PUBLISH/SUBSCRIBE TECHNIQUES FOR P2P NETWORKS

Cuong Pham, University of Massachusetts, Boston,(dA25, USA
Duc A. Tran, University of Massachusetts, Bostod, 82125, USA

Abstract — As P2P is a popular networking paradigm in tésléiyternet, many research
and development efforts are geared toward serti@ascan be useful to the users of P2P
networks. An important class of such services & thased on the publish/subscribe
paradigm to allow the nodes of a network to publisita and subscribe data interests
efficiently. This chapter is focused on the tecluei) that enable these services in P2P
networks.

Keywords — Publish/subscribe, P2P, search, content-basedrs@HT
INTRODUCTION

A publish/subscribe networking system is one inchhthe nodes can serve the role of a
publisher or a subscriber to publish data or suibsdior data of interest, respectively.
The publish/subscribe model differs from other esjlresponse models in that a query
of the former model is submitted and stored in adeafor which the result may not yet
exist but the query subscriber expects to be edtifi and when the result later becomes
available. The publish/subscribe model is thusablst for search applications where
gueries await future information, as opposed to tthditional applications where the
information to be searched must pre-exist.

Enabling publish/subscribe services in peer-to-g@@P) networks is a topic that has
received a lot of attention in recent years. As R2R be adopted for distributed
networking as an effective way to share resoungesimize server costs, and promote
boundary-crossing collaborations, a publish/subscfunctionality should be useful to
these networks. For example, a monitoring operatora P2P-based geographical
observation network [Teranishi et al. (2008)] vii#é able to subscribe a query to receive
alerts of fire occurrences so that necessary resifors can be dispatched quickly; or, in
a P2P-based scientific information sharing netw@8halaby & Zinky (2007)], a
subscriber will be notified when new scientificanfation is published.

Usually, a publisher node does not know who isregied in its data, and, vice versa, a
subscriber node does not know where in the netvtsrklata of interest is available.

Thus, a challenging problem is to design mechaniemthe subscribers and publishers
to find each other quickly and efficiently. A sineplvay is to broadcast each query to all
the nodes in the network or to employ a centralinel®x of all the queries subscribed
and information published. This mechanism is neidffcient nor scalable if applied to a

large-scale network.

Consequently, a variety of distributed publish/suitie mechanisms have been proposed.
They follow two main approaches: gossip-based andttsire-based. The first approach
is designed for any unstructured networks, in whlad subscriber nodes and publisher

nodes find each other via exchanges of informaiging the existing peer links, typically
based on some form of randomization. The otheragmbr organizes the nodes into some
overlay structure and develops publish/subscribthaaks on top of it. Examples of such
an overlay are those based on Distributed Hashe$af@d.g., CAN [Ratnasamy et al.
(2001)], Chord [Stoica et al. (2001)]). The gossgsed approach’s advantage is its
applicability to any unstructured network, whileetbtructure-based approach is favored
for better efficiency.

This chapter provides a survey on the publish/sillsdechniques for P2P networks.
First, we will provide some necessary preliminariade then discuss several
representative techniques in each of the followtategories: structure-based, gossip-
based, and a hybrid of these two. We concludehapter with some remarks.

PRELIMINARIES
Peer -to-Peer Networks

A P2P network is a decentralized network of eg@ntalole nodes. A node can serve in
either a “server” role or a “client” role, or botdepending on circumstances. Unlike
traditional client/server networks, P2P networksehao limit for growth and no single
point of failure. The capability to share resourees the freedom to join and leave the
network at any time are among the properties thaitenP2P networks very popular on
the Internet today.

There are two main types of P2P networks: strudtared unstructured. In unstructured
P2P networks, e.g., [Gnutella] and [Freenet], thiesl between nodes are formed in an ad
hoc manner without any predefined structure. Ustined P2P networks are easy to
maintain under network dynamics. They are fully eféralized with a high degree of

fairness. However, they are not efficient in seavplerations. Search in a unstructured
network usually requires broadcasting of the qurys incurring a high communication

cost.

Structured P2P networks are designed for betteéclsegerations. In such a network, the
nodes are arranged in an overlay structure whiokiges efficient routing and lookup
mechanisms. Distributed Hash Tables (DHT) is thestnpopular structure for structured
P2P networks (e.g., CAN [Ratnasamy et al. (2000hjprd [Stoica et al. (2001)], Pastry
[Rowstron & Druschel (2001)], and Tapestry [Zha@et(2004)]). As CAN is used later
in this chapter, let us describe briefly how it w&r In CAN (abbr. of “Content
Addressable Networks”), the network is viewed \afty as a multi-dimensional
geometric space, called the CAN space, in whicth eade is assigned a location. The
CAN space is partitioned into rectangular zones tiednode location assignments are
determined such that there is only one node in eade. An overlay neighbor link is
created between two nodes if their zones are aaja@ée control overhead for each
node is therefore small because a node only neekiseip track of its neighbors and the
number of these neighbors is at most twice the Gfibce dimensionality which is a
constant.

Data storage and retrieval in CAN work as folloksch data object is hashed into a
location in the CAN space and its index is storetha node whose zone contains this
hash location. When a query for an object is itetla the hash location of the object is
computed and the query is sent to the node owrigglocation and thus can find the
object there. Routing to a location in the CAN spachbased on geometry-based greedy
routing via the overlay neighbor links: in eachwarding step, the message is always
forwarded to a neighbor node that is closer todéstination node, geometrically. The
distance between two nodes, which defines “clossheis computed using their
corresponding CAN locations.

Figure 1 provides an illustration of indexing aretrieval in a two-dimensional CAN
network. Here, the CAN space is a square [0, 1],X]. Each node 9) owns a zone,
which is a rectangle. Node 1 has a file associateéd key K. The pointer (K, 1)
(meaning that node 1 has a file with key K) is atbm the node whose zone contains
h(K) - the hashing location of K, which is hode@nce a node 3 request a file with key
K, it needs to route the query to location h(K) dhds will reach node 4, where every
file with key K will be found. Routing from nodet8 node 4 is by relaying via neighbor
nodes, greedily getting as close geometrically&odestination as possible.

1 (K. 1) will be

@ stored at node
Node 1 has a file 4 because h(K)

keyed K belongs to this
WK)=(0.9,0.6) zZone

‘@

Node 3 needs a file
keyed K
It computes hiK) =

(0.9, 0.6) 3'E
ICL'}nm}ltnctannde - (> (7)

0 0.5 075 0875 1

1® | @

Fig. 1. Indexing and retrieval in CAN.

Figure 2 illustrates the construction and routimgcpdures of CAN. Suppose that node
10 want to join the CAN network. This node choosesandom location, which, we
suppose, currently resides in the zone of nodec®@eNLO then contacts node 9 and asks
for a share of the latter' zone. Node 9 halvesatg into two smaller zones, retaining one
and giving the other to node 10.

Routing in CAN is even simpler. Suppose that nods tboking for some data, whose
hashing location is in the zone of 7. Node 1 cheasaong its neighbors the one node
that is geometrically closest to 7 to forward thessage; in this case, node 2. Node 2
then repeats the same procedure. Eventually, tiengopath from node 1 to node 7 is
1>2>3>6->7.

Fig. 2. CAN constructing and routing

The advantage of structured P2P networks is thetability and lookup efficiency.
However, they incur the cost of constructing andntaéning the overlay structure, most
of which are due to node departures, arrivalsaibures.

Publish/Subscribe Services

Event and Query Representation

An event in a publish/subscribe system is usuglcgied as a set af attribute-value
pairs {(@ttr;, v), (attr,, w), ..., @ttrg, vy)} where d is the number of attributesaigr,
attrp, ..., attg}, associated with the event. For example, cons@ldP2P network to
monitor fire in a large region. Each peer recomtagerature, humidity, wind speed, and
air pressure in its area over time, tlius four — representing these four data attributes:
attr; = ‘temperature’, attp= ‘humidity’, attrs = ‘wind speed’, and atty= ‘air pressure’.

In generic expression, the constraints in a queny be specified in a predicate of
disjunctive normal form — a disjunction of one oom& condition clauses, each clause
being a conjunction of elementary predicates. Egleimentary predicate, denoted by
(attr; ? p), is a condition on some attribuaétr; with ‘?’ being the filtering operator. As
used in the literature of publish/subscribe techeg] a filtering operator can be a
comparison operator (one of {=, <, >}) or a strioygerator such agtefix of, “ suffix of,
and ‘substring df if the attribute is ofstring type. Thus, to be notified of all locations
with temperature above 189 humidity below 20%, and wind speed above 50 nmgh,
mater what air pressure, the query can be expressetemperature’> 100) AND
(‘humidity’ < 20) AND (‘wind speed’ > 50. An eventx satisfies a querg, denoted by

0 g, if and only if x satisfies all the elementary predicates speciirect least one
condition clause of.

The publish/subscribe scheme above allows a flexibdy to specify a query as a
disjunction of any number of conjunctive claused Hre filtering operatof?’ can be any

of the aforementioned, including the string opeatoHowever, for simplicity of
implementation, most schemes assume that a queaysisgle conjunctive clause of
elementary predicates that can only use the cosgranperators {=, <, >}. This form of
guery can thereffore be called thextangular formbecause if an event is modeled as a
point in ad-dimensional coordinate system, each dimensioresgmting an attribute, a
guery can be considereddadimensional box with the vertices defined basedtlon
attribute constraint values provided in the queayise.

It is sometimes a tedious process to specify tlweeloand upper bounds for all the

attributes of a query. In such cases, it is momevenient to provide an event sample as
the query and request to be notified of all thenévaimilar to this sample. For example,

consider a camera remote surveillance network gedlmver many airports to detect

criminal suspects. If a particular suspect is desdtdor, his or her picture is submitted as
a subscription to the network in hopes of findihg tocations where similar images are
captured. A query of this kind can be represented bphere, in which the sample is the
center of the sphere and similarity is constraimgthe sphere’s radius. This query is said
to have thespherical form

Subject-based vs. Content-based

There are two main types of publish/subscribe assigubject-based or content-based. In
the subject-based design, events are categoritediamall number of knowsubjects
There must be an event attribute callsdbject, or something alike, that represents the
type of the event and a query must include a pageli¢subject = s) to search only
events belonging to some known subgcthe occurrence of any event of subjeutill
trigger a notification to the query subscriber. Bubscription and notification protocols
are mainly driven by subject match rather thanaetontent match.

The content-based design offers a finer filteringide the network and a richer way to
express queries. A subscriber wants to receive tmyevents that match its query
content, not all the events that belong to a aerabject (which could result in too many
events). For example, many Bostonians are onlyaated in the Celtics and do not want
to be bothered by any event published regardindg #kers. A query with subject “NBA”
would result in receiving all US professional babkdl events including those about the
Celtics and the Lakers. A content-based queryasefore more desirable. A node upon
receipt of a query or event message needs to extracontent and makes a forwarding
decision based on this content. We can think oktligect-based model as a special case
of the content-based model and because of thislifitapion a subject-based system is
less challenging to design than a content-baseadmyis.

STRUCTURE-BASED PUBLISH/SUBSCRIBE TECHNIQUES

A popular approach among structure-based publiBbésibe techniques is to employ a
Distributed Hash Table (DHT) to build an overlayusture on top of the P2P network.
This overlay provides efficient methods to routemes and events to their corresponding
nodes that are determined based on the hashingdun€he goal is that the node storing
a subscription and that receiving a satisfactorgnéwvare either identical or within a
proximity of each other. Scribe [Castro et al. 2)Qses Pastry [Rowstron & Druschel
(2001)] to map a subscription to a node based pit teashing, thus those subscriptions
and data objects with the same topic are mapp#tetsame node. Instead of Pastry, the
CAN [Ratnasamy et al. (2001)] and Chord [Stoicaalet(2001)] DHT structures are
employed in [Gupta et al. (2004)] and [Terpstrale{2003)], respectively. A technique
that can be used atop any such DHT structure wapoped in [Aekaterinidis &
Triantafillou (2005)]. Non-DHT techniques also déxisuch as Sub-2-Sub [Voulgaris et
al. (2006)] and R-tree-based [Bianchi et al. (2007)

To illustrate the structure-based approach, weudstow publish/subscribe services can
be deployed in a P2P network structured using tA&l @verlay [Rathasamy et al.
(2001)] discussed earlier in this chapter. AlthougAN is an efficient overlay for
traditional retrieval in P2P networks, deployingoablish/subscribe service on top of
CAN is not as straightforward. From the databasespeetive, because we typically
model a data object as a point and a query asge rahpoints, we need to address the
range indexing problem in publish/subscribe systdfngm the networking perspective,
due to its range, a subscription query may be caf@dd at multiple nodes to wait for
notification of all possible matching data objedttence, the number of subscriptions
stored in the network can be large, resulting ih oy high communication cost to
replicate the subscriptions, but also high storegst for each node and long time to
match an object against a subscription query. Wedn® minimize unnecessary
replications, yet at the same time store the gsiéni¢ghe network intelligently so that data
notification remains efficient.

Because of the low dimensionality of the CAN spaoether challenge to a CAN-based
publish/subscribe system is due to the mismatcivdeai the CAN dimension and the
data dimension. Data can, and usually, be of highedsion, such as in applications
searching documents, multimedia, and sensor ddtmhwiormally are associated with
many attributes. It is difficult to hash similarghidimension data objects into zones in a
low-dimension space which are close to each otheking the search for a continuous
range of data highly inefficient.

Meghdoot [Gupta et al. (2004)] is a CAN-based mltifubscribe technique that works
for multi-dimensional data space. In Meghdoot, eaubscription query id dimensions
is mapped a point iAd dimensions and the P2P network is virtualized @A space of
2d dimensions. In the case ththis large, the CAN dimension is large, making CA&Ww
inefficient. In addition, Meghdoot does not allgwblish/subscribe applications with
different data dimensions to run on the same CAMOK.

Next, we describe a technique [Tran & Nguyen (2D08ng Random Projection (RP) to
map queries and events to appropriate rendezvaiessna the network. This technique
can deploy a publish/subscribe application of aataddimensionality on any existing
CAN network.

RP Based Publish/Subscribe

Suppose that the data (event) spade d-dimensional, and CAN spacekslimensional.
The idea of RP is to projectdadimensional data object in the original data spac®

the CAN space to get a new data objedk simensions such that the distance between
two data objects after the projection remains withismall constant factor of the original
distance.

Let {uy,...,u} be k random vectors, each beingdadimensional orthonormal vector.
Consider a subscription que®y = (s,r), which is a sphere centered at pari D with
radiusr, asking for all events that are within a distamcEom the sample everg
Projecting this sphere on the random vectors, we obtain kedimensional hyper-
rectangle u(Q) = wy(s, r) x ux(s, r) x... x u(s, r), where each edgg(s, r) is the interval
[<s, u> -1, <s, u> + 1] (here,<.,.> denotes the inner product of two vectors). The
center of this rectangle is the pogante((Q) = (<s, >, <S, >, ..., <S, 4>).

A strategy for query subscription is to store thery g in the nodeg; whose CAN-zone,

denoted byzone(V), intersect€Q)’s CAN-projection (i.e.,zone(Y) N u(Q) # &). This
strategy can be implemented as follows:

1) Use CAN routing to send) to the nodeVqy such thatzone(\) contains

center(Q).
2) Each nodeV that receive$) forwards this query to each neighbor ndfesuch

thatzone(V')N u (Q)# &; nodeV’ follows the same procedure dsloes.

When an evenx becomes available, using CAN routing, we advertise the nodevy
such thatzone(V) contains the poini(x) = (<X, w>, <X, U>, ..., <X, U>). It is obvious
that if x satisfies a queryQ, then u(x) must be a point inside rectanglg€Q).
Consequentlyzone(y) must intersect(Q) and the queryQ must have been stored at
nodeVy. Thus, given an eventand subscription querQ, that match each other, they are
guaranteed to always find each other at some rendeznode.

The above strategy allows for quick and cost-eiffecevent notification because each
event is advertised to only one node. However,etharght incur a large amount of
subscription replicas in the network. Since sulpsicn queries are likely to overlap, we
should take advantage of this property to minimkeir replication in the network.
Observe that if queryQ’ covers queryQ, it must be true that(Q’) coversu(Q).
Therefore, if a new quer§ is covered by an existing quey, the nodes that the new
guery is mapped to must have already stored th&tiegiquery. Because those events
that satisfyQ' will be returned to notifyfQ’ anyway, which can be filtered to matGh
there is no need to replicate qu&yfurther. Based on this observation, a more efficie

strategy is proposed in [Tran & Nguyen (2008)], ethdiffers from the aforementioned
strategy in that a quer® is not replicated at a node if this node has dtam existing
queryQ’ such thatu(Q’) containsu(Q). The query subscription for a que@yworks in
detail as follows:

1) Use CAN routing to send) to the nodeVqo such thatzone(\) contains

centeg(Q).
2) If there does not exist a que€y currently stored at nod€g such thatu(Q’)
coversu(Q):
a) Node Vg will store Q and is called thédhome nodeof Q, denoted by
home(Q)

b) ForwardQ to adjacent nodes whose zone inters€ctSuch a nodé&/”
performs the following steps:
i. StoreQ atV’
ii. For each existing query Q’ stored ¥t such thatu(Q) covers
u(Q’), remove query’ from nodeV’
li. ForwardQ to adjacent nodes whose zone inters@cs in step b)
3) If nodeVg stores a quer®’ satisfying the condition of 2), que€y will be routed
to and stored at nodemme(Q’)

To illustrate this revised strategy, we considerftillowing scenario. In Figure 4, queries
01, 92, Oz are submitted into the network at times in thateor Queryq; is submitted first,
which intersects the zones of nodes 7, 13, 110981and 2. Thereforey is stored at
these nodes and the home node of gl is node 7udetiae projection centeenter(ds)

lies in the zone of node 7). Whep is submitted, it is sent to node 10 whose zone
contains the projection center gf. Because node 10 already stores qugrandu(q)
coversu(cp), queryq, will be stored at the home node of quegy i.e., hode 7 only;
hence, a significant reduction in subscription l0athen querygs is submitted, because
its projection is not covered by any other’s, itstered at nodes 2 and 3 because their
zones interseai(gs), node 2 serving as the home node of query

8 1 |

]]
) 1
sl 1 . 12
| |

&

(45

A
wn

Fig. 4. Query subscription and event notification.
When an event becomes available, the notification procedure wark follows:

1) Use CAN routing to advertiseto the nodé&/x such asu(x) 27 zone(Y)

2) For each query stored at nod®&/x such thatu(x) /7 u(Q), forward x to node
home(Q)- the home node @. At each home nod¥ that receives, search for
and notify all the queries that mateland that calV home.

For example, continuing the previous illustratioithwFigure 6, suppose that an event
satisfying queryq, is available such thati(x) lies in the zone of node 11. An
advertisement will be sent to node 11, where foismd thatu(x) /7u(a). Consequently,
the advertisement ofis routed to the home node 7 of qugrywhere we will find query

Qo
GOSSIP-BASED PUBLISH/SUBSCRIBE TECHNIQUES

Structure-based techniques are capable to groweheork and adaptable to network
dynamics, but they incur an additional cost to rreamthe overlay. In addition, some of
these techniques require different overlays fofed#int publish/subscribe applications.
The gossip-based approach [Terpstra et al. (20p¥)3dng & Guha (2008)], [Gkantsidis
et al. (2006)] can work with any unstructured netgoand thus does not have these
limitations.

The word “gossip” gives the intuition of its use publish/subscribe techniques:
subscriber nodes and publisher nodes find eachr bihgossiping with their respective
neighbors. An example is to use random walks. Aryjf@lows a random walk in the

network and is replicated at each node visited.tA@orandom walk is used to publish an

event. If these two random walks are long enouggy have a good chance to intersect.
As such, there is a high probability that an eweititreach every query and thus find all
the matching queries. The tradeoff, however, is tu¢ghe high cost (communication,
storage) to disseminate each query or event. Tha muestion, therefore, is how to
design a gossiping mechanism that offers the bakinbe between efficiency and
effectiveness. BubbleStorm [Terpstra et al. (2005 recent technique aimed to address
this challenge.

BubbleStorm

BubbleStorm replicates each query in a given nurobeodes within a number of hops
from the source. This set of nodes calledueery bubble Similarly, an event is also
replicated in arevent bubbleThese bubbles need to be large enough to shdeasita
rendezvous node where the query and event careéokl other.

To reach a given bubble size, nodes chosen tondisate a query (or event) should be
independent and the bubbles should be formed wittymles. For this purpose, a random
multi-graph is proposed, in which self-loops andilde-edges are allowed and a node’s
degree is proportional to its bandwidth. Figure) Sl{fastrates a random multi-graph of 7

nodes. The degree of node 1 is 3, of node 7 ik4, e

L 8
O OMOSOnO 0’0 O

-_—

‘@

(a) Random multigraph (b} Nodc joins (c) Node departs
Fig. 5. Random multi-graph example

When a new node joins the network, it firstly can$athe bootstrap node and then uses a
random walk to find a proper edge. The chosen adljbe split and the node is inserted
between the vertices connecting this edge. Supfiadenode 8 contacts its bootstrap
node, which is node 3, and eventually found an ddg@een node 5 and 6. The creation
of new links is illustrated in Figure 5(b). If a d® leaves, its neighbors need to adjust
their connections to maintain degrees. For exampl&jgure 5(c), node 2 departs from
the network and as a result new links (2-3, 7-8) @eated to maintain the degrees of
nodes 2, 3, and 7.

The communication primitive used by BubbleStormeplicate queries and events in the
bubbles is called BubbleCast. BubbleCast definsplaé factorf which controls how
many neighbor nodes should receive a forwardedygoeevent. Suppose that a query,
starting at a nod¥ needs to be replicated mtnodes. Node V will store a replica of the
query and forwards the query foneighbor nodes, chosen randomly. Each such a

neighbor node is responsible fix; — 1)/f remaining replicas of the query; the same
replication procedure as at nodés applied. The dissemination of an event is simil

Figure 6 provides an example of how BubbleCast wohk this example, suppose the
number of replicas for a query is 17, and the dgpttor is 2. Each time, the number of
replicas is reduced by 1 and then divided by $atitor 2. From the initial subscriber, the
number of remaining replicas is 17-1 = 16, dividey split factor of 2. Each new

forwarder will continue with 8 as the number of lregs, including itself. The process
continues until the number of replicas becomesdl.tie procedure will end up with

totally 17 replicas as the desired size of the bubbhis process is the hybrid of random
walks and flooding.

Fig. 6. How BubbleCast works.

Choosing a desirable bubble size is a key factd@udfbleStorm. It is proposed that if a
query is replicated at; = O(sqgrt(n))nodes and an event is disseminatedzm nodes,
the probability that the query and the event cad &ach other at an intersection of their
bubbles isl-exp(é) , wherec is the certainty factor (e.q,= 3 - probability = 99.99%).

HYBRID PUBLISH/SUBSCRIBE TECHNIQUES

The gossip-based approach offers more flexibilitgnt the structure-based approach
because the former requires no overlay structuradwance and allows queries and
events to be expressed in any format. On the didwed, as queries and events are spread
randomly in the network, there is no guarantee tiey will meet each other. To make
any gossip-based system effective, we need to @aélthe queries and events widely in
the network, leading to the trade-off between &fficy and effectiveness. In addition to
that, the guarantee that every query meets eventes unnecessarily strong. Indeed, we
only need to guarantee that ever query meets enatghingevent.

In this section, we introduce Pub-2-Sub [Tran & IAh@010)], a technique combining
the strengths of both structure-based and gossieebapproaches. Pub-2-Sub can be
considered a hybrid approach that can work in arstructured P2P network, yet having
the efficiency of structure-based techniques. loved any number of independent
publish/subscribe applications to run simultanepush the same underlying P2P
network. Because Pub-2-Sub is based on directathgout has the potential to be more

efficient than the gossip-based approach. Pub-2-&dolts in lower storage and
communication costs in comparison to BubbleStomtelms of computation cost, Pub-
2-Sub requires only a node in the network that sg¢ecdevaluate its local queries to find
those matching a given published event. The teckenigso incurs small notification
delay and is robust under network failures.

Pub-2-Sub

Pub-2-Sub is based on two key design componergszittualization component and the
indexing component. The virtualization componersigiss to each node a unique virtual
address. The indexing component determines theesmwnding subscription and
notification paths for given queries and eventswhich routing is based on the virtual
addresses of the nodes.

Virtualization

A virtualization procedure can be initiated by amyde to result in a “virtual address
instance” (VA-instance), where each node is assigmesirtual address (VA) being a
binary string chosen fromQ{ 1}*. Suppose that the initiating node i$*. In the
corresponding VA-instance, denoted IB\6TANCE(S*)we denote the VA of each node
S by VA(S : S*). To start the virtualization, nod&* assigns itselW/A(S*: S*) = /7 and
sends a message inviting its neighbor nodes to INBTANCE(S*) A neighbor S
ignores this invitation if already part of the iaste. Otherwise, by joining is called a
“child” of S* and receives frorB* a VA that is the shortest string of the foxA(S*: S*)

+ ‘0*1’ unused by any other child node®% Once assigned a VA, no&forwards the
invitation to its neighbor nodes and the same VAigmsnent procedure continues
repeatedly. In general, the rule to compute thefdffa node Sthat accepts an invitation
from a node§ is thatVA(S : S*) is always the shortest string of the foWfA(S : S*) +
‘0*1’ unused by any other child node currentlysof

Eventually, every node is assigned a VA and the sll@gether form a prefix-tree rooted
at nodeS*. We call this tree a VA-tree and denote itT’EE(S*) For example, Figure 7
shows the VA-tree with VAs assigned to the nodesaa®sult of the virtualization
procedure initiated by node 1. The nodes’ label2(1., 24) represent the order they join
the VA-tree. Each time a node joins, its VA is gasid by its parent according to the VA
assignment rule above. Thus, node 2 is the firstl @i node 1 and giveNVA(2 : 1) =
VA1 :1)+ 17 =1, node 3 is the next child and give(3 : 1) = VA(1: 1) + ‘01’ =
‘01’, and node 4 last and givéA(4 : 1) = VA(L : 1) + ‘001’ = ‘'001. Other nodes are
assigned VAs similarly. For example, consider nb8eavhich is the third child of node 8
(VA ‘011’). The VA of node 18 is the shortest binary strihgt is unused by any other
child node of node 8 and of the foA(8 : 1) + ‘0*1’. The other children 16 and 17
already occupy0111’ and‘01101’, therefore the VA of node 18 will b@11001".

B N
i 017 001
@ — @
(8)) (9) (10} (1)

2y J 13y (4 (15 1ae (7)) (18) (19)

Fig. 7. Pub-2-Sub: Virtualization and Indexing

In INSTANCE(S*)each nodé& is associated with a “zone”, denoted BNE(S : S*),
consisting of all the binary stringdr such that: (ilWA(S : S*) is a prefix ofstr, and (ii)

no child ofS has VA a prefix otr. In other words, among all the nodes in the ndtwor
node§ is the one whose VA is the maximal prefix sif. We call S the “designated
node” ofstr and useNODE(str : S*)to denote this node. For example, using the Mirtua
instanceTREE(1)in Figure 7, the zone of node 11 (VB0101)) is the set of binary
strings‘00101’, ‘001010, and all the strings of the forf@010100..., for which node 11

is the designated node.

Indexing

Pub-2-Sub supports publish/subscribe applicatibasdan have any data dimensionality
and allows any number of them to run on the netvgamkultaneously, whose dimension
can be different from one another. For ease ofgmtasion, we assume for now that
events are one-dimensional.

In Pub-2-Sub, an eventis expressed askabit binary string (the parametkrshould be
chosen to be larger than the longest VA lengtthertetwork). A quer® is represented
as an intervaQ = [q, ¢, whereq,, ¢, U {0, 1}", subscribing to all eventsbelonging to
this interval (events are “ordered” lexicographigalAs an example, ik = 3, the events
matching a query001’, ‘101] are{'001’, ‘010", ‘011’,'100’, ‘101", 111'}. Supposing
that every node has been assigned a VA as a @salvirtualization procedure initiated
by a nodeS* we propose that (i) each quegyis stored at every nodg such that
ZONE(S: S*) n Q # [J; and (ii) each eventis sent taNODE(x : S*)— the designated
node of stringk. It is guaranteed that ¥ satisfiesQ thenQ can always be found at node
NODE(x : S*)(because this node’s zone must inter§gictThe routing of queries and
events to their destination nodes is facilitatedhsy VA structure based on the matching
between the node VAs and query/event content.

Figure 7 shows an example wih= 7. Suppose that node 12 wants to subscribe & que
Q = ['0110001’, '0110101"} thus looking to be notified upon any of the fellag
events{'0110001’, ‘0110010, ‘0110011’, ‘0110100, ‘01101’}. Therefore, this query
will be stored at nodes {8, 17, 18}, whose zoneilsgcts withQ. For example, node 8's
zone intersect®) because they both contain ‘0110001’. The pathissesninate this
query is 125>2->1->3->8->{17, 18} (represented by the solid arrow lines igu¥e
11). Now, suppose that node 22 wants to publisévantx = <‘0110010’>. Firstly, this
event will be routed upstream to node 8 — the fiedle that is a prefix wittp110010°
(path 22>16 —>8). Afterwards, it is routed downstream to the deated node
NODE('0110010:1) which is node 18 (path-B18). Node 18 searches its local queries
to find the matching queries. Because qu@ry [(0110001’, ‘01101017 is stored at
node 18, this query will also be found. The storagel communication costs for a
guery’s subscription depend on its range; the wikderange, the larger costs.

Multiple VA Instances

Because query subscription and event notificatimtgdures are based on the VA-tree,
the root node and those nearby become potentiapbtst To alleviate this bottleneck
problem, a solution is to build, not one, but npl&i VA instances. We can buifd VA-
instances initiated by dedicated nodes randomlgeglan the networkS*, Sy*,..., Si*}.
After m virtualization procedures, each no8ewill have m VAs, VA (S : §*), VA(S :
S*), ...,andVA(S : Sy), respectively corresponding to thieVA-instances.

In the presence of multiple VA-instances, each yusrsubscribed to a random VA-
instance and each event is published to every \&famce. A node near the root of a VA-
tree may likely be deep in other VA-trees and se wWorkload and traffic are better
shared among the nodes. Using multiple VA-instaates increases reliability. Because
an event is notified to every VA-tree, the likeldwbof its finding the matching queries
should remain high even if a path this event igdfiag is disconnected because of some
failure.

Multi-Dimensionality

In the description of Pub-2-Sub we have expresseglvant as an one-dimensiomkabit
binary string and a query as an one-dimensionalvat. In practice, however, an event
can have multiple attributes and as such it is lisugpresented as a numeric valuelin
dimensions wher@ is the number of attributes. To specify a subsionp a query is
often specified as ddimensional rectangular range of values. Pub-2-urbwork with
events and queries of this general form.

First, we need a hash mechani$nthat hashes a-dimensional valuex to an one-
dimensionalk-bit binary stringx’ = f(x) and ad-dimensional rangeQ to an one-
dimensional intervaQ" = f(Q) of k-bit strings such that i O Q thenx' 0 Q'. For this
purpose, we propose to use kK2(-order Hilbert Curve mapping [Lawder & King
(2000)]. This mapping preserves not only the comb&nt relationship but also the

locality property. Thus, smalD in the original space is mapped to sn@llin the one-
dimensional space with a high probability.

Then, to subscribe a que@/we use the hash internv@l. Similarly, to publish an event
we route it to the designated nodeXofWhen the event reaches this node, locally stored
gueries are evaluated to find those matchinghe query evaluation with the event is
bfased on the original values of the query and ef@mindx), not the hash value®{and
X).

CONCLUSIONS

The publish/subscribe paradigm represents a ldegs of applications in P2P networks.
Despite many existing techniques to implement gasadigm in P2P networks, there
remains much room for future research. For a lagde P2P network where broadcast-
based and gossip-based approaches may not bedthft bine routing design should be
driven by the content of the message being routeakdo limit the scope of propagation.
On the other hand, content-based routing if enabied structured overlay might incur
considerable costs to maintain the structure. SP2B networks may be of different
types (small vs. large, unstructured vs. structuséatic vs. dynamic) and the application
to deploy may also have its own characteristic (Msv high query rate, low vs. high
event rate, subject-based vs. content-based, eitc.)is difficult to choose a
publish/subscribe design that works well in evergcfical case. Thus, rather than trying
to find a “perfect” design universally, it would letter to categorize the networks and
applications into similarity-based groups and desitge “best” technique for each group.
For example, for P2P-based cooperative networkghich the nodes are supposed to be
functional most of the time and failures should happen too often, a technique like
Pub-2-Sub presented in this chapter is a good desigdidate. Data grid networks and
institutional collaborative networks can take fadlvantage of this technique.

It is also important to develop a publish/subscribddleware package that provides a set
of common services to most publish/subscribe nétapplications no matter their
categories, and another set of services each cirgdrtoward a specific category. This
middleware should provide convenient tools for theldleware designer to add new
service components to the existing architecturehsas a new language for query and
event description and a new implementation foringytdata aggregation, or an event
matching algorithm. It should also give the applma developer freedom and a
convenient API to choose the publish/subscribeisermonfiguration that is best for the
context of the deployment. Middleware developmenipiublish/subscribe applications in
P2P networks remains ad hoc and isolated. It shioeldiven high priority in the future
research towards publish/subscribe services inreBRorks.

REFERENCES

Aekaterinidis, ., & Triantafillou, P. (2005) “Inteet scale string attribute
publish/subscribe data networks,” IGIKM ’'05: Proceedings of the 14th ACM

international conference on Information and knowjeananagemenACM Press, 2005,
pp. 44-51.

Bianchi, S., Felber, P., & Gradinariu, M. (2007)di@@ent-based publish/subscribe using
distributed r-trees,” ifcuro-Par, 2007, pp. 537-548.

Castro, M., Druschel, P., Kermarrec, A., & Rowstran(2002) “SCRIBE: A large-scale
and decentralized application-level multicast isfracture,”IEEE Journal on Selected
Areas in communications (JSA®bl. 20, no. 8, pp. 1489-1499, 2002.

Freenet. http://en.wikipedia.org/wiki/Freenet

Gkantsidis, C., Mihail, M., & Saberi, A. (2006) d&Rdom walks in peer-to-peer
networks: algorithms and evaluatio®&rform. Eval, vol. 63, no. 3, pp.241-263, 2006.

Gnutella. http://gnutella.wego.com

Gupta, A., Sahin, O. D., Agrawal, D., & Abbadi, B. (2004) “Meghdoot: content-based
publish/subscribe over p2p networks,” Middleware ’'04:Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middene New York, NY, USA:
Springer-Verlag New York, Inc.,2004, pp. 254-273.

Lawder, J. K., & King, P. J. H. (2000) “Using spddkng curves for multidimensional
indexing,” in BNCOD 17: Proceedings of the 17th British Natio@dnference on
DatabasesLondon, UK: Springer-Verlag, 2000, pp. 20-35.

Ratnasamy, S., Francis, P., Handley, M., Karp,&RShenker, S. (2001) “A scalable
content addressable network,” ACM SIGCOMM San Diego, CA, August 2001, pp.
161-172.

Rowstron, A., & Druschel, P. (2001) “Pastry: Scéalistributed object location and
routing for large-scale peer-to-peer systems,IFil?/ACM International Conference on
Distributed Systems Platforms (MiddlewarkEgidelberg, Germany, November 2001, pp.
329-350.

Shalaby, N., & Zinky, J. (2007) “Towards an arcbitee for extreme p2p applications,”
in Parallel and Distributed Computing and Systems €afce (PDCS)Cambridge,
MA, November 2007.

Stoica, I., Morris, R., Karger, D., Kaashock, M.Balakrishman, H. (2001) “Chord: A
scalable peer-to-peer lookup protocol for interggtlications,” iINRACM SIGCOMM San
Diego, CA, August 2001, pp. 149-160.

Teranishi, Y., Tanaka, H., Ishi, Y., & Yoshida, K2008) “A geographical observation
system based on p2p agents,”ABERCOM ’08: Proceedings of the 2008 Sixth Annual

IEEE International Conference on Pervasive Compmutiand Communications
Washington, DC, USA: IEEE Computer Society, 20(8,615-620.

Terpstra, W. W., Behnel, S., Fiege, L., Zeidler, & Buchmann, A. P. (2003) “A peer-
to-peer approach to content-based publish/substrimeDEBS '03:Proceedings of the
2nd international workshop on Distributed eventlthsgstemsNew York, NY, USA:
ACM Press, 2003, pp. 1-8.

Terpstra, W. W., Kangasharju, J., Leng, C., & Buahn, A. P. (2007) “Bubblestorm:
resilient, probabilistic, and exhaustive peer-tespesearch,” in SIGCOMM ’07:
Proceedings of the 2007 conference on Applicatit@shnologies, architectures, and
protocols for computer communicatioméew York, NY, USA: ACM, 2007, pp. 49-60.

Tran, D. A., & Nguyen, T. (2008) “Publish/subscrigervice in can-based p2p networks:
Dimension mismatch and the random projection amtrgdain IEEE Conference on
Computer Communications and Networks (ICCCN'@8)gin Island, USA: IEEE Press,
August 2008.

Tran, D. A., & Pham, C. (2010) “Enabling contentéd publish/subscribe services in
cooperative P2P networks,” dJournal of Computer NetworkElsevier, February 2010.

Voulgaris, S., Rivire, E., Kermarrec, A.-M., & va@teen, M. (2006) “Sub-2-sub: Self-
organizing content-based publish subscribe for dyoalarge scale collaborative
networks,” in5th Int'l Workshop on Peer-to-Peer Systems (IPTE@2 2006.

Wong, B., & Guha, S. (2008) “Quasar: A Probabitis#ublish-Subscribe System for
Social Networks,” inProceedings of The 7th International Workshop oerRe-Peer
Systems (IPTPS '08yampa Bay, FL, February 2008.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. GQgseph, A. D., & Kubiatowicz, J.
(2004) “Tapestry: A resilient global-scale overfay service deploymentJEEE Journal
on Selected Areas in Communicatioval. 22, no. 1, January 2004.

Cuong (Charlie) Pham is a PhD student in the Department of Computeer®®da at the
University of Massachusetts at Boston and a rekeamember of the Network
Information Systems Laboratory (NISLab). He recdive@ BS degree in Computer
Science from Bowman Technical State University ioskbw, Russia in 2007. His
research interests are P2P networks and wirelesois@etworks. He was a research
intern working on distributed storage networks M@E (USA) during summer of 2010.
He received a Student Travel Award from the NSF ariglesearch Excellence Award
from the Department of Computer Science (UMass@ysboth in 2009.

Duc A. Tran is an Assistant Professor in the Department of @der Science at the
UMass Boston, where he leads the Network Informa8gstems Laboratory (NISLab).
He received a PhD in CS degree from the UniversityCentral Florida (Orlando,
Florida). Dr. Tran's interests are focused on daaagement and networking designs for

decentralized networks. His work has resulted iseaech grants from the National
Science Foundation and two Best Papers (ICCCN 2D@8Vak 1999). Dr. Tran has
served as a Review Panelist for the NSF, Editorttier Journal on Parallel, Emergent,
and Distributed Systems (2010-date), Guest-Editor the Journal on Pervasive
Computing and Communications (2009), TPC Co-Chair €CNet 2010, GridPeer
(2009, 2010, 2011), and IRSN 2009, TPC Vice-ChairAINA 2007, and TPC member
for 40+ international conferences.

