
dimensions where d is the number of attributes. To specify a subscription, a query is 
often specified as a d-dimensional rectangular range of values. Pub-2-Sub can work with 
events and queries of this general form.  
 
First, we need a hash mechanism f that hashes a d-dimensional value x to an one-
dimensional k-bit binary string xf = f(x) and a d-dimensional range Q to an one-
dimensional interval Qf = f(Q) of k-bit strings such that if x ∈ Q then xf ∈ Qf. For this 
purpose, we propose to use a (k/2)-order Hilbert Curve mapping [Lawder & King 
(2000)]. This mapping preserves not only the containment relationship but also the 



locality property. Thus, small Q in the original space is mapped to small Qf in the one-
dimensional space with a high probability.  
 
Then, to subscribe a query Q we use the hash interval Qf. Similarly, to publish an event x 
we route it to the designated node of xf. When the event x reaches this node, locally stored 
queries are evaluated to find those matching x; the query evaluation with the event is 
based on the original values of the query and event (Q and x), not the hash values (Qf and 
xf). 
 
CONCLUSIONS 
 
The publish/subscribe paradigm represents a large class of applications in P2P networks. 
Despite many existing techniques to implement this paradigm in P2P networks, there 
remains much room for future research. For a large-scale P2P network where broadcast-
based and gossip-based approaches may not be the best fit, the routing design should be 
driven by the content of the message being routed so as to limit the scope of propagation. 
On the other hand, content-based routing if enabled by a structured overlay might incur 
considerable costs to maintain the structure. Since P2P networks may be of different 
types (small vs. large, unstructured vs. structured, static vs. dynamic) and the application 
to deploy may also have its own characteristic (low vs. high query rate, low vs. high 
event rate, subject-based vs. content-based, etc.), it is difficult to choose a 
publish/subscribe design that works well in every practical case. Thus, rather than trying 
to find a “perfect” design universally, it would be better to categorize the networks and 
applications into similarity-based groups and design the “best” technique for each group. 
For example, for P2P-based cooperative networks in which the nodes are supposed to be 
functional most of the time and failures should not happen too often, a technique like 
Pub-2-Sub presented in this chapter is a good design candidate. Data grid networks and 
institutional collaborative networks can take full advantage of this technique. 
 
It is also important to develop a publish/subscribe middleware package that provides a set 
of common services to most publish/subscribe network/applications no matter their 
categories, and another set of services each customized toward a specific category. This 
middleware should provide convenient tools for the middleware designer to add new 
service components to the existing architecture, such as a new language for query and 
event description and a new implementation for routing, data aggregation, or an event 
matching algorithm. It should also give the application developer freedom and a 
convenient API to choose the publish/subscribe service configuration that is best for the 
context of the deployment. Middleware development for publish/subscribe applications in 
P2P networks remains ad hoc and isolated. It should be given high priority in the future 
research towards publish/subscribe services in P2P networks. 
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