
PUBLISH/SUBSCRIBE TECHNIQUES FOR P2P NETWORKS

Cuong Pham, University of Massachusetts, Boston, MA 02125, USA
Duc A. Tran, University of Massachusetts, Boston, MA 02125, USA

Abstract – As P2P is a popular networking paradigm in today’s Internet, many research
and development efforts are geared toward services that can be useful to the users of P2P
networks. An important class of such services is that based on the publish/subscribe
paradigm to allow the nodes of a network to publish data and subscribe data interests
efficiently. This chapter is focused on the techniques that enable these services in P2P
networks.

Keywords – Publish/subscribe, P2P, search, content-based search, DHT

INTRODUCTION

A publish/subscribe networking system is one in which the nodes can serve the role of a
publisher or a subscriber to publish data or subscribe for data of interest, respectively.
The publish/subscribe model differs from other request/response models in that a query
of the former model is submitted and stored in advance, for which the result may not yet
exist but the query subscriber expects to be notified if and when the result later becomes
available. The publish/subscribe model is thus suitable for search applications where
queries await future information, as opposed to the traditional applications where the
information to be searched must pre-exist.

Enabling publish/subscribe services in peer-to-peer (P2P) networks is a topic that has
received a lot of attention in recent years. As P2P can be adopted for distributed
networking as an effective way to share resources, minimize server costs, and promote
boundary-crossing collaborations, a publish/subscribe functionality should be useful to
these networks. For example, a monitoring operator in a P2P-based geographical
observation network [Teranishi et al. (2008)] will be able to subscribe a query to receive
alerts of fire occurrences so that necessary rescue efforts can be dispatched quickly; or, in
a P2P-based scientific information sharing network [Shalaby & Zinky (2007)], a
subscriber will be notified when new scientific information is published.

Usually, a publisher node does not know who is interested in its data, and, vice versa, a
subscriber node does not know where in the network its data of interest is available.
Thus, a challenging problem is to design mechanisms for the subscribers and publishers
to find each other quickly and efficiently. A simple way is to broadcast each query to all
the nodes in the network or to employ a centralized index of all the queries subscribed
and information published. This mechanism is neither efficient nor scalable if applied to a
large-scale network.

Consequently, a variety of distributed publish/subscribe mechanisms have been proposed.
They follow two main approaches: gossip-based and structure-based. The first approach
is designed for any unstructured networks, in which the subscriber nodes and publisher

nodes find each other via exchanges of information using the existing peer links, typically
based on some form of randomization. The other approach organizes the nodes into some
overlay structure and develops publish/subscribe methods on top of it. Examples of such
an overlay are those based on Distributed Hash Tables (e.g., CAN [Ratnasamy et al.
(2001)], Chord [Stoica et al. (2001)]). The gossip-based approach’s advantage is its
applicability to any unstructured network, while the structure-based approach is favored
for better efficiency.

This chapter provides a survey on the publish/subscribe techniques for P2P networks.
First, we will provide some necessary preliminaries. We then discuss several
representative techniques in each of the following categories: structure-based, gossip-
based, and a hybrid of these two. We conclude the chapter with some remarks.

PRELIMINARIES

Peer-to-Peer Networks

A P2P network is a decentralized network of equivalent-role nodes. A node can serve in
either a “server” role or a “client” role, or both, depending on circumstances. Unlike
traditional client/server networks, P2P networks have no limit for growth and no single
point of failure. The capability to share resources and the freedom to join and leave the
network at any time are among the properties that make P2P networks very popular on
the Internet today.

There are two main types of P2P networks: structured and unstructured. In unstructured
P2P networks, e.g., [Gnutella] and [Freenet], the links between nodes are formed in an ad
hoc manner without any predefined structure. Unstructured P2P networks are easy to
maintain under network dynamics. They are fully decentralized with a high degree of
fairness. However, they are not efficient in search operations. Search in a unstructured
network usually requires broadcasting of the query, thus incurring a high communication
cost.

Structured P2P networks are designed for better search operations. In such a network, the
nodes are arranged in an overlay structure which provides efficient routing and lookup
mechanisms. Distributed Hash Tables (DHT) is the most popular structure for structured
P2P networks (e.g., CAN [Ratnasamy et al. (2001)], Chord [Stoica et al. (2001)], Pastry
[Rowstron & Druschel (2001)], and Tapestry [Zhao et al. (2004)]). As CAN is used later
in this chapter, let us describe briefly how it works. In CAN (abbr. of “Content
Addressable Networks”), the network is viewed virtually as a multi-dimensional
geometric space, called the CAN space, in which each node is assigned a location. The
CAN space is partitioned into rectangular zones and the node location assignments are
determined such that there is only one node in each zone. An overlay neighbor link is
created between two nodes if their zones are adjacent. The control overhead for each
node is therefore small because a node only needs to keep track of its neighbors and the
number of these neighbors is at most twice the CAN space dimensionality which is a
constant.

Data storage and retrieval in CAN work as follows. Each data object is hashed into a
location in the CAN space and its index is stored at the node whose zone contains this
hash location. When a query for an object is initiated, the hash location of the object is
computed and the query is sent to the node owning this location and thus can find the
object there. Routing to a location in the CAN space is based on geometry-based greedy
routing via the overlay neighbor links: in each forwarding step, the message is always
forwarded to a neighbor node that is closer to the destination node, geometrically. The
distance between two nodes, which defines “close-ness”, is computed using their
corresponding CAN locations.

Figure 1 provides an illustration of indexing and retrieval in a two-dimensional CAN
network. Here, the CAN space is a square [0, 1] x [0, 1]. Each node (1�9) owns a zone,
which is a rectangle. Node 1 has a file associated with key K. The pointer (K, 1)
(meaning that node 1 has a file with key K) is stored in the node whose zone contains
h(K) - the hashing location of K, which is node 4. Once a node 3 request a file with key
K, it needs to route the query to location h(K) and thus will reach node 4, where every
file with key K will be found. Routing from node 3 to node 4 is by relaying via neighbor
nodes, greedily getting as close geometrically to the destination as possible.

Fig. 1. Indexing and retrieval in CAN.

Figure 2 illustrates the construction and routing procedures of CAN. Suppose that node
10 want to join the CAN network. This node chooses a random location, which, we
suppose, currently resides in the zone of node 9. Node 10 then contacts node 9 and asks
for a share of the latter' zone. Node 9 halves its zone into two smaller zones, retaining one
and giving the other to node 10.

Routing in CAN is even simpler. Suppose that node 1 is looking for some data, whose
hashing location is in the zone of 7. Node 1 chooses among its neighbors the one node
that is geometrically closest to 7 to forward the message; in this case, node 2. Node 2
then repeats the same procedure. Eventually, the routing path from node 1 to node 7 is
1�2�3�6�7.

Fig. 2. CAN constructing and routing

The advantage of structured P2P networks is their scalability and lookup efficiency.
However, they incur the cost of constructing and maintaining the overlay structure, most
of which are due to node departures, arrivals, or failures.

Publish/Subscribe Services

Event and Query Representation

An event in a publish/subscribe system is usually specified as a set of d attribute-value
pairs {(attr1, v1), (attr2, v2), ..., (attrd, vd)} where d is the number of attributes, {attr1,
attr2, ..., attrd}, associated with the event. For example, consider a P2P network to
monitor fire in a large region. Each peer records temperature, humidity, wind speed, and
air pressure in its area over time, thus d is four – representing these four data attributes:
attr1 = ‘temperature’, attr2= ‘humidity’, attr3 = ‘wind speed’, and attr4 = ‘air pressure’.
In generic expression, the constraints in a query can be specified in a predicate of
disjunctive normal form – a disjunction of one or more condition clauses, each clause
being a conjunction of elementary predicates. Each elementary predicate, denoted by
(attri ? pi), is a condition on some attribute attri with ‘?’ being the filtering operator. As
used in the literature of publish/subscribe techniques, a filtering operator can be a
comparison operator (one of {=, <, >}) or a string operator such as “prefix of”, “ suffix of”,
and “substring of” if the attribute is of string type. Thus, to be notified of all locations
with temperature above 100oF, humidity below 20%, and wind speed above 50 mph, no
mater what air pressure, the query can be expressed as (‘temperature’ > 100) AND
(‘humidity’ < 20) AND (‘wind speed’ > 50). An event x satisfies a query q, denoted by x

∈ q, if and only if x satisfies all the elementary predicates specified in at least one
condition clause of q.

The publish/subscribe scheme above allows a flexible way to specify a query as a
disjunction of any number of conjunctive clauses and the filtering operator ‘?’ can be any
of the aforementioned, including the string operators. However, for simplicity of
implementation, most schemes assume that a query is a single conjunctive clause of
elementary predicates that can only use the comparison operators {=, <, >}. This form of
query can thereffore be called the rectangular form because if an event is modeled as a
point in a d-dimensional coordinate system, each dimension representing an attribute, a
query can be considered a d-dimensional box with the vertices defined based on the
attribute constraint values provided in the query clause.

It is sometimes a tedious process to specify the lower and upper bounds for all the
attributes of a query. In such cases, it is more convenient to provide an event sample as
the query and request to be notified of all the events similar to this sample. For example,
consider a camera remote surveillance network deployed over many airports to detect
criminal suspects. If a particular suspect is searched for, his or her picture is submitted as
a subscription to the network in hopes of finding the locations where similar images are
captured. A query of this kind can be represented by a sphere, in which the sample is the
center of the sphere and similarity is constrained by the sphere’s radius. This query is said
to have the spherical form.

Subject-based vs. Content-based

There are two main types of publish/subscribe designs: subject-based or content-based. In
the subject-based design, events are categorized into a small number of known subjects.
There must be an event attribute called ‘subject’, or something alike, that represents the
type of the event and a query must include a predicate (‘subject’ = s) to search only
events belonging to some known subject s. The occurrence of any event of subject s will
trigger a notification to the query subscriber. The subscription and notification protocols
are mainly driven by subject match rather than actual-content match.

The content-based design offers a finer filtering inside the network and a richer way to
express queries. A subscriber wants to receive only the events that match its query
content, not all the events that belong to a certain subject (which could result in too many
events). For example, many Bostonians are only interested in the Celtics and do not want
to be bothered by any event published regarding the Lakers. A query with subject “NBA”
would result in receiving all US professional basketball events including those about the
Celtics and the Lakers. A content-based query is therefore more desirable. A node upon
receipt of a query or event message needs to extract the content and makes a forwarding
decision based on this content. We can think of the subject-based model as a special case
of the content-based model and because of this simplification a subject-based system is
less challenging to design than a content-based system is.

STRUCTURE-BASED PUBLISH/SUBSCRIBE TECHNIQUES

A popular approach among structure-based publish/subscribe techniques is to employ a
Distributed Hash Table (DHT) to build an overlay structure on top of the P2P network.
This overlay provides efficient methods to route queries and events to their corresponding
nodes that are determined based on the hashing function. The goal is that the node storing
a subscription and that receiving a satisfactory event are either identical or within a
proximity of each other. Scribe [Castro et al. (2002)] uses Pastry [Rowstron & Druschel
(2001)] to map a subscription to a node based on topic hashing, thus those subscriptions
and data objects with the same topic are mapped to the same node. Instead of Pastry, the
CAN [Ratnasamy et al. (2001)] and Chord [Stoica et al. (2001)] DHT structures are
employed in [Gupta et al. (2004)] and [Terpstra et al. (2003)], respectively. A technique
that can be used atop any such DHT structure was proposed in [Aekaterinidis &
Triantafillou (2005)]. Non-DHT techniques also exist, such as Sub-2-Sub [Voulgaris et
al. (2006)] and R-tree-based [Bianchi et al. (2007)].

To illustrate the structure-based approach, we discuss how publish/subscribe services can
be deployed in a P2P network structured using the CAN overlay [Ratnasamy et al.
(2001)] discussed earlier in this chapter. Although CAN is an efficient overlay for
traditional retrieval in P2P networks, deploying a publish/subscribe service on top of
CAN is not as straightforward. From the database perspective, because we typically
model a data object as a point and a query as a range of points, we need to address the
range indexing problem in publish/subscribe systems. From the networking perspective,
due to its range, a subscription query may be replicated at multiple nodes to wait for
notification of all possible matching data objects. Hence, the number of subscriptions
stored in the network can be large, resulting in not only high communication cost to
replicate the subscriptions, but also high storage cost for each node and long time to
match an object against a subscription query. We need to minimize unnecessary
replications, yet at the same time store the queries in the network intelligently so that data
notification remains efficient.

Because of the low dimensionality of the CAN space, another challenge to a CAN-based
publish/subscribe system is due to the mismatch between the CAN dimension and the
data dimension. Data can, and usually, be of high dimension, such as in applications
searching documents, multimedia, and sensor data, which normally are associated with
many attributes. It is difficult to hash similar high-dimension data objects into zones in a
low-dimension space which are close to each other, making the search for a continuous
range of data highly inefficient.

Meghdoot [Gupta et al. (2004)] is a CAN-based publish/subscribe technique that works
for multi-dimensional data space. In Meghdoot, each subscription query in d dimensions
is mapped a point in 2d dimensions and the P2P network is virtualized in a CAN space of
2d dimensions. In the case that d is large, the CAN dimension is large, making CAN very
inefficient. In addition, Meghdoot does not allow publish/subscribe applications with
different data dimensions to run on the same CAN network.

Next, we describe a technique [Tran & Nguyen (2008)] using Random Projection (RP) to
map queries and events to appropriate rendezvous nodes in the network. This technique
can deploy a publish/subscribe application of any data dimensionality on any existing
CAN network.

RP Based Publish/Subscribe

Suppose that the data (event) space D is d-dimensional, and CAN space is k-dimensional.
The idea of RP is to project a d-dimensional data object in the original data space onto
the CAN space to get a new data object in k dimensions such that the distance between
two data objects after the projection remains within a small constant factor of the original
distance.

Let {u1,…,uk} be k random vectors, each being a d-dimensional orthonormal vector.
Consider a subscription query Q = (s,r), which is a sphere centered at point s ∈ D with
radius r, asking for all events that are within a distance r from the sample event s.
Projecting this sphere on the k random vectors, we obtain a k-dimensional hyper-
rectangle u(Q) = u1(s, r) × u2(s, r) × ... × uk(s, r), where each edge ui(s, r) is the interval
[<s, ui> - r, <s, ui> + r] (here, <.,.> denotes the inner product of two vectors). The
center of this rectangle is the point centeru(Q) = (<s, u1> , <s, u2>, …, <s, uk>).

A strategy for query subscription is to store the query q in the nodes Vi whose CAN-zone,

denoted by zone(Vi), intersects Q’s CAN-projection (i.e., zone(Vi) ∩ u(Q) ≠ ∅). This
strategy can be implemented as follows:

1) Use CAN routing to send Q to the node VQ such that zone(VQ) contains
centeru(Q).

2) Each node V that receives Q forwards this query to each neighbor node V’ such

that zone(V’) ∩ u (Q) ≠ ∅; node V’ follows the same procedure as V does.

When an event x becomes available, using CAN routing, we advertise x to the node Vx
such that zone(Vx) contains the point u(x) = (<x, u1> , <x, u2>, …, <x, uk>). It is obvious
that if x satisfies a query Q, then u(x) must be a point inside rectangle u(Q).
Consequently, zone(Vx) must intersect u(Q) and the query Q must have been stored at
node Vx. Thus, given an event x and subscription query Q, that match each other, they are
guaranteed to always find each other at some rendezvous node.

The above strategy allows for quick and cost-effective event notification because each
event is advertised to only one node. However, there might incur a large amount of
subscription replicas in the network. Since subscription queries are likely to overlap, we
should take advantage of this property to minimize their replication in the network.
Observe that if query Q’ covers query Q, it must be true that u(Q’) covers u(Q).
Therefore, if a new query Q is covered by an existing query Q’, the nodes that the new
query is mapped to must have already stored the existing query. Because those events
that satisfy Q' will be returned to notify Q’ anyway, which can be filtered to match Q,
there is no need to replicate query Q further. Based on this observation, a more efficient

strategy is proposed in [Tran & Nguyen (2008)], which differs from the aforementioned
strategy in that a query Q is not replicated at a node if this node has stored an existing
query Q’ such that u(Q’) contains u(Q). The query subscription for a query Q works in
detail as follows:

1) Use CAN routing to send Q to the node VQ such that zone(VQ) contains
centeru(Q).

2) If there does not exist a query Q’ currently stored at node VQ such that u(Q’)
covers u(Q):

a) Node VQ will store Q and is called the home node of Q, denoted by
home(Q).

b) Forward Q to adjacent nodes whose zone intersects Q. Such a node V’
performs the following steps:

i. Store Q at V’
ii. For each existing query Q’ stored at V’ such that u(Q) covers

u(Q’), remove query Q’ from node V’
iii. Forward Q to adjacent nodes whose zone intersects Q as in step b)

3) If node VQ stores a query Q’ satisfying the condition of 2), query Q will be routed
to and stored at node home(Q’).

To illustrate this revised strategy, we consider the following scenario. In Figure 4, queries
q1, q2, q3 are submitted into the network at times in that order. Query q1 is submitted first,
which intersects the zones of nodes 7, 13, 11, 9, 10, 8, and 2. Therefore, q1 is stored at
these nodes and the home node of q1 is node 7 (because the projection center centeru(q1)
lies in the zone of node 7). When q2 is submitted, it is sent to node 10 whose zone
contains the projection center of q2. Because node 10 already stores query q1 and u(q1)
covers u(q2), query q2 will be stored at the home node of query q1, i.e., node 7 only;
hence, a significant reduction in subscription load. When query q3 is submitted, because
its projection is not covered by any other’s, it is stored at nodes 2 and 3 because their
zones intersect u(q3), node 2 serving as the home node of query q3.

Fig. 4. Query subscription and event notification.

When an event x becomes available, the notification procedure works as follows:

1) Use CAN routing to advertise x to the node Vx such as u(x) ∈ zone(Vx)
2) For each query Q stored at node Vx such that u(x) ∈ u(Q), forward x to node

home(Q) – the home node of Q. At each home node V that receives x, search for
and notify all the queries that match x and that call V home.

For example, continuing the previous illustration with Figure 6, suppose that an event x
satisfying query q2 is available such that u(x) lies in the zone of node 11. An
advertisement will be sent to node 11, where it is found that u(x) ∈ u(q1). Consequently,
the advertisement of x is routed to the home node 7 of query q1, where we will find query
q2.

GOSSIP-BASED PUBLISH/SUBSCRIBE TECHNIQUES

Structure-based techniques are capable to grow the network and adaptable to network
dynamics, but they incur an additional cost to maintain the overlay. In addition, some of
these techniques require different overlays for different publish/subscribe applications.
The gossip-based approach [Terpstra et al. (2007)], [Wong & Guha (2008)], [Gkantsidis
et al. (2006)] can work with any unstructured networks and thus does not have these
limitations.

The word “gossip” gives the intuition of its use in publish/subscribe techniques:
subscriber nodes and publisher nodes find each other by gossiping with their respective
neighbors. An example is to use random walks. A query follows a random walk in the
network and is replicated at each node visited. Another random walk is used to publish an

event. If these two random walks are long enough, they have a good chance to intersect.
As such, there is a high probability that an event will reach every query and thus find all
the matching queries. The tradeoff, however, is due to the high cost (communication,
storage) to disseminate each query or event. The main question, therefore, is how to
design a gossiping mechanism that offers the best balance between efficiency and
effectiveness. BubbleStorm [Terpstra et al. (2007)] is a recent technique aimed to address
this challenge.

BubbleStorm

BubbleStorm replicates each query in a given number of nodes within a number of hops
from the source. This set of nodes called a query bubble. Similarly, an event is also
replicated in an event bubble. These bubbles need to be large enough to share at least a
rendezvous node where the query and event can find each other.

To reach a given bubble size, nodes chosen to disseminate a query (or event) should be
independent and the bubbles should be formed without cycles. For this purpose, a random
multi-graph is proposed, in which self-loops and double-edges are allowed and a node’s
degree is proportional to its bandwidth. Figure 5(a) illustrates a random multi-graph of 7
nodes. The degree of node 1 is 3, of node 7 is 4, etc.

Fig. 5. Random multi-graph example

When a new node joins the network, it firstly contacts the bootstrap node and then uses a
random walk to find a proper edge. The chosen edge will be split and the node is inserted
between the vertices connecting this edge. Suppose that node 8 contacts its bootstrap
node, which is node 3, and eventually found an edge between node 5 and 6. The creation
of new links is illustrated in Figure 5(b). If a node leaves, its neighbors need to adjust
their connections to maintain degrees. For example, in Figure 5(c), node 2 departs from
the network and as a result new links (2-3, 7-7) are created to maintain the degrees of
nodes 2, 3, and 7.

The communication primitive used by BubbleStorm to replicate queries and events in the
bubbles is called BubbleCast. BubbleCast defines a split factor f which controls how
many neighbor nodes should receive a forwarded query or event. Suppose that a query,
starting at a node V needs to be replicated at nq nodes. Node V will store a replica of the
query and forwards the query to f neighbor nodes, chosen randomly. Each such a

neighbor node is responsible for (nq – 1)/f remaining replicas of the query; the same
replication procedure as at node V is applied. The dissemination of an event is similar.

Figure 6 provides an example of how BubbleCast works. In this example, suppose the
number of replicas for a query is 17, and the split factor is 2. Each time, the number of
replicas is reduced by 1 and then divided by split factor 2. From the initial subscriber, the
number of remaining replicas is 17-1 = 16, divided by split factor of 2. Each new
forwarder will continue with 8 as the number of replicas, including itself. The process
continues until the number of replicas becomes 1. So the procedure will end up with
totally 17 replicas as the desired size of the bubble. This process is the hybrid of random
walks and flooding.

Fig. 6. How BubbleCast works.

Choosing a desirable bubble size is a key factor of BubbleStorm. It is proposed that if a
query is replicated at nq = O(sqrt(n)) nodes and an event is disseminated to c2n/nq nodes,
the probability that the query and the event can find each other at an intersection of their
bubbles is 1-exp(c2) , where c is the certainty factor (e.g., c = 3 � probability = 99.99%).

HYBRID PUBLISH/SUBSCRIBE TECHNIQUES

The gossip-based approach offers more flexibility than the structure-based approach
because the former requires no overlay structure in advance and allows queries and
events to be expressed in any format. On the other hand, as queries and events are spread
randomly in the network, there is no guarantee that they will meet each other. To make
any gossip-based system effective, we need to publicize the queries and events widely in
the network, leading to the trade-off between efficiency and effectiveness. In addition to
that, the guarantee that every query meets every event is unnecessarily strong. Indeed, we
only need to guarantee that ever query meets every matching event.

In this section, we introduce Pub-2-Sub [Tran & Pham (2010)], a technique combining
the strengths of both structure-based and gossip-based approaches. Pub-2-Sub can be
considered a hybrid approach that can work in any unstructured P2P network, yet having
the efficiency of structure-based techniques. It allows any number of independent
publish/subscribe applications to run simultaneously on the same underlying P2P
network. Because Pub-2-Sub is based on directed routing, it has the potential to be more

efficient than the gossip-based approach. Pub-2-Sub results in lower storage and
communication costs in comparison to BubbleStorm. In terms of computation cost, Pub-
2-Sub requires only a node in the network that needs to evaluate its local queries to find
those matching a given published event. The technique also incurs small notification
delay and is robust under network failures.

Pub-2-Sub

Pub-2-Sub is based on two key design components: the virtualization component and the
indexing component. The virtualization component assigns to each node a unique virtual
address. The indexing component determines the corresponding subscription and
notification paths for given queries and events, in which routing is based on the virtual
addresses of the nodes.

Virtualization

A virtualization procedure can be initiated by any node to result in a “virtual address
instance” (VA-instance), where each node is assigned a virtual address (VA) being a
binary string chosen from {0, 1}*. Suppose that the initiating node is S*. In the
corresponding VA-instance, denoted by INSTANCE(S*), we denote the VA of each node
Si by VA(Si : S*). To start the virtualization, node S* assigns itself VA(S*: S*) = ∅ and
sends a message inviting its neighbor nodes to join INSTANCE(S*). A neighbor Si
ignores this invitation if already part of the instance. Otherwise, by joining, Si is called a
“child” of S* and receives from S* a VA that is the shortest string of the form VA(S*: S*)
+ ‘0*1’ unused by any other child node of S*. Once assigned a VA, node Si forwards the
invitation to its neighbor nodes and the same VA assignment procedure continues
repeatedly. In general, the rule to compute the VA for a node Sj that accepts an invitation
from a node Si is that VA(Sj : S*) is always the shortest string of the form VA(Si : S*) +
‘0*1’ unused by any other child node currently of Si.

Eventually, every node is assigned a VA and the VAs altogether form a prefix-tree rooted
at node S*. We call this tree a VA-tree and denote it by TREE(S*). For example, Figure 7
shows the VA-tree with VAs assigned to the nodes as a result of the virtualization
procedure initiated by node 1. The nodes’ labels (1, 2, ..., 24) represent the order they join
the VA-tree. Each time a node joins, its VA is assigned by its parent according to the VA
assignment rule above. Thus, node 2 is the first child of node 1 and given VA(2 : 1) =
VA(1 : 1) + ‘1’ = ‘1’ , node 3 is the next child and given VA(3 : 1) = VA(1 : 1) + ‘01’ =
‘01’ , and node 4 last and given VA(4 : 1) = VA(1 : 1) + ‘001’ = ‘001’. Other nodes are
assigned VAs similarly. For example, consider node 18 which is the third child of node 8
(VA ‘011’). The VA of node 18 is the shortest binary string that is unused by any other
child node of node 8 and of the form VA(8 : 1) + ‘0*1’. The other children 16 and 17
already occupy ‘0111’ and ‘01101’, therefore the VA of node 18 will be ‘011001’.

Fig. 7. Pub-2-Sub: Virtualization and Indexing

In INSTANCE(S*), each node Si is associated with a “zone”, denoted by ZONE(Si : S*),
consisting of all the binary strings str such that: (i) VA(Si : S*) is a prefix of str, and (ii)
no child of Si has VA a prefix of str. In other words, among all the nodes in the network,
node Si is the one whose VA is the maximal prefix of str. We call Si the “designated
node” of str and use NODE(str : S*) to denote this node. For example, using the virtual
instance TREE(1) in Figure 7, the zone of node 11 (VA ‘00101’) is the set of binary
strings ‘00101’, ‘001010’, and all the strings of the form ‘0010100...’, for which node 11
is the designated node.

Indexing

Pub-2-Sub supports publish/subscribe applications that can have any data dimensionality
and allows any number of them to run on the network simultaneously, whose dimension
can be different from one another. For ease of presentation, we assume for now that
events are one-dimensional.

In Pub-2-Sub, an event x is expressed as a k-bit binary string (the parameter k should be
chosen to be larger than the longest VA length in the network). A query Q is represented
as an interval Q = [ql, qh] , where ql, qh ∈ {0, 1}k, subscribing to all events x belonging to
this interval (events are “ordered” lexicographically). As an example, if k = 3, the events
matching a query [‘001’, ‘101’] are {‘001’, ‘010’, ‘011’,‘100’, ‘101’, 111’} . Supposing
that every node has been assigned a VA as a result of a virtualization procedure initiated
by a node S*, we propose that (i) each query Q is stored at every node Si such that
ZONE(Si : S*) ∩ Q ≠ ∅; and (ii) each event x is sent to NODE(x : S*) – the designated
node of string x. It is guaranteed that if x satisfies Q then Q can always be found at node
NODE(x : S*) (because this node’s zone must intersect Q). The routing of queries and
events to their destination nodes is facilitated by the VA structure based on the matching
between the node VAs and query/event content.

Figure 7 shows an example with k = 7. Suppose that node 12 wants to subscribe a query
Q = [‘0110001’, ‘0110101’], thus looking to be notified upon any of the following
events {‘0110001’, ‘0110010’, ‘0110011’, ‘0110100’, ‘0110101’}. Therefore, this query
will be stored at nodes {8, 17, 18}, whose zone intersects with Q. For example, node 8’s
zone intersects Q because they both contain ‘0110001’. The path to disseminate this
query is 12�5�2�1�3�8�{17, 18} (represented by the solid arrow lines in Figure
11). Now, suppose that node 22 wants to publish an event x = <‘0110010’>. Firstly, this
event will be routed upstream to node 8 – the first node that is a prefix with ‘0110010’
(path 22�16 �8). Afterwards, it is routed downstream to the designated node
NODE(‘0110010’:1), which is node 18 (path 8�18). Node 18 searches its local queries
to find the matching queries. Because query Q = [‘0110001’, ‘0110101’] is stored at
node 18, this query will also be found. The storage and communication costs for a
query’s subscription depend on its range; the wider the range, the larger costs.

Multiple VA Instances

Because query subscription and event notification procedures are based on the VA-tree,
the root node and those nearby become potential hotspots. To alleviate this bottleneck
problem, a solution is to build, not one, but multiple VA instances. We can build m VA-
instances initiated by dedicated nodes randomly placed in the network {S1*, S2*,…, Sm*} .
After m virtualization procedures, each node Si will have m VAs, VA (Si : S1*), VA(Si :
S2*), ..., and VA(Si : Sm*) , respectively corresponding to the m VA-instances.

In the presence of multiple VA-instances, each query is subscribed to a random VA-
instance and each event is published to every VA-instance. A node near the root of a VA-
tree may likely be deep in other VA-trees and so the workload and traffic are better
shared among the nodes. Using multiple VA-instances also increases reliability. Because
an event is notified to every VA-tree, the likelihood of its finding the matching queries
should remain high even if a path this event is traveling is disconnected because of some
failure.

Multi-Dimensionality

In the description of Pub-2-Sub we have expressed an event as an one-dimensional k-bit
binary string and a query as an one-dimensional interval. In practice, however, an event
can have multiple attributes and as such it is usually represented as a numeric value in d
dimensions where d is the number of attributes. To specify a subscription, a query is
often specified as a d-dimensional rectangular range of values. Pub-2-Sub can work with
events and queries of this general form.

First, we need a hash mechanism f that hashes a d-dimensional value x to an one-
dimensional k-bit binary string xf = f(x) and a d-dimensional range Q to an one-
dimensional interval Qf = f(Q) of k-bit strings such that if x ∈ Q then xf ∈ Qf. For this
purpose, we propose to use a (k/2)-order Hilbert Curve mapping [Lawder & King
(2000)]. This mapping preserves not only the containment relationship but also the

locality property. Thus, small Q in the original space is mapped to small Qf in the one-
dimensional space with a high probability.

Then, to subscribe a query Q we use the hash interval Qf. Similarly, to publish an event x
we route it to the designated node of xf. When the event x reaches this node, locally stored
queries are evaluated to find those matching x; the query evaluation with the event is
based on the original values of the query and event (Q and x), not the hash values (Qf and
xf).

CONCLUSIONS

The publish/subscribe paradigm represents a large class of applications in P2P networks.
Despite many existing techniques to implement this paradigm in P2P networks, there
remains much room for future research. For a large-scale P2P network where broadcast-
based and gossip-based approaches may not be the best fit, the routing design should be
driven by the content of the message being routed so as to limit the scope of propagation.
On the other hand, content-based routing if enabled by a structured overlay might incur
considerable costs to maintain the structure. Since P2P networks may be of different
types (small vs. large, unstructured vs. structured, static vs. dynamic) and the application
to deploy may also have its own characteristic (low vs. high query rate, low vs. high
event rate, subject-based vs. content-based, etc.), it is difficult to choose a
publish/subscribe design that works well in every practical case. Thus, rather than trying
to find a “perfect” design universally, it would be better to categorize the networks and
applications into similarity-based groups and design the “best” technique for each group.
For example, for P2P-based cooperative networks in which the nodes are supposed to be
functional most of the time and failures should not happen too often, a technique like
Pub-2-Sub presented in this chapter is a good design candidate. Data grid networks and
institutional collaborative networks can take full advantage of this technique.

It is also important to develop a publish/subscribe middleware package that provides a set
of common services to most publish/subscribe network/applications no matter their
categories, and another set of services each customized toward a specific category. This
middleware should provide convenient tools for the middleware designer to add new
service components to the existing architecture, such as a new language for query and
event description and a new implementation for routing, data aggregation, or an event
matching algorithm. It should also give the application developer freedom and a
convenient API to choose the publish/subscribe service configuration that is best for the
context of the deployment. Middleware development for publish/subscribe applications in
P2P networks remains ad hoc and isolated. It should be given high priority in the future
research towards publish/subscribe services in P2P networks.

REFERENCES

Aekaterinidis, I., & Triantafillou, P. (2005) “Internet scale string attribute
publish/subscribe data networks,” in CIKM ’05: Proceedings of the 14th ACM

international conference on Information and knowledge management. ACM Press, 2005,
pp. 44–51.

Bianchi, S., Felber, P., & Gradinariu, M. (2007) “Content-based publish/subscribe using
distributed r-trees,” in Euro-Par, 2007, pp. 537–548.

Castro, M., Druschel, P., Kermarrec, A., & Rowstron, A. (2002) “SCRIBE: A large-scale
and decentralized application-level multicast infrastructure,” IEEE Journal on Selected
Areas in communications (JSAC), vol. 20, no. 8, pp. 1489–1499, 2002.

Freenet. http://en.wikipedia.org/wiki/Freenet

Gkantsidis, C., Mihail, M., & Saberi, A. (2006) “Random walks in peer-to-peer
networks: algorithms and evaluation,” Perform. Eval., vol. 63, no. 3, pp.241–263, 2006.

Gnutella. http://gnutella.wego.com

Gupta, A., Sahin, O. D., Agrawal, D., & Abbadi, A. E. (2004) “Meghdoot: content-based
publish/subscribe over p2p networks,” in Middleware ’04:Proceedings of the 5th
ACM/IFIP/USENIX international conference on Middleware. New York, NY, USA:
Springer-Verlag New York, Inc.,2004, pp. 254–273.

Lawder, J. K., & King, P. J. H. (2000) “Using space-filling curves for multidimensional
indexing,” in BNCOD 17: Proceedings of the 17th British National Conference on
Databases. London, UK: Springer-Verlag, 2000, pp. 20–35.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., & Shenker, S. (2001) “A scalable
content addressable network,” in ACM SIGCOMM, San Diego, CA, August 2001, pp.
161–172.

Rowstron, A., & Druschel, P. (2001) “Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems,” in IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), Heidelberg, Germany, November 2001, pp.
329–350.

Shalaby, N., & Zinky, J. (2007) “Towards an architecture for extreme p2p applications,”
in Parallel and Distributed Computing and Systems Conference (PDCS), Cambridge,
MA, November 2007.

Stoica, I., Morris, R., Karger, D., Kaashock, M., & Balakrishman, H. (2001) “Chord: A
scalable peer-to-peer lookup protocol for internet applications,” in ACM SIGCOMM, San
Diego, CA, August 2001, pp. 149–160.

Teranishi, Y., Tanaka, H., Ishi, Y., & Yoshida, M. (2008) “A geographical observation
system based on p2p agents,” in PERCOM ’08: Proceedings of the 2008 Sixth Annual

IEEE International Conference on Pervasive Computing and Communications.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 615–620.

Terpstra, W. W., Behnel, S., Fiege, L., Zeidler, A., & Buchmann, A. P. (2003) “A peer-
to-peer approach to content-based publish/subscribe,” in DEBS ’03:Proceedings of the
2nd international workshop on Distributed eventbased systems. New York, NY, USA:
ACM Press, 2003, pp. 1–8.

Terpstra, W. W., Kangasharju, J., Leng, C., & Buchmann, A. P. (2007) “Bubblestorm:
resilient, probabilistic, and exhaustive peer-to-peer search,” in SIGCOMM ’07:
Proceedings of the 2007 conference on Applications, technologies, architectures, and
protocols for computer communications. New York, NY, USA: ACM, 2007, pp. 49–60.

Tran, D. A., & Nguyen, T. (2008) “Publish/subscribe service in can-based p2p networks:
Dimension mismatch and the random projection approach,” in IEEE Conference on
Computer Communications and Networks (ICCCN’08). Virgin Island, USA: IEEE Press,
August 2008.

Tran, D. A., & Pham, C. (2010) “Enabling content-based publish/subscribe services in
cooperative P2P networks,” in Journal of Computer Networks. Elsevier, February 2010.

Voulgaris, S., Rivire, E., Kermarrec, A.-M., & van Steen, M. (2006) “Sub-2-sub: Self-
organizing content-based publish subscribe for dynamic large scale collaborative
networks,” in 5th Int’l Workshop on Peer-to-Peer Systems (IPTPS 2006), 2006.

Wong, B., & Guha, S. (2008) “Quasar: A Probabilistic Publish-Subscribe System for
Social Networks,” in Proceedings of The 7th International Workshop on Peer-to-Peer
Systems (IPTPS ’08), Tampa Bay, FL, February 2008.

Zhao, B. Y., Huang, L., Stribling, J., Rhea, S. C., Joseph, A. D., & Kubiatowicz, J.
(2004) “Tapestry: A resilient global-scale overlay for service deployment,” IEEE Journal
on Selected Areas in Communications, vol. 22, no. 1, January 2004.

Cuong (Charlie) Pham is a PhD student in the Department of Computer Science at the
University of Massachusetts at Boston and a research member of the Network
Information Systems Laboratory (NISLab). He received a BS degree in Computer
Science from Bowman Technical State University in Moscow, Russia in 2007. His
research interests are P2P networks and wireless sensor networks. He was a research
intern working on distributed storage networks at EMC (USA) during summer of 2010.
He received a Student Travel Award from the NSF and a Research Excellence Award
from the Department of Computer Science (UMass Boston), both in 2009.

Duc A. Tran is an Assistant Professor in the Department of Computer Science at the
UMass Boston, where he leads the Network Information Systems Laboratory (NISLab).
He received a PhD in CS degree from the University of Central Florida (Orlando,
Florida). Dr. Tran's interests are focused on data management and networking designs for

decentralized networks. His work has resulted in research grants from the National
Science Foundation and two Best Papers (ICCCN 2008, DaWak 1999). Dr. Tran has
served as a Review Panelist for the NSF, Editor for the Journal on Parallel, Emergent,
and Distributed Systems (2010-date), Guest-Editor for the Journal on Pervasive
Computing and Communications (2009), TPC Co-Chair for CCNet 2010, GridPeer
(2009, 2010, 2011), and IRSN 2009, TPC Vice-Chair for AINA 2007, and TPC member
for 40+ international conferences.

