
36

Enabling Publish/Subscribe Services in Sensor
Networks

Duc A. Tran1 and Linh H. Truong2

1University of Massachusetts, Boston, USA
2IBM Zurich Research Laboratory, Switzerland

36.1 Introduction

We have seen in this decade sensor technologies increasingly deployed in
many applications. Sensors are used to monitor the surrounding environment
for important events such as climate changes, chemical leaks, early warnings
of a natural disaster, or violations in a no-trespassing zone. For a large area
being monitored, we need a sensor network that allows for efficient search
and dissemination of the sensor data.

A sensor network for monitoring purposes basically involves two types of
nodes: the “query" nodes and the “sensor" nodes. The query nodes are those
that send queries into the network to inquire about sensor data of interest.
A query node can be a sink node that needs to collect the data from the
network or an actuator node whose operation is triggered based on events
detected in the network. The sensor nodes are those that capture event data
and need to send them, or notify of their existence, to interested query nodes.
In many applications, a query needs to be submitted to the network in advance
waiting for notification of the events that match the query. Because a sensor
node does not know who may be interested in its data, and, viceversa, a
query node does not know where in the network its events of interest may
occur, a challenging problem is to design an effective mechanism for query
subscription and the event notification so that an event can notify its inquirers
quickly and efficiently. In this publish/subscribe problem, the sensor nodes

2 Enabling Publish/Subscribe Services in Sensor Networks

and query nodes are respectively called thepublishernodes andsubscriber
nodes.

Many Internet-based publish/subscribe systems have been designed, e.g.,
PADRES [24], REBECA [25], SIENA [12], and XNET [14]. Some concepts
of these systems might be useful, but enabling publish/subscribe services in
sensor networks is fundamentally different due to unique constraints on com-
munication, storage, and computation capacities. On the other hand, despite a
lot of research and development efforts made for sensor networks that provide
search mechanisms, most of them are focused on retrieving sensor data that
havealreadybeen stored by the network. The publish/subscribe model poses
a different challenge as a query of this model is to inquire about futureevents.
Thus, the query must be stored proactively in the network to wait for those
events. When such an event occurs, it needs to be published tothe network
to search for the matching queries among the stored. With the“proactive"
storing of queries, events can be delivered “timely" to the subscribers, while
in the “retrieving" case, subscribers only receive “past" events. This is of
importance to applications that require a real-time monitoring of the events.

To enable publish/subscribe services in sensor networks, adesirable de-
sign should consider the following important issues:

• Routing design: To subscribe a query, without any knowledgeabout
where a matching event could occur, the simplest way is to broadcast
it to the entire network. This way, an event can find its matching queries
immediately at the local node. Because the traffic due to broadcasting
can be overwhelming for a large-scale network, other efforts have been
attempted to reduce this communication with an efficient routing design.
A key approach is to replicate a query to a set of select nodes and to
publish an event to another corresponding set of select nodes such that, if
the event matches the query, there exists a rendezvous node,certainly or
at least with a high probability. This guarantee needs to take into account
the communication cost due to transmissions of queries and events.

• Query aggregation: Because a sensor node’s storage capacity is usually
limited, it is desirable that a node stores as small a number of queries as
possible. The broadcast approach aforementioned incurs a high storage
cost because each node has to store every query. It is thus important
to reduce the number of replicas for any given query. By doingso, it
also helps reduce the amount of traffic in the network due to query for-
wardings. Query aggregation serves this purpose. For example, queries
can be merged to produce fewer queries. Or, if a new query arrives at

36.2 Preliminaries 3

a node finding itself covered by a locally stored query, the new query
may not necessarily be forwarded further. This is so becauseany event
matching the new query will match the existing query as well,and thus
this event will be returned anyway as a result of the existingquery’s
earlier subscription.

• Event matching: When a node receives a publication of an event, the
node may need to evaluate its locally stored queries to find those match-
ing the event. Because a sensor node has limited processing capability,
this procedure if not properly designed may create a computational bur-
den too heavy for the node. Several techniques have been proposed to
organize the queries into some indexing architecture that is convenient
for event matching. Alternatively, one may employ a multi-phase check-
ing algorithm where the earlier phases are to determine quickly whether
a query should be ignored and the later phases are to evaluatethe queries
that pass the earlier phases.

While most techniques emphasize the above algorithmic issues, e.g., [34,
31, 22, 40, 48, 16, 27, 49], publish/subscribe middleware techniques aimed
at high-level service abstraction have also been proposed [44, 33, 28, 52].
They provide a convenient middleware layer serving as an APIfor the ap-
plication developer, hiding all the underlying network complexities and the
implementation details of the publish/subscribe mechanisms.

A survey of representative publish/subscribe techniques for sensor net-
works is presented in this chapter, with attention given to the issues of routing
design, query aggregation, event matching, and middlewaredevelopment.

36.2 Preliminaries

36.2.1 Event and Query Representation

An event in a publish/subscribe system is usually specified as a set ofd
attribute-value pairs {(attr1, v1), (attr2, v2), ..., (attrd,vd)} where d is the
number of attributes,{attr1,attr2, ...,attrd}, associated with the event. For
example, if the sensor network is used to monitor temperature, humidity, wind
speed, and air pressure of some area,d is four – representing these four sensor
data attributes.

The constraints in a query, in general, can be specified in a predicate of
the disjunctive normal form – a disjunction of one or more condition clauses,
each clause being a conjunction of elementary predicates. Each elementary
predicate, denoted by(attri γ pi), is a condition on some attributeattri with γ

4 Enabling Publish/Subscribe Services in Sensor Networks

being the filtering operator. A filtering operator can be a comparison operator
(one of {=, <, >}) or a string operator such as“prefix of", “suffix of", and
“substring of" if the attribute is ofstring type. However, for simplicity of
implementation, most schemes assume that a query is a singleconjunctive
clause of elementary predicates that can only use the comparison operators.
This form of query can be called therectangular formbecause if an event is
modeled as a point in ad-dimensional coordinate system, each dimension
representing an attribute, a query can be considered ad-dimensional box
with the vertices defined based on the attribute constraint values provided
in the query clause. Sometimes it can be a tedious process to specify all the
lower and upper bounds for all the attributes of a query. In such a case, it
is more convenient to specify a query in terms of an event sample and ask
to be notified of all the events similar to this sample. For example, consider
a camera-sensor remote surveillance network deployed overmany airports
to detect criminal suspects. If a particular suspect is searched for, his or her
picture is submited as a subscription to the network in hopesof finding the
locations where similar images are captured. A query of thiskind can be
represented by a sphere, in which the sample is the center of the sphere and
similarity is constrained by the sphere’s radius. This query is said to have the
spherical form.

36.2.2 Subject-based vs. Content-based

There are two main types of publish/subscribe designs [20]:subject-based or
content-based. In the subject-based design, events are categorized into a small
number of knownsubjects. There must be an event attribute called‘subject’,
or something alike, that represents the type of the event anda query must
include a predicate(‘subject’ = s) to search only events belonging to some
known subjects. The occurence of any event of subjectswill trigger a notifi-
cation to the query subscriber. The subscription and notification protocols are
mainly driven by subject match rather than actual-content match.

The content-based design offers a finer filtering inside the network and a
richer way to express queries. A subscriber wants to receiveonly the events
that match its query content, not all the events that belong to a certain subject
(which could be too many). A node upon receipt of a query or event mes-
sage needs to extract the content and makes a forwarding decision based on
this content. We can think of the subject-based model as a special case of
the content-based model and because of this simplification,a subject-based
system is less challenging than a content-based system to design.

36.3 Routing Design 5

36.2.3 Sensor Network Assumptions

There are different types of sensor networks that have been considered by
existing publish/subscribe techniques. The techniques in[39, 40] assume that
a sensor node knows its location (e.g., by a built-in GPS-like device or by
running a localization protocol [47]). A mapping from the query/event space
to the location space can be designed, based on which a query and a matching
event are sent to the corresponding nodes who can find each other within a
short distance. For example, if a query is replicated at all the nodes along
the vertical line crossing the subscriber node’s location,and if an event is
published to all the nodes along the horizontal line crossing the publisher
node’s location, a rendezvous node exists for every pair of queries and events.
This is so because every vertical line must meet every horizontal line.

Several techniques do not require any knowledge of locationinforma-
tion (e.g., [34, 31, 16, 45, 27, 49]). Besides the broadcast approach, another
approach used by such techniques is based on some form of randomized
dissemination to subscribe a query or publish an event. The main intuition
is that if a query is replicated to a set of random nodes, an event published to
its corresponding set of also random nodes, and if these two sets are large
enough, then there exists a rendezvous node with a high probability. For
example, one can use a random walk or a gossip-based protocol[16, 45] to
visit these large sets of nodes. Some other techniques [27, 49] use a naming
scheme to assign names to the network nodes and routing is driven by node
names instead of nodes being chosen in random.

Most techniques assume that nodes are stationary. There aresome tech-
niques addressing publish/subscribe in general mobile networks that could
apply to a mobile sensor network [4, 53, 26, 23, 32, 18, 15]. This chapter
discusses techniques designed for stationary networks only.

36.3 Routing Design

Routing protocols for query subscription and event notification form the most
important component of any distributed publish/subscribesystem. While tra-
ditional routing protocols for sensor networks are designed for synchronous
communication and are address-driven, routing for publish/subscribe pur-
poses is asynchronous because subscribers and publishers are not aware of
each other and the timing of the subscription and publication. There are
various publish/subscribe routing approaches which are discussed below.

6 Enabling Publish/Subscribe Services in Sensor Networks

36.3.1 Centralized-based

A simple approach is to employ a central brokerage station that receives the
subscription of every query and publication of every event.This approach
keeps the system design lightweight on each node. Routing ofqueries and
events becomes trivial because the central broker is the only destination.
Queries may be aggregated at the intermediate nodes on the way to the cen-
tral broker. Event matching is conducted at the central broker to find all the
queries matching a newly published event. The centralized-based approach,
which has been implemented in the MQTT and MQTT-S middlewareat IBM
[33], can work with queries and events of any form. However, the central
broker can easily be a severe communication bottleneck if queries and events
are produced at high rates.

36.3.2 Broadcast-based

Directed Diffusion [34] is one of the earliest publish/subscribe techniques for
sensor networks. Given a new query, the first step in this technique is for
the subscriber node to broadcast the query to all the nodes inthe network.
Each node upon receipt of this query creates a “gradient" entry in the routing
table to point toward the neighboring node from which the query is received.
Using a gradient path, a matching event can be sent toward thesubscriber.
Since there may be more than one such gradient path, the choice of which
path to use is made based on some performance factors to improve energy
efficiency.

[31] proposes building a broadcast tree, called PST, spanning all the nodes
in which events will be disseminated from a publisher (root node) to all their
subscribers. Each node in PST that has a subscription needs to let its parent
node know of this subscription. Thus a node can compute a combination of
all the subscriptions downstream. When an event is published by the root,
the event will follow the branches of PST that lead to all the matching sub-
scribers. If there are multiple publishers, multiple treesare built each for a
publisher, or alternatively, a shared root is selected thatreceives all the events
from the publishers and a single tree is built based on this root to send the
events to all the nodes. PST does not incur the cost to replicate queries at ev-
ery node, but it is efficient only when there are a smaller number of publisher
nodes.

In a different effort, [41] proposes a hierarchical structure to organize the
network into multiple clusters, in which each cluster formsa publish/subscribe
sub-network and has a representative node to appear in the next layer of the

36.3 Routing Design 7

hierarchy; the representative nodes form a layer of clusters which again are
used to build the next layer in the hierarchy. The representative nodes are
responsible for forwarding a query or event from one sub-network to another.
Although this clustering idea can potentially reduce the subscription and
notification traffic in the network compared to the pure broadcast-based ap-
proach, its complexity lies in the maintenance of the hierarchy under network
dynamics.

36.3.3 Location-based

Flooding the network can be expensive, especially for systems where there
are a large number of queries and events generated by many potential sub-
scriber and publisher nodes. Consequently, many distributed techniques have
been proposed. If the location is known for every node, the location infor-
mation can be useful. [39] proposed the method of GeographicHash Tables
(GHT) – to hash the data space to locations in the location space. Each data
value is respresented by an one-dimensional identifier called a “key"k, which
correponds to a geographic coordinateh(k) based on the hash function. Thus,
if both events and queries each can be identified by a single key, we can
use GHT. For example, a subject-based system is a natural candidate for this
technique because the subject value can be used as the key value for GHT. A
query with keyk will be stored at the node closest to the locationh(k). When
an event with the same keyk emerges, it will be routed to the nodeh(k)
and thus can find its matching queries. For routing from a sensor location to
another sensor location, we can use a geographic routing protocol designed
for sensor networks such as [35]. An extension of the GHT technique in
combination with landmark-based routing to improve routing efficiency is
proposed in [22].

Another location-based technique called Double-Ruling isproposed in
[40], in which each nodeP is mapped to a pointf (P) on the surface of a 3D
sphere and a keyk is hashed to a pointh(k) also on this spherical surface.
A query with keyk subscribed by a nodeP will be sent to the node corre-
sponding to the pointh(k). The routing follows the great circle connecting
the pointsh(k) and f (P) on the 3D surface. An event is published to the
corresponding node in a similar fashion and thus every eventwith key k will
be sent to nodeh(k) and can find all the matching queries there. A property
of Double-Ruling is that it is distance-sensitive: the length of the notification
path from a publisher to a matching subscriber is guaranteedto be within a

8 Enabling Publish/Subscribe Services in Sensor Networks

small constant factor of the direct path connecting them. The GHT method
does not make this guarantee.

The above distributed methods (GHT and Double-Ruling) should not
work efficiently with a content-based publish/subscribe system because it
is difficult to represent a complex query by a single key. For events and
queries of any dimensionalityd, one can use the technique proposed by [48].
This technique assumes the spherical form for the queries. Given a query, a
random-projection method is used to hash this query into a 2Drectangle in
the location space; the query will be replicated at all the nodes inside this
rectangle. Using the same random projection, an event is hashed a single
location; the event will be sent to the node closest to this location. The random
project method guarantees that this event will find all the matching queries. To
reduce the number of query replicas, the subscription covering relationship
is taken into account to avoid further replications of thosequeries that are
subsumed by previously-subscribed queries.

36.3.4 Gossip-based

Without location information, a common idea is to use some form of gossip to
disseminate queries and events. A simple design is to use random walks [3, 9].
Each query is replicated on all the nodes visited by a random walk starting
from the subscriber node, and each event also follows a random walk from
the publisher node to find the queries. If these random walks are long enough,
it is highly likely that an event will find all the matching queries. To shorten
the notification delay, multiple random walks can be used to propagate an
event (or to replicate a query) [9].

Another approach is proposed in [16], where both queries andevents
are “selectively" broadcast to the network. A query is broadcast to an extent
defined by the subscription horizonφ which limits the number of times the
query is rebroadcast. In the broadcast of an event, only a fraction τ of the
neighbor links at each current node is used to forward the event. By choosing
appropriate values forφ andτ , we can control the overhead and effectiveness
of the system.

We can also design a publish/subscribe mechanism by adopting Bub-
bleStorm – a gossip idea proposed in [45]: each query is replicated in a
random-walk based tree ofq = O(

√
n) nodes rooted at the subscriber node,

and each event is sent along a similarly-built tree ofc2n/q nodes rooted
at the publisher node wheren is the number of nodes andc ≥ 1 is a cer-

36.3 Routing Design 9

!

!

"#$

"!$

%!

"&$

%%!

"'$

!!

"($

!%!

")$

!%%!

"*$

%!!

"+$

%!%!

",$

%%!!

"!%$

!%%!!

"!'$

%%!%!

"!!$

!!!

"!#$

!%!!

"!&$

!%%!%!

"!($

%!!!

"!)$

%!!%!

"!*$

%!!%%!

"!+$

%!%!!

"!,$

%%!%!!

"#%$

%%!%!%!

"#!$

%!!!!

"##$

%!!%%!!

"#&$

%%!%!!!

"#'$

Figure 36.1 The Pub-2-Sub+ scheme: Nodes are each assigned a name and the names form a
prefix tree. Solid-bold path represents the subscription path of query [‘0110001’, ‘0110101’]
initiated by node 12; dashed-bold path represents the notification path of event ‘0110010’
published by node 22

tainty constant. It is shown that the probability to have a rendezvous node is
r = 1−exp(−c2) (e.g.,c = 2 means a hit probability ofr = 0.98).

36.3.5 Naming-based

Despite its simplicity, the gossip-based approach incurs significant commu-
nication, storage, and computation costs because each query or event needs
to be disseminated to many nodes to have a good chance to meet its matches
at rendezvous nodes. Also, the guarantee that a rendezvous node exists for
every pair of queries and events, including those that do notmatch each
other, is unnecesssarily strong and thus leads to unnecessary traffic. There-
fore, alternative techniques that requires no location information but is not
based on gossiping are proposed [27, 49]. The common idea is to design
a naming scheme that assignsnamesto the nodes in a way convenient for
routing purposes. The technique in [27] clusters the network into a multi-level
hierarchy and assigns to each node a name based on its position in this hier-
archy. The resultant hierarchical naming scheme is used forrouting during
event publication and query subscription. Each node requires onlyO(logn)
bits per node to store auxiliary routing information. Any event can find its
subscribers in a distance-sensitive way. Further, by visiting only O(k) nodes,
the subscriber can collect all occurrences of a particular type of data within
a similarity radiusk (for spherical queries). The above technique works for
the subject-based model only. The Pub-2-Sub+ technique [49] is also based

10 Enabling Publish/Subscribe Services in Sensor Networks

on a naming scheme but designed for content-based services.Pub-2-Sub+

maintains a set ofmspanning trees each rooted at a node in the network. The
root nodes are dedicated reliable nodes placed at random network positions.
Each tree correponds to a naming tree assigning a binary-string name to each
node; hence, a node hasm names. The names on a tree form a prefix tree.
Based on the naming scheme, each node is assigned a “zone" of binary strings
to own. The zone of a node is the set of all binary strings starting with this
node’s name but not with any child node’s name. A query is subscribed to a
random tree and an event is published to all the trees. Pub-2-Sub+ formats
an event as a binary string (e.g., ‘0110010’) and a query an interval of binary
strings (e.g., [‘0110001’, ‘0110101’]). On the randomly chosen tree, a query
is routed to, and stored at, all the nodes whose zone overlapswith the query’s
interval. On each tree, an event is published to the node whose name is the
longest prefix of the event string. Figure 36.1 provides an example wherem
= 1. The query [‘0110001’, ‘0110101’] is stored at nodes 3, 8,17, and 18.
The event ‘0110010’ is published to node 18; it will find all the matching
queries there. In general, the notification path is bounded by two times the
tree height which should beO(logn) in most cases. Also, because there are
multiple paths for the event notification, the disconnection of a path due to
some failure does not stop an event from finding its way to the matching
queries.

36.4 Query Aggregation

Queries in a publish/subscribe system need to be stored in advance. Due
to the resource constraints of a typical sensor node, it is desirable to limit
the replication of each query in the network. Although the routing design
dictates how to disseminate a query, its integration with a query aggregation
mechanism may lead to more efficient query forwarding. Queries arriving at
a node can be merged and/or pruned to produce fewer queries representing
equivalent constraints. Query aggregation based on covering relationship is
useful to deciding whether a query needs to be forwarded further. This section
describes some common aggregation strategies.

36.4.1 Subscription Covering

Used in various Internet-based publish/subscribe systems[24, 25, 12, 14],
one strategy is that a node, upon receipt of a new subscription query, does not
forward it if it is already covered by an existing locally stored query. Figure

36.4 Query Aggregation 11

Figure 36.2 Subscription Covering: Do not forward a new subscription s if it is already
covered by an existing subscriptionsi

36.2 illustrates this strategy. Typically, when a new querys is routed to a
nodeP, the node will store a copy of this query and forward it to the next
nodePnext according to the subscription’s routing protocol. When thenext
nodePnext receives a publication of an eventx that matchess, it will forward
it back toP, which in turn forwardsx to the node that previously sents to P.
Now, let us assume that there is an existing querysi stored atP such thatsi

coverss (i.e.,si ⊃ s). In this case,P may opt not to forwards to Pnext because
P knows that if there is an eventx matchings, it must be returned toP as a
result ofP’s forwarding si earlier. By not forwardings, we avoid the costs
of disseminatings further in the network and collecting duplicate events that
satisfy bothsandsi .

Detecting coverings in a large set of queries can, however, be a compu-
tationally expensive procedure for any given sensor node. On the other hand,
it is not mandatory that covered queries must not be forwarded. Techniques
[38, 43, 46] have been proposed to detectapproximatelysubscription cover-
ings. Although such a technique may still forward a query even if the query
is covered by an existing one, it is guaranteed that no matching event will be
missed. These techniques are still much more efficient than having to detect
all coverings.

The technique in [43] assumes that queries adopt the rectangular form. It
is observed that if we map a rectangular querys = [l1, r1]× [l2, r2]× ...×
[ld, rd] into a 2d-dimensional pointp(s) = (−l1, r1,−l2, r2, ...,−ld, rd), the

12 Enabling Publish/Subscribe Services in Sensor Networks

subscription covering problem ind dimensions becomes the point dominance
problem in 2d dimensions. A pointp is said todominatea point p′ if every
coordinate ofp is no less than that ofp′. Instead of solving this problem
directly, [43] proposed to solve an approximate version of the problem:

“Find a data structure for a setΣ of n points in them-dimensional box
[0,MAX1]× [0,MAX2]× ...× [0,MAXm] so that the following question
can be answered efficiently: given a constantε ∈ (0,1), and a query point
p= (p1, p2, ..., pm), search a subset of the box[p1,MAX1]× [p2,MAX2]×
...× [pm,MAX2], whose volume is at least(1− ε) of the volume of the
box, and report any point ofΣ if it is in the subset."

A data structure was proposed that sorts the input points based on its
positions on the Z space-filling curve [2]. For each query point, only a subset
of segments of the Z curve is searched for the existence of anypoint ofΣ that
dominates the query pointp.

A different approach has been proposed in [46] which can workwith
both spherical and retangular queries. Unlike [43] which increases efficiency
by searching only a subset of the set of queries, [46] searches all queries
but for each visited query the covering condition is quickly, however, tol-
erated by a probability of error. To illustrate the idea, suppose that queries
are spherical. Firstly, a constantk < d is pre-determined. Secondly,k ran-
dom orthonormal vectors,{u1,u2, ...,uk}, are generated. Then, each query
centered ats with radiusr is mapped to the followingk-dimensional rectan-
gle: u(s, r) = u1(s, r)×u2(s, r)× ...×uk(s, r) where each sideui(s, r) of this
rectangle is the projection of the subscription on unit vector ui , which is the
following interval: (◦ is the inner product)ui(s, r) = [ui ◦s− r, ui ◦s+ r]. To
check whether a querys covers a querys′, we check whether the projection
rectangleu(s) covers the projection rectangleu(s′). If it is found thatu(s)
coversu(s′) (or not), it is concluded thats coverss′ (or not). Although this
conclusion is not always correct, it is shown that if queriesare uniformly
distributed in both center points and radii, the probability of error is roughly
bounded by(2/π)k. This probability approaches zero quickly ask increases.

The case of rectangular queries is handled similarly. Each original d-
dimensional rectangular querys with 2d verticesv1, v2, ..., v2d is mapped to
a k-dimensional rectangle where each side is the following interval: ui(s) =
[

min j≤2d (v j ◦ui),maxj≤2d (v j ◦ui)
]

. Using a similar random projection, with
a low probability of error, the subscription covering problem ind dimensions
can be mapped into that ink << d dimensions. The value ofk can be tuned
to achieve any given success rate.

36.4 Query Aggregation 13

[38] addresses a more generic covering problem; that is, to find whether
a new querys is covered bythe setof existing queriess1∪s2∪ ...∪sn, rather
than by a single existing query. The basic idea is as follows.First, k points
{x1,x2, ...,xk} that satisfysare selected in random. Second, we check whether
each of these points satisfies any of the existing queries. Itis concluded that
s is covered if all the selected points satisfy the set of existing queries, and
otherwise not covered. Thus, the probability of erronouslyconcluding that a
query is covered is upper-bounded by(1− pw)k, wherepw is the probability
that a random pointxi satisfyings also satisfies the set of existing queries.
This error probability is quickly improved ask increases.

36.4.2 Subscription Merging/Pruning

Another technique to reduce the number of query replicas in the network is
via subscription merging[36, 25, 50, 17]. Given a set of queriesS, we need to
merge them to create a new set of queriesS′ such that (1)|S|<|S′ | and (2) the
events satisfyingS are the same as that satisfyingS′. Instead of forwarding
the queries inS, we forward the queries inS′, thus reducing the amount of
subscriptions in the network.

Although subscription merging is theoretically helpful, we cannot always
find a perfect merging for a given set of queries. Even if such amerging
exists, its algorithm can be computationally expensive. Indeed, [17] shows
that the merging problem is NP-complete. Consequently, imperfect merging
algorithms are suggested [36, 50, 17]. These algorithms aimto merge the
queries inS into a new set of queriesS′ such that (1)| S |<| S′ | and (2) the
events satisfyingSare asubsetof that satisfyingS′.

One such an algorithm [50] clustersS into groups of similar queries and
then finds a merging for each group. In another algorithm [36], the representa-
tion of a query is based on the concept of ordered Binary Decision Datagram
(BDD) [10]. A BDD is a rooted, directed acyclic graph designed for easy
manipulations of Boolean functions. A query is expressed asa BDD in which
each node is a predicate of the query and a solid (dashed) linkfrom a node
means that the corresponding predicate is satisfied (unsatisfied). For exam-
ple, Figure 36.3(a) shows a BDD for the query{(‘temperature’> 100) AND
(‘humidity’ < 50)} OR {(‘temperature’> 100) AND (‘humidity’≥ 50) AND
(‘wind speed’> 50) AND (‘wind speed’< 100)}. Given an event, it traverses
the BDD and if terminal node 1 is reached, it is concluded thatthe event
satisfies the query. To address a large number of queries, thus a large number
of BDDs, a modified version of BDD called MBD is introduced. A MBD

14 Enabling Publish/Subscribe Services in Sensor Networks

o

(a) A query as a binary decision diagram

o

AND

OR

(b) A query as a boolean tree

Figure 36.3 Examples of query representations

is a forest of BDDs, each representing a query, with the property that if a
predicate occurs in multiple queries only one common node isshared among
these queries to represent the predicate; this predicate isevaluated only once.
A MBD thus represents the merging of multiple queries. Winthin a MBD,
two predicate nodes can also be merged to create a single nodeto represent
the same condition, resulting in a simpler MBD. An event is evaluated on a
MBD rather than on each individual query.

Imperfect merging has its tradeoff. At any nodeP where an imperfect
merging ofSinto S′ is performed, we have the problem that many false events,
that satisfyS′ but not S, could be returned to nodeP. This is unnecessary

36.5 Event Matching 15

traffic which can be costly for sensor networks. In addition,the computa-
tional and space costs to perform subscription merging (perfect or imperfect)
may exceed that a sensor node can afford. Thus, subscriptionmerging is
recommended only when its scope is small.

Subscription pruning[7] is another strategy to reduce the query storage
load in the network. Each query is represented as a tree [6] inwhich each
inner node represents a Boolean operator (e.g., AND, OR) andeach leaf
being a single-attribute predicate (e.g.,(‘temperature’> 100), or (‘humidity’
< 20). For example, Figure 36.3(b) shows the Boolean tree representing the
same query in Figure 36.3(a). The tree is then simplified by pruning off some
predicates or by replacing them with simpler ones. Since thequeries become
simpler, data structures and algorithms for processing them require less mem-
ory and computation. On the other hand, similar to imperfectsubscription
merging, subscription pruning also results in notificationof false events.

36.5 Event Matching

When a publication of some event reaches a node where the locally stored
queries need to be evaluated against this event, simply testing every query
and predicate may be computationally expensive for a sensornode, especially
when there are numerous, complex queries and high volumes ofevents. Con-
sequently, it has been proposed that the queries are organized into some data
structure that enables faster than linear-time event matching.

The Matching Tree in [1] is such a data structure, where the matching time
is sub-linear and the space complexity is linear. This tree allows incremental
query updates (insert/delete) and is most suitable where events are published
at a fast rate. Each tree node is a test on some of the attributes and each
link eminating a node is labeled with a result of the correponding test. A
link with label ‘*’ means a “do not care" link. Each query corresponds to a
leaf node and the path from the root to this leaf node consistsof all the tests
whose conjunction is equivalent to the query. For example, Figure 36.4 shows
a simple matching tree storing three queries:sub1: (attr1 = v1) AND (attr2 =
v2) AND (attr3 = v3), sub2: (attr1 = v1) AND (attr3 = v′

3), andsub3: (attr1 =
v′1) AND (attr2 = v2) AND (attr3 = v3). To find the queries matching an event,
at each node starting at the root, the corresponding test is performed and a link
to the next node is followed if its label matches the result ofthe test. This step
is repeated at the next node. The leaves that are finally visited correspond
to the queries that match the event. In the case where a query consists of
equality tests on the attributes, the expected time to matcha random event is

16 Enabling Publish/Subscribe Services in Sensor Networks

O(n1−λ) wheren is the number of queries andλ is a parameter dependent
on the number and type of attributes (in some cases,λ = 1/2). The constants
hidden behind the big-O notation are quite reasonable.

The matching tree structure follows the approach that the search for queries
matching a given event starts from the attribute constraints derived from the
full set of queries and moves through them consulting the attributes appear-
ing in the event. The binary decision datagram (BDD) structure discussed
in Section 36.4 also follows this approach. Alternatively,we can start with
the attributes appearing in the event and move through them consulting the
query constraints. An early method adopting this approach is the SIFT system
[51], which is the basis for subsequently designed structures [21, 13]. SIFT
is limited to strings only and the equality operator over strings. Le Subscribe
[21] allows the integer type and its associated operators. [13] adds the prefix,
suffix, and substring operators for strings and, especially, allows a query to
be expressed as a disjunction of conjunctive clauses, not just a single con-
junctive clause. The matching algorithm in this work is based on a counting
algorithm also used in [21, 51] and when tested on a 950Mhz computer for
a 10-attribute event and 20 queries consisting of 25 conjunctions could find
the matching queries in 3 milliseconds. It took 48 bytes of storage for each
elementary predicate. This algorithm is therefore simple and efficient enough
to be implemented on a sensor node.

Another strategy for building an efficient data structure isbased on the
query covering relationship. It is observed that if an eventx matches query
s1 (denoted byx ∈ s1) and if we already know thats1 ⊂ s2 for some query
s2, then it must be true thatx∈ s2 and we need not check whetherx matches
s2. Based on this observation, we should build a data structurethat captures
the covering relationship among subscriptions. This is similar to the problem
of Orthogonal Range Searchin Computational Geometry, for which several
structures exist such as the kd-tree [5] and the layered range tree [19]. Using
the kd-tree, the complexities would beO(n1−1/d) for time andO(n) for stor-
age, while that using the layered range tree would beO(logdn) for time and
O(nlogd−1n) for storage. If one of these two structures must be used, due to
the high storage cost of the layered range tree, the kd-tree should be a better
choice for sensor networks.

The random projection approach in [48], which was discussedearlier in
Section 36.4.1, can be used to expedite the matching procedure. Using a ran-
dom projection fromd dimensions tok dimensions (d is the number of event
attributes,k is some small constant), a query is mapped to ak-dimensional
rectangle. To check whether an eventx matches a querys (centeru, radius

36.6 Middleware Development17

!""#$

!""#%

!""#&

!""#%

'()$

!""#& !""#&

'()% '()&

*$

*%

*&

+

*$,

*%

&&,

Figure 36.4 Example of a matching tree

r), a quick check can be to verify whether the projectionx′ of x in the k-
dimensional space is inside thek-dimensional rectangular projections′ of s.
If x′ 6∈ s′, we can immeditately ignores; otherwise, we perform the check
whetherx∈ sas usual. The first check is performed in ak-dimensional space,
thus much quicker than the second check which is in ad-dimensional space.
A nice property of this method is that the number of queries that can be
ignored after the first check increases quickly if a larger value fork is chosen.

36.6 Middleware Development

It is important to have a middleware component that can be integrated on
top of a sensor network to allow for easy deployment of publish/subscribe
applications. An application developer should know just how to call the pub-
lish/subscribe functions, not having to worry about the complexity of the
underlying network and the implementation details of the publish/subscribe
mechanisms. There have been various approaches toward providing mid-
dleware services in sensor networks, and according to the categorization in
[30], these approaches can be placed in one of the following groups: (1)
database-inspired approaches (TinyDB [37], COUGAR [8], SINA [42]); (2)
tuple space approaches (TinyLIME [11]); (3) event-based approaches (Mires
[44], MQTT-S [33], TinyCOPS [28]; and (4) service discoverybased ap-

18 Enabling Publish/Subscribe Services in Sensor Networks

proaches (MiLAN [29]). Publish/subscribe middleware belongs to the group
of event-based approaches.

Mires [44] is such a publish/subscribe middleware design, which has been
implemented using nesC on top of TinyOS 1.x. Mires supportssubject-based
publish/subscribe applications and provides an architecture that allows sensor
nodes to advertise the subject of sensor data they can provide, user applica-
tions to select subjects of interest from the advertised services, and sensor
nodes to publish their data to the corresponding subscribers. The subscription
and notification protocols integrated in this middleware are similar to that of
Directed Fusion. Mires also offers data aggregation services for some com-
mon aggregation functions, such as min, max, and average, tohelp reduce the
event traffic in the network.

Another middleware design is the MQTT-S architecture by IBM[33].
MQTT-S is an extension of MQTT originally developed for telemetry appli-
cations using constrained devices1. This architecture is applicable tosubject-
basedpublish/subscribe applications that run in a network integrating multi-
ple wireless sensor networks (WSN). Its aim is to hide end-point details: an
application running on either the backbone network or inside a WSN does not
know whether the data is coming from a device in a WSN or the backbone
network. A query can be submitted anywhere in the global network subscrib-
ing to events that may belong to one or more participating WSNs. Broker
nodes are placed in the backbone network to provide a publish/subscribe ser-
vice to the nodes in the backbone network; the broker nodes run the original
MQTT middleware. MQTT-S is used to provide a publish/subscribe service
within a single WSN, with two main entities: MQTT-S Client running on a
sensor node and MQTT-S Gateway running on a gateway node connecting
its WSN to the global network. An MQTT-S Client contains botha publisher
and a subscriber, thus allowing sensor nodes to not only publish their data,
but also receive e.g. control information sent by nodes residing in the global
network. The main function of the gateway is to translate between MQTT-S
and MQTT protocols. This architecture is illustrated in Figure 36.5. MQTT-S
provides a method to search for a local gateway and allows formultiple gate-
ways used per WSN, thus increasing the reliability of the publish/subscribe
system under deployment. MQTT-S has been implemented in a testbed which
comprises two wireless sensor networks of different types,a ZigBee-based
and a TinyOS-based one. Both implementations are lightweight with about
12kB of code. The testbed devices each have only 64kB of program memory

1 http://mqtt.org

36.6 Middleware Development19

Figure 36.5 The MQTT-S middleware architecture

available. The MQTT-S Gateway is written in Java and uses theJava Commu-
nications API to communicate with the gateway devices over the serial port.
The Gateway connects to a broker using the MQTT protocol. Nodes residing
on the TinyOS-based network can communicate with nodes on the ZigBee
network via the broker.

Mires and MQTT-S focus on architectural and networking issues and
provide support for simple subject-based subscriptions and publications. The
middleware development in [52] is aimed for a rich expressiveness of query
and event description. A set of filtering operators is proposed to support
not only standard comparison and string operators, but alsoallow for spa-
tiotemporal constraints. For example, a query can be subscribed to receive the
average temperature at a specific location during a future period of time. A
problem with this middleware development is due to the complexity involved
in the implementation of the subscription and notification protocols. Indeed,
a complex timestamping scheme is needed to support the temporal operators
and, further, the spatial operators requires location information which is not
always available for every sensor network [30].

The aforementioned middleware designs tightly integrate filtering, rout-
ing and forwarding mechanisms resulting in more optimized,but less flexi-
ble solutions. TinyCOPS [28] is aimed to be a unified middleware architec-
ture enablingcontent-basedpublish/subscribe applications, not just subject-
based, that gives the application developer a wide range of orthogonal choices
about the communication protocol components to use for subscription and
notification, the supported data attributes, and a set of service extension com-
ponents. This allows the adaptation of the publish/subscribe service to the
specific needs of the application to deploy. TinyCOPS also introduces the

20 Enabling Publish/Subscribe Services in Sensor Networks

concept ofmetadataincluded in the description of each query to influence the
communication and sensing process. For example, the metadata can specify
the expiration time for a given query or to request a samplingrate events
should be sent to the subscriber. TinyCOPS has been implemented to run
on top of TinyOS 2.0, in which two communication protocols are integrated
(broadcast-based or gossip-based).

36.7 Concluding Remarks

The publish/subscribe paradigm represents a large class ofapplications in
sensor networks as sensors are designed mainly to detect andnotify upon
events of interests. This important paradigm allows a user to subscribe in
advance a query specifying the early warnings of a wildfire, so that any event
matching these warnings when detected by a sensor can be published to the
network quickly to notify the subscriber. In industrial applications, we can
provide a more secure working environment by deploying a sensor network
that warns workers upon detection of dangerous events.

Many publish/subscribe techniques for sensor networks have been in-
spired by that for traditional Internet-based networks. For example, some
gossip-based routing schemes, query aggregation schemes,and event match-
ing algorithms that have been designed for the Internet can also be used
in sensor networks, as we discussed earlier in the chapter. There, however,
remains much room for future research. For a large-scale sensor network
where broadcast-based and gossip-based routing approaches may not be the
best fit, the routing design should be driven by the content ofthe message
being routed so as to limit the scope of propagation. In networks where
location information is available, it should be a main factor in the routing
design. In other networks without location information, the naming-based
approach seems a promising direction, the challenge, however, being how
to maintain the naming structure efficiently under network dynamics. Since
sensor networks may be of different types (small vs. large, location-aware
vs. location-unaware, static vs. dynamic) and the application to deploy may
also have its own characteristic (low vs. high query rate, low vs. high event
rate, subject-based vs. content-based, etc.), it is difficult to choose a pub-
lish/subscribe design that works well in every case. Thus, rather than trying
to find a universally “perfect" design, it would be better to categorize the
networks and applications into similarity-based groups and design the “best"
technique for each group.

References 21

It is then natural for the next step to be developing a publish/subscribe
middleware package that provides a set of common services tomost pub-
lish/subscribe network/applications no matter their categories, and another
set of services each customized toward a specific category. This middleware
should provide convenient tools for the middleware designer to add new
service components to the existing architecture, such as a new language for
query and event description and a new implementation for routing, data ag-
gregation, or an event matching algorithm. It should also give the application
developer freedom and a convenient API to choose the publish/subscribe ser-
vice configuration that is best for the context of the deployment. Middleware
development for publish/subscribe applications in sensornetworks remains
ad hoc and isolated. It should be a high-priority item in the future research
towards publish/subscribe services in sensor networks.

References

[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D. Chandra. Matching
events in a content-based subscription system. InPODC ’99: Proceedings of the eigh-
teenth annual ACM symposium on Principles of distributed computing, pages 53–61.
ACM Press, 1999.

[2] T. Asano, D. Ranjan, T. Roos, E. Welzl, and P. Widmayer. Space-filling curves and their
use in the design of geometric data structures.Theoretical Computer Science, 181(1):3–
15, 1997.

[3] C. Avin and B. Krishnamachari. The power of choice in random walks: An empirical
study.Comput. Networks, 52(1):44–60, 2008.

[4] M. Avvenuti, A. Vecchio, and G. Turi. A cross-layer approach for publish/subscribe in
mobile ad hoc networks. InMATA, volume 3744 ofLecture Notes in Computer Science,
pages 203–214. Springer, 2005.

[5] J. L. Bentley. Multidimensional binary search trees used for associative searching.
Commun. ACM, 18(9):509–517, 1975.

[6] S. Bittner and A. Hinze. On the benefits of non-canonical filtering in publish/subscribe
systems. InICDCSW ’05: Proceedings of the Fourth International Workshop on Dis-
tributed Event-Based Systems (DEBS) (ICDCSW’05), pages 451–457, Washington, DC,
USA, 2005. IEEE Computer Society.

[7] S. Bittner and A. Hinze. Pruning subscriptions in distributed publish/subscribe systems.
In ACSC ’06: Proceedings of the 29th Australasian Computer Science Conference, pages
197–206, Darlinghurst, Australia, Australia, 2006. Australian Computer Society, Inc.

[8] P. Bonnet, J. E. Gehrke, and P. Seshadri. Towards sensor database systems. In2nd
International Conference on Mobile Data Management (MDM), pages 3–14, 2001.

[9] D. Braginsky and D. Estrin. Rumor routing algorthim for sensor networks. InWSNA
’02: Proceedings of the 1st ACM international workshop on Wireless sensor networks
and applications, pages 22–31. ACM, 2002.

22 Enabling Publish/Subscribe Services in Sensor Networks

[10] R. E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE Trans.
Comput., 35(8):677–691, 1986.

[11] M. G. C. Curino, M. Giorgetta, A. Giusti, A. L. Murphy, and G. P. Picco. Tinylime:
Bridging mobile and sensor networks through middleware. In3rd IEEE International
Conference on Pervasive Computing and Communications (PerCom), pages 61–72,
March 2005.

[12] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design andevaluation of a wide-area
event notification service.ACM Transactions on Computer Systems, 19(3):332–383,
2001.

[13] A. Carzaniga and A. L. Wolf. Forwarding in a content-based network. InACM
SIGCOMM, pages 163–174, 2003.

[14] R. Chand and P. Felber. Xnet: A reliable content-based publish/subscribe system.
In SRDS ’04: Proceedings of the 23rd IEEE International Symposium on Reliable
Distributed Systems (SRDS’04), pages 264–273, Washington, DC, USA, 2004. IEEE
Computer Society.

[15] P. Costa, C. Mascolo, M. Musolesi, and G. P. Picco. Socially-aware routing for publish-
subscribe middleware in delay-tolerant mobile ad hoc networks. IEEE Journal on
Selected Areas in Communications, 26(5), 2008.

[16] P. Costa, G. P. Picco, and S. Rossetto. Publish-Subscribe on Sensor Networks: A Semi-
probabilistic Approach. InProceedings of the 2nd IEEE International Conference on
Mobile Ad-hoc and Sensor Systems (MASS05), Washington DC, USA, November 2005.

[17] A. Crespo, O. Buyukkokten, and H. Garcia-Molina. Querymerging: Improving query
subscription processing in a multicast environment.IEEE Transactions on Knowledge
and Data Engineering, 15(1):174–191, 2003.

[18] G. Cugola and H.-A. Jacobsen. Using publish/subscribemiddleware for mobile systems.
SIGMOBILE Mob. Comput. Commun. Rev., 6(4):25–33, 2002.

[19] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational geom-
etry: algorithms and applications. Springer-Verlag New York, Inc., Secaucus, NJ, USA,
1997.

[20] P. T. Eugster, R. G. P. A. Felber, and A.-M. Kernmarrec. The many faces of
publish/subscribe.ACM Computing Surveys, 35(2):114â̆AŞ131, 2003.

[21] F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Filtering
algorithms and implementation for very fast publish/subscribe systems. InSIGMOD
’01: Proceedings of the 2001 ACM SIGMOD international conference on Management
of data, pages 115–126, New York, NY, USA, 2001. ACM Press.

[22] Q. Fang, J. Gao, and L. J. Guibas. Landmark-based information storage and retrieval in
sensor networks. InIEEE INFOCOM, 2006.

[23] U. Farooq, E. W. Parsons, and S. Majumdar. Performance of publish/subscribe mid-
dleware in mobile wireless networks.SIGSOFT Softw. Eng. Notes, 29(1):278–289,
2004.

[24] E. Fidler, H.-A. Jacobsen, G. Li, and S. Mankovski. The padres distributed pub-
lish/subscribe system. InFIW, pages 12–30, 2005.

[25] L. Fiege, M. Cilia, G. Muhl, and A. Buchmann. Publish-subscribe grows up: Support for
management, visibility control, and heterogeneity.IEEE Internet Computing, 10(1):48–
55, 2006.

References 23

[26] D. Frey and G.-C. Roman. Context-aware publish subscribe in mobile ad hoc networks.
In International Conference on Coordination Models and Languages (COORDINATION
2007), pages 37–55, 2007.

[27] S. Funke, L. J. Guibas, A. Nguyen, and Y. Wang. Distance-sensitive information
brokerage in sensor networks. InDCOSS, pages 234–251, 2006.

[28] J.-H. Hauer, V. Handziski, A. Kaopke, A. Willig, and A. Wolisz. A component frame-
work for content-based publish/subscribe in sensor networks. InEuropean Workshop on
Wireless Sensor Networks (EWSN), Bologna, Italy, January 2008.

[29] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, and M. A. Perillo. Middleware to
support sensor network applications.IEEE Network, 18(1):6–14, August 2004.

[30] K. Henricksen and R. Robinson. A survey of middleware for sensor networks: State of
the art and future directions. InACM Workshop on Middleware for Sensor Networks,
Melbourne, Australia, 2006.

[31] Y. Huang and H. Garcia-Molina. Publish/subscribe treeconstruction in wireless ad-hoc
networks. InMDM ’03: Proceedings of the 4th International Conference onMobile
Data Management, pages 122–140, London, UK, 2003. Springer-Verlag.

[32] Y. Huang and H. Garcia-Molina. Publish/subscribe in a mobile environment. Wirel.
Netw., 10(6):643–652, 2004.

[33] U. Hunkeler, H.-L. Truong, and A. Stanford-Clark. MQTT-S: A publish/subscribe proto-
col for wireless sensor networks. InWorkshop on Information Assurance for Middleware
Communications (IAMCOM ‘08), Bangalore, India, January 2008.

[34] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: a scalable and robust
communication paradigm for sensor networks. InMobiCom ’00: Proceedings of the 6th
annual international conference on Mobile computing and networking, pages 56–67.
ACM Press, 2000.

[35] B. Karp and H. T. Kung. Gpsr: greedy perimeter statelessrouting for wireless networks.
In MobiCom ’00: Proceedings of the 6th annual international conference on Mobile
computing and networking, pages 243–254, New York, NY, USA, 2000. ACM Press.

[36] G. Li, S. Hou, and H.-A. Jacobsen. A unified approach to routing, covering and merging
in publish/subscribe systems based on modified binary decision diagrams. InICDCS
’05: Proceedings of the 25th IEEE International Conferenceon Distributed Computing
Systems (ICDCS’05), pages 447–457, Washington, DC, USA, 2005. IEEE Computer
Society.

[37] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: An acquisitional
query processing system for sensor networks.ACM Transactions on Database Systems,
30(1):122–173, 2005.

[38] A. M. Ouksel, O. Jurca, I. Podnar, and K. Aberer. Efficient probabilistic subsump-
tion checking for content-based publish/subscribe systems. In ACM/IFIP/USENIX 7th
International Middleware Conference, pages 121–140, 2006.

[39] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and F. Yu. Data-
centric storage in sensornets with ght, a geographic hash table. Mob. Netw. Appl.,
8(4):427–442, 2003.

[40] R. Sarkar, X. Zhu, and J. Gao. Double rulings for information brokerage in sensor
networks. InMobiCom ’06: Proceedings of the 12th annual international conference on
Mobile computing and networking, pages 286–297, New York, NY, USA, 2006. ACM.

[41] J. H. Schönherr, H. Parzyjegla, and G. Mühl. Clustered publish/subscribe in wireless
actuator and sensor networks. InMPAC ’08: Proceedings of the 6th international work-
shop on Middleware for pervasive and ad-hoc computing, pages 60–65, New York, NY,
USA, 2008. ACM.

[42] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information networking ar-
chitecture and applications.IEEE Personal Communications, 8(4):52â̆AŞ–59, August
2001.

[43] Z. Shen and S. Tirthapura. Approximate covering detection among content-based sub-
scriptions using space filling curves. InIEEE International Conference on Distributed
Computing Systems, Toronto, Canada, June 2007.

[44] E. Souto, G. Guimaraes, G. Vasconcelos, M. Vieira, N. Rosa, C. Ferraz, and J. Kel-
ner. Mires: a publish/subscribe middleware for sensor networks. Personal Ubiquitous
Comput., 10(1):37–44, 2005.

[45] W. W. Terpstra, J. Kangasharju, C. Leng, and A. P. Buchmann. Bubblestorm: resilient,
probabilistic, and exhaustive peer-to-peer search. InSIGCOMM ’07: Proceedings of
the 2007 conference on Applications, technologies, architectures, and protocols for
computer communications, pages 49–60, New York, NY, USA, 2007. ACM.

[46] D. A. Tran and T. Nguyen. Subscription covering detection in publish/subscribe systems
based on random projections. InProceedings of IEEE Int’l Conference on Collaborative
Computing (COLLABORATECOM 2007), White Plains, NY, October 2007. IEEE Press.

[47] D. A. Tran and T. Nguyen. Localization in wireless sensor networks based on support
vector machines.IEEE Transactions on Parallel and Distributed Systems, 19(7):981–
994, July 2008.

[48] D. A. Tran and C. Pham. Cost-effective multidimensional publish/subscribe services in
sensor networks. InIEEE Workshop on Localized Communications Algorithms and Net-
works - IEEE Conference on Mobile Ad hoc and Sensor Systems (MASS 2008), Atlanta,
GA, September 2008. IEEE Press.

[49] D. A. Tran and C. Pham. A content-guided publish/subscribe mechanism for sen-
sor networks without location information.Journal on Computer Communications
(COMCOM), 33(13):1515–1523, August 2010.

[50] Y.-M. Wang, L. Qiu, C. Verbowski, D. Achlioptas, G. Das,and P. Larson. Summary-
based routing for content-based event distribution networks. SIGCOMM Comput.
Commun. Rev., 34(5):59–74, 2004.

[51] T. W. Yan and H. Garcia-Molina. The sift information dissemination system.ACM
Trans. Database Syst., 24(4):529–565, 1999.

[52] E. Yoneki and J. Bacon. Unified semantics for event correlation over time and space
in hybrid network environments. InIFIP International Conference on Cooperative
Information Systems (CoopIS), pages 366–384, 2005.

[53] Q. Yuan and J. Wu. Drip: A dynamic voronoi regions-basedpublish/subscribe pro-
tocol in mobile networks. InINFOCOM 2008. The 27th Conference on Computer
Communications. IEEE, pages 2110–2118, 2008.

Prasad, Buford, and Gurbani (Eds.), Advances in Next Generation Services and
Service Architectures,1–24.
c© 2010River Publishers. All rights reserved.

